Supporting Information for:

Three-Component 1,2-Carboamidation of Bridged Bicyclic Alkenes via Rh^{III}-Catalyzed Addition of C–H Bonds and Amidating Reagents

Daniel S. Brandes, Ana Sirvent, Brandon Q. Mercado, and Jonathan A. Ellman*

Yale University Department of Chemistry

225 Prospect Street, New Haven, CT, 06520-8107

jonathan.ellman@yale.edu

Table of Contents

I. Structures of Starting Materials	2
II. General Methods	2
III. Preparation of Catalysts and Substrates	3
IV. Rh ^{III} -Catalyzed Coupling Reactions	6
V. Asymmetric Rh ^{III} -Catalyzed Coupling Reactions	14
VI. X-Ray Crystallographic Data	23
VII. References	41
VIII. NMR Data	43

I. Structures of Starting Materials

II. General Methods

Unless otherwise noted, all Rh^{III}-catalyzed reactions were set up in a N₂-filled glovebox, using glassware that was oven-dried (130 °C) and evacuated while hot prior to use. Unless otherwise indicated, all reactions for substrate preparation were carried out on the benchtop under a N₂ atmosphere. Solvents were sparged with argon and purified by elution through a column of activated alumina under argon before use, and were stored in a N₂ filled glovebox in the presence of activated 3Å molecular sieves (molecular sieves were dried at 200 °C overnight under vacuum). Unless otherwise noted, all reagents were purchased from commercial sources and used without further purification. Microwave vials and caps were purchased from Biotage with part numbers 351521 and 352298, respectively. Product purification was performed by either flash column chromatography with SiliaFlash®P60 (230-400 mesh) silica gel, reverse phase chromatography with a Teledyne Isco automated chromatography system using C-18 gold columns, or preparative thin-layer chromatography with plates from Analtech (1 mm SiO₂, 20 x 20 cm). ¹H, ¹³C, and ¹⁹F-NMR spectra were recorded on either a 400, 500, or 600 MHz instrument. Data are reported in the following format: chemical shift in ppm, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, bs = broad singlet, m = multiplet, dd = doublet of doublets, etc.), coupling constant J in

Hz, and integration. NMR solvents were used as received. NMR chemical shifts are reported in ppm relative to CDCl₃ (7.26 ppm for ¹H and 77.16 ppm for ¹³C), CD₃CN (1.94 ppm for ¹H and 1.32 ppm for ¹³C), or DMSO- d_6 (2.50 ppm for ¹H and 39.52 ppm for ¹³C). Partial IR spectra are reported. High-resolution mass spectra (HRMS) were obtained using electrospray ionization (ESI) on a time of flight (TOF) mass spectrometer. Compounds that did not ionize using this method were sent to UIUC for analysis using an electron ionization mass spectrometer. Enantiomeric ratios were determined using an Agilent 1100 series HPLC equipped with Chiralpak AD-H, OD-H, and IB analytical columns (4.6 mm x 25 cm) and a multiwavelength detector.

III. Preparation of Catalysts and Substrates

Catalysts/Additives: $[Cp*RhCl_2]_2$,¹ $Cp*Rh(OAc)_2$,² chiral Rh precatalyst **6**,^{3,4,5} and $[Cp*Rh(MeCN)_3](SbF_6)_2^6$ were synthesized according to published literature procedures.

C-H Bond Substrates: The previously reported compounds 1-benzyl-4-(*m*-tolyl)-1*H*-1,2,3-triazole,⁷ phenyl(pyrrolidin-1-yl)methanone,⁸ 2-methyl-3,4-dihydroisoquinolin-1(2H)-one,⁹ 1-(o-tolyl)-1H-pyrazole,¹⁰ and 1-(m-tolyl)-1H-pyrazole¹⁰ were synthesized according to published literature procedures. *N*-Methylbenzamide was purchased commercially and used without further purification.

Dioxazolones: The previously reported compounds 3-phenyl-1,4,2-dioxazol-5-one, 3-(p-tolyl)-1,4,2-dioxazol-5-one, 3-methyl-1,4,2-dioxazol-5-one, and 3-heptyl-1,4,2-dioxazol-5-one were synthesized according to a published literature procedure.¹¹ 3-isopropyl-1,4,2-dioxazol-5-one, 3-(*tert*-butyl)-1,4,2-dioxazol-5-one and 3-(thiophen-2-yl)-1,4,2-dioxazol-5-one were synthesized according to the literature procedure¹¹ and the characterization data matched those reported in the literature.¹²

Alkene Substrates: The previously reported compounds *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate,¹³ 1,4-dihydro-1,4-epoxynaphthalene,^{14, 15} 1,4-dihydro-1,4-methanonaphthalene,¹⁶ and methyl 3-oxo-8-azabicyclo[3.2.1]oct-6-ene-8-carboxylate,¹⁷ were synthesized according to published literature procedures. Bicyclo[2.2.1]hept-2-ene was purchased from laboratory chemical supply companies and used without further purification.

(5-Methylthiophen-3-yl)(pyrrolidin-1-yl)methanone (1c): A flame-dried, 50 mL round-bottom flask was charged with 5-methylthiophene-3-carboxylic acid (569 mg, 4.00 mmol, 1 equiv) along with a stir bar. The flask was flushed with nitrogen, followed by the addition of thionyl chloride neat (4.00 mL, 54.8 mmol, 13.7 equiv).

The mixture was refluxed at 85 °C in a preheated oil bath for 30 min and was then cooled to room temperature. The mixture was then concentrated down in the same flask to a brown oil. The flask was flushed with nitrogen, followed by the addition of dry CH₂Cl₂ (10 mL). The solution was cooled to 0 °C in an ice-bath with stirring, followed by the dropwise addition of pyrrolidine (0.394 mL, 4.80 mmol, 1.2 equiv). After 1 min, triethylamine (0.669 mL, 4.80 mmol, 1.2 equiv) was added dropwise, and stirring was continued for 5 min. After 5 min, the mixture was warmed to rt, stirring for an additional 2 h. The mixture was washed with water (1x), sat. NaHCO₃ solution (1x), and brine (1x) successively. The organic layer was then dried over MgSO₄ and was concentrated

in vacuo. Purification by silica gel chromatography (100% ethyl acetate) afforded the product **1c** (606 mg, 78% yield) as an orange solid. IR (neat): 3112, 2956, 2871, 1598, 1456, 1424, 854, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 1.5 Hz, 1H), 7.00 – 6.97 (m, 1H), 3.63 – 3.48 (m, 4H), 2.44 (d, J = 1.1 Hz, 3H), 2.03 – 1.76 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 139.7, 137.8, 125.8, 125.2, 49.2, 46.5, 26.5, 24.3, 15.2. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₀H₁₄NOS⁺: 196.0796. Found 196.0788.

3-(2-Chlorophenyl)-1,4,2-dioxazol-5-one (2f): A 100 mL round-bottom flask was charged with hydroxylamine chloride (1.57 g, 22.6 mmol, 1.5 equiv), sodium carbonate (4.78 g, 45.1 mmol, 3 equiv), and 45 mL of a 1:1 solution of EtOAc/water. The solution was stirred at 0 °C and 2-chlorobenzoyl chloride (1.68 mL, 15.0 mmol, 1 equiv) was added dropwise. The solution was warmed to rt and stirred for 2 h. The reaction was quenched with 75 mL of 1M HCl, and the resulting mixture was extracted with EtOAc (3x) and dried over MgSO4. The crude hydroxamic acid was concentrated and dried in vacuo. The hydroxamic acid was taken up in 75 mL dry CH₂Cl₂ under N₂, and 1,1'-carbonyldiimidazole (2.44 g, 15.0 mmol, 1 equiv) was added to the flask. Reaction progress was monitored by TLC, and the reaction was quenched after 20 min with 75 mL of 1M HCl. The crude product was then extracted with CH₂Cl₂ (2x), dried over MgSO₄, and concentrated in vacuo. Purification by silica gel chromatography (50% CH₂Cl₂ in hexanes) afforded the product **2f** (1.21 g, 41% yield) as a white solid. IR (neat): 1862, 1834, 1590, 1335, 1173, 1040, 974, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 4.2 Hz, 2H), 7.45 (dt, *J* = 8.4, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 153.5, 134.3, 133.8, 131.7, 130.7, 127.5, 119.6. HRMS (EI) m/z: [M/Z] Calcd. for C₈H4CINO₃: 196.9880. Found 196.9875.

3-(3-Bromophenyl)-1,4,2-dioxazol-5-one (2g): A 100 mL round-bottom flask was charged with hydroxylamine chloride (1.25 g, 18.0 mmol, 1.5 equiv), sodium carbonate (3.82 g, 36.0 mmol, 3 equiv), and 36 mL of a 1:1 solution of EtOAc/water. The solution was stirred at 0 °C and 3-bromobenzoyl chloride (1.58 mL, 12.0 mmol, 1 equiv) was added dropwise. The solution was warmed to rt and stirred for 2 h. The

^B/_b 1 equiv) was added dropwise. The solution was warmed to rt and stirred for 2 h. The reaction was quenched with 60 mL of 1M HCl, and the resulting mixture was extracted with EtOAc (3x) and dried over MgSO4. The crude hydroxamic acid was concentrated and dried in vacuo. The hydroxamic acid was taken up in 60 mL of dry CH₂Cl₂ under N₂, and 1,1'-carbonyldiimidazole (1.96 g, 12.0 mmol, 1 equiv) was added to the flask. Reaction progress was monitored by TLC, and the reaction was quenched after 20 min with 60 mL of 1M HCl. The crude product was then extracted with CH₂Cl₂ (2x), dried over MgSO₄, and concentrated in vacuo. Purification by silica gel chromatography (50% CH₂Cl₂ in hexanes) afforded the product **2g** (1.02 g, 35% yield) as a white solid. IR (neat): 3066, 1838, 1622, 1561, 1367, 1172, 984, 755 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.97 (m, 1H), 7.82 – 7.75 (m, 2H), 7.44 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 153.5, 137.0, 131.1, 129.6, 125.3, 123.6, 122.1. HRMS (EI) m/z: [M/Z] Calcd. for C₈H4BrNO₃: 240.9375. Found 240.9370.

3-[4-(Trifluoromethyl)phenyl]-1,4,2-dioxazol-5-one (2h): A flame dried 500 mL round-bottom flask was charged with 4-(trifluoromethyl)benzoic acid (3.80 g, 20 mmol, 1 equiv) in 100 mL of dry CH₂Cl₂ and cooled to 0 °C. Oxalyl chloride (12.0 mL, 24 mmol, 1.2 equiv) was added along with 8 drops of DMF. The

solution was brought to stirring reflux at 40 °C in a preheated oil bath for 2 h, and concentrated in

vacuo. The crude acid chloride was then dissolved in minimal EtOAc, and added dropwise to a 250 mL round-bottom flask containing hydroxylamine chloride (2.08 g, 30.0 mmol, 1.5 equiv), sodium carbonate (6.36 g, 6.00 mmol, 3 equiv), and 60 mL of a 1:1 solution of EtOAc/water at 0 °C. The solution was warmed to rt and stirred for 2 h. The reaction was quenched with 100 mL of 1M HCl, and the resulting mixture was extracted with EtOAc (3x) and dried over MgSO4. The crude hydroxamic acid was concentrated and dried in vacuo. The hydroxamic acid was taken up in 100 mL of dry CH₂Cl₂ under N₂, and 1,1'-carbonyldiimidazole (3.24 g, 20.0 mmol, 1 equiv) was added to the flask. Reaction progress was monitored by TLC, and the reaction was quenched after 20 min with 100 mL of 1M HCl. The crude product was then extracted with CH₂Cl₂ (2x), dried over MgSO4, and concentrated in vacuo. Purification by silica gel chromatography (50% CH₂Cl₂ in hexanes) afforded the product **2h** (2.11 g, 46% yield) as a white solid. IR (neat): 1863, 1825, 1320, 1069, 1016, 971, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 2H), 7.83 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 153.4, 135.5 (q, 2*J*_{C-F} = 33.3 Hz), 127.3, 126.6 (q, 3*J*_{C-F} = 3.8 Hz), 123.6, 123.2 (q, 1*J*_{C-F} = 272.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.46. HRMS (EI) m/z: [M/Z] Calcd. for C₉H4F₃NO₃: 231.0143. Found 231.0148.

3-(3,5-Dimethylphenyl)-1,4,2-dioxazol-5-one (2j): A flame dried 500 mL roundbottom flask was charged with 3,5-dimethylbenzoic acid (5.00 g, 33.0 mmol, 1 equiv) in 170 mL of dry CH_2Cl_2 and cooled to 0 °C. Oxalyl chloride (20.0 mL, 40.0 mmol, 1.2 equiv) was added along with 13 drops of DMF. The solution was brought to stirring reflux at 40 °C in a preheated oil bath for 2 h, and after allowing to cool

to rt, then concentrated in vacuo. The crude acid chloride was then dissolved in minimal EtOAc and added dropwise to a 500 mL round-bottom flask containing hydroxylamine chloride (3.47 g, 50.0 mmol, 1.5 equiv), sodium carbonate (10.6 g, 100 mmol, 3 equiv), and 100 mL of a 1:1 solution of EtOAc/water at 0 °C. The solution was warmed to rt and stirred for 2 h. The reaction was quenched with 170 mL of 1M HCl, extracted with EtOAc (3x), and dried over MgSO4. The crude hydroxamic acid was concentrated and dried in vacuo. The hydroxamic acid was taken up in 170 mL dry CH₂Cl₂ under N₂, and 1,1'-carbonyldiimidazole (5.40 g, 33 mmol, 1 equiv) was added to the flask. Reaction progress was monitored by TLC, and the reaction was quenched after 20 min with 170 mL of 1M HCl. The crude product was then extracted with CH₂Cl₂ (2x), dried over MgSO₄, and concentrated in vacuo. Purification by silica gel chromatography (33% CH₂Cl₂ in hexanes) afforded the product **2j** (3.70 g, 58% yield) as a white solid. IR (neat): 1831, 1354, 1247, 1156, 968, 755, 699 cm⁻¹; ¹H NMR (600 MHz, DMSO) δ 7.45 (s, 2H), 7.36 (s, 1H), 2.36 (s, 6H). ¹³C NMR (151 MHz, DMSO) δ 163.2, 154.0, 139.1, 135.1, 123.9, 120.1, 20.6. HRMS (EI) m/z: [M/Z] Calcd. for C₁₀H₉NO₃: 191.0583. Found 191.0586.

IV. Rh^{III}-Catalyzed Coupling Reactions

General procedure:

In a N₂-filled glovebox, a 2–5 mL microwave vial was charged with the indicated C–H bond substrate (0.200 mmol, 1.0 equiv), alkene (0.400 mmol, 2.0 equiv), and dioxazolone (0.600 mmol, 3.0 equiv), followed by sodium acetate (16.4 mg, 0.200 mmol, 1.0 equiv) and $[Cp*Rh(MeCN)_3](SbF_6)_2$ (16.7 mg, 0.020 mmol, 0.1 equiv). Finally, 1,4-dioxane (1.0 mL, 0.2 M) was added to the vial. The reaction vial was then equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glovebox. The reaction mixture was stirred at either 50 or 70 °C in a preheated oil bath for 2-15 h. The reaction mixture was then allowed to cool to room temperature, and filtered through a small celite plug (1 cm long in a pipette), which was washed with CH₂Cl₂. The resulting mixture was then concentrated and purified by the corresponding chromatographic method to afford the desired product.

Characterization Data:

(±) *tert*-Butyl 2-isobutyramido-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4a): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (60-80% ethyl acetate in hexanes) followed by preparative TLC

(90/10/1 CH₂Cl₂/MeOH/NH₄OH) afforded the product **4a** (86.7 mg, 86% yield) as an off-white foam. IR (neat): 2972, 2874, 1698, 1615, 1338, 1153, 752, 572 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.40 – 7.30 (m, 2H), 7.29 – 7.18 (m, 3H), 5.92 (s, 1H), 5.12 (s, 1H), 4.89 (s, 1H), 4.14 (t, *J* = 8.5 Hz, 1H), 3.43 – 3.31 (m, 3H), 3.17 – 3.03 (m, 2H), 2.12 – 2.06 (m, 1H), 1.87 – 1.69 (m, 4H), 1.34 (s, 9H), 0.88 (d, *J* = 6.8 Hz, 3H), 0.66 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 176.7, 169.4, 157.2, 148.4, 144.9, 140.4, 137.0, 130.2, 129.2, 128.4, 128.1, 128.0, 127.6, 122.6, 120.9, 81.3, 68.8, 68.2, 54.1, 49.5, 47.5, 46.2, 35.9, 28.6, 26.8, 25.1, 19.6, 19.6. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₀H₃₈N₃O₄⁺: 504.2862. Found 504.2888.

(±) Methyl 6-isobutyramido-3-oxo-7-(2-(pyrrolidine-1-carbonyl)phenyl)-8azabicyclo[3.2.1]octane-8-carboxylate (4b): Derived from phenyl(pyrrolidin-1yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), methyl 3-oxo-8azabicyclo[3.2.1]oct-6-ene-8-carboxylate (72.5 mg, 0.400 mmol, 2.0 equiv), and 3-isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (90-100% ethyl acetate in hexanes) afforded the product 4b (57.0 mg, 65% yield) as

an off-white foam. IR (neat): 2966, 2874, 1700, 1612, 1445, 1200, 1101, 1013, 750 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.21 (t, J = 7.5 Hz, 1H), 7.14 (t, J = 6.8 Hz, 2H), 7.08 (d, J = 8.2 Hz, 1H), 4.33 (t, J = 8.8 Hz, 1H), 4.28 (s, 1H), 4.12 (d, J = 5.6 Hz, 1H), 3.61 (s, 3H), 3.50 – 3.38 (m, 2H), 3.36 – 3.27 (m, 1H), 3.07 (dt, J = 10.3, 7.1 Hz, 1H), 2.99 (dt, J = 11.0, 6.0 Hz, 1H), 2.64 – 2.48 (m, 2H), 2.38 – 2.26 (m, 2H), 1.89 – 1.82 (m, 1H), 1.82 – 1.76 (m, 2H), 1.76 – 1.67 (m, 2H), 0.66 (d, J = 6.8 Hz, 3H), 0.39 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 65 °C) δ 206.8,

176.8, 170.3, 155.4, 138.8, 136.5, 131.4, 130.3, 128.4, 128.2, 62.2, 59.8, 57.7, 53.4, 52.6, 50.0, 49.8, 46.7, 46.5, 36.0, 26.9, 25.3, 19.6. HRMS (ESI) m/z: $[M+H]^+$ Calcd. for C₂₄H₃₂N₃O₅⁺: 442.2342. Found 442.2350.

(±) N-(3-(2-(Pyrrolidine-1-carbonyl)phenyl)-1,2,3,4-tetrahydro-1,4epoxynaphthalen-2-yl)isobutyramide (4c): Derived from phenyl(pyrrolidin-1yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), 1,4-dihydro-1,4epoxynaphthalene (57.7 mg, 0.400 mmol, 2.0 equiv), and 3-isopropyl-1,4,2dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (60% ethyl acetate in hexanes) followed by preparative TLC (90/10/1 CH₂Cl₂/MeOH/NH₄OH) afforded

the product **4c** (66.5 mg, 82% yield) as a white foam. IR (neat): 3334, 2965, 2872, 1621, 1526, 1429, 1252, 727 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.9 Hz, 1H), 7.42 (td, *J* = 7.5, 1.0 Hz, 1H), 7.38 – 7.35 (m, 1H), 7.30 (td, *J* = 7.6, 1.2 Hz, 1H), 7.25 – 7.23 (m, 1H), 7.22 – 7.20 (m, 1H), 7.19 – 7.17 (m, 2H), 5.93 (s, 1H), 5.39 (s, 1H), 5.19 (s, 1H), 4.37 (t, *J* = 8.5 Hz, 1H), 3.54 – 3.41 (m, 3H), 3.14 – 3.07 (m, 1H), 3.07 – 3.00 (m, 1H), 2.06 (septet, *J* = 6.9 Hz, 1H), 1.90 – 1.74 (m, 4H), 0.85 (d, *J* = 7.0 Hz, 3H), 0.70 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 169.0, 146.2, 143.1, 138.8, 135.5, 129.5, 128.8, 127.6, 127.4, 127.1, 126.7, 120.8, 119.2, 84.9, 84.8, 53.4, 48.8, 46.9, 45.5, 35.5, 26.0, 24.4, 19.1, 19.0. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₅H₂₉N₂O₃⁺: 405.2178. Found 405.2155.

(±) N-(3-(2-(Pyrrolidine-1-carbonyl)phenyl)bicyclo[2.2.1]heptan-2yl)isobutyramide (4d): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), bicyclo[2.2.1]hept-2-ene (37.7 mg, 0.400 mmol, 2.0 equiv), and 3-isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (60% ethyl acetate in hexanes) followed by preparative TLC (75% ethyl acetate in hexanes) afforded the product 4d (52.6 mg, 74% yield) as a white solid. IR (neat):

3312, 2956, 2872, 1668, 1590, 1435, 1225, 753, 651 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.25 – 7.20 (m, 1H), 7.17 (d, *J* = 7.0 Hz, 1H), 5.34 (s, 1H), 3.91 (t, *J* = 8.0 Hz, 1H), 3.66 – 3.54 (m, 2H), 3.24 (bs, 1H), 3.16 – 3.05 (m, 1H), 3.05 – 2.96 (m, 1H), 2.40 (bs, 1H), 2.33 (bs, 1H), 2.03 – 1.85 (m, 3H), 1.84 – 1.72 (m, 3H), 1.63 – 1.54 (m, 1H), 1.54 – 1.45 (m, 1H), 1.38 – 1.28 (m, 3H), 0.80 (d, *J* = 6.9 Hz, 3H), 0.73 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 169.4, 138.8, 137.1, 129.2, 127.6, 126.8, 126.6, 56.6, 48.8, 48.3, 45.5, 42.4, 41.5, 36.0, 35.6, 31.2, 26.0, 25.3, 24.5, 19.2, 19.2. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C_{22H31N2O2}⁺: 355.2386. Found 355.2375.

(±) N-(3-(2-(Pyrrolidine-1-carbonyl)phenyl)-1,2,3,4-tetrahydro-1,4methanonaphthalen-2-yl)isobutyramide (4e): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), 1,4dihydro-1,4-methanonaphthalene (56.9 mg, 0.400 mmol, 2.0 equiv), and 3isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (60-80% ethyl acetate in hexanes) afforded the product **4e** (70.0 mg, 87% yield) as a

tan solid. IR (neat): 2968, 2874, 1611, 1534, 1432, 1227, 728, 658 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.33 – 7.27 (m, 2H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.16 – 7.10 (m, 1H),

7.09 – 7.04 (m, 2H), 5.49 (s, 1H), 4.03 (t, J = 7.7 Hz, 1H), 3.51 (s, 1H), 3.45 (s, 1H), 3.48 – 3.36 (m, 2H), 3.24 (d, J = 5.2 Hz, 1H), 3.12 – 3.03 (m, 2H), 2.28 (d, J = 9.8 Hz, 1H), 2.09 – 1.99 (m, 2H), 1.90 – 1.71 (m, 4H), 0.85 (d, J = 6.9 Hz, 3H), 0.78 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 169.0, 150.1, 145.7, 139.2, 136.7, 129.5, 127.4, 127.2, 126.7, 126.5, 126.0, 122.8, 120.2, 54.2, 49.8, 48.7, 48.5, 47.0, 46.7, 45.4, 35.6, 26.0, 24.4, 19.2, 19.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₆H₃₁N₂O₂⁺: 403.2386. Found 403.2395.

Large Scale Reaction: For the reaction performed at 1.00 mmol scale, a 5 mol % catalyst loading was used. In a N₂-filled glovebox, a 10–20 mL microwave vial was charged with phenyl(pyrrolidin-1-yl)methanone (175 mg, 1.00 mmol, 1.0 equiv), 1,4-dihydro-1,4-methanonaphthalene (284 mg, 2.00 mmol, 2.0 equiv), 3-isopropyl-1,4,2-dioxazol-5-one (387 mg, 3.00 mmol, 3.0 equiv), followed by sodium acetate (82.0 mg, 1.00 mmol, 1.0 equiv) and $[Cp*Rh(MeCN)_3](SbF_6)_2$ (41.6 mg, 0.050 mmol, 0.05 equiv). Finally, 1,4-dioxane (5.0 mL, 0.2 M) was added to the vial. The reaction vial was then equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glovebox. The reaction mixture was stirred at 70 °C in a pre-heated oil bath for 15 h. Then, the reaction mixture was cooled to room temperature and vacuum filtered through a celite plug, eluting with CH₂Cl₂. The mixture was concentrated and purified by silica gel chromatography (60-80% ethyl acetate in hexanes) to afford the product 4e (284 mg, 71% yield) as a tan solid. The spectroscopic data match with those from the standard conditions.

(±) *tert*-Butyl 2-isobutyramido-3-(2-methyl-1-oxo-1,2,3,4tetrahydroisoquinolin-8-yl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9carboxylate (4f): Derived from 2-methyl-3,4-dihydroisoquinolin-1-one (32.2 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-isopropyl-1,4,2-dioxazol-5one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for

15 h. Purification by silica gel chromatography (80% ethyl acetate in hexanes) followed by preparative TLC (90/10/1 CH₂Cl₂/MeOH/NH₄OH) afforded the product **4f** (69.5 mg, 71% yield) as an off-white foam. IR (neat): 2972, 1703, 1641, 1493, 1331, 1153, 753, 576 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.36 – 7.30 (m, 1H), 7.28 – 7.21 (m, 2H), 7.19 (d, *J* = 7.5 Hz, 1H), 5.29 (d, *J* = 8.9 Hz, 1H), 5.26 (s, 1H), 4.84 (s, 1H), 4.53 (d, *J* = 8.2 Hz, 1H), 4.34 (t, *J* = 8.4 Hz, 1H), 3.48 – 3.36 (m, 2H), 2.94 (s, 3H), 2.91 (t, *J* = 6.5 Hz, 2H), 1.99 (septet, *J* = 6.9 Hz, 1H), 1.36 (s, 9H), 0.82 (d, *J* = 6.9 Hz, 3H), 0.65 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 176.3, 165.2, 157.2, 148.7, 145.3, 141.6, 141.3, 132.0, 130.1, 128.3, 127.9, 127.4, 122.5, 120.9, 81.2, 68.8, 67.0, 54.6, 48.5, 47.8, 35.9, 35.3, 30.2, 28.6, 19.9, 19.5 (2 aromatic peaks overlap). HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₉H₃₆N₃O₄⁺: 490.2706. Found 490.2701.

(±) tert-Butyl 2-isobutyramido-3-(5-methyl-3-(pyrrolidine-1-carbonyl)thiophen-2-yl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4g): Derived from (5-methyl-3-thienyl)-pyrrolidin-1-yl-methanone (39.1 mg, 0.200 mmol, 1.0 equiv), tert-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by reverse phase chromatography

(40-100% acetonitrile in water with 0.1% triethylamine) followed by silica gel chromatography (50-75% ethyl acetate in hexanes) afforded the product **4g** (78.4 mg, 75% yield) as a white foam. IR (neat): 2972, 2874, 1706, 1611, 1331, 1154, 754, 563 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.42 – 7.37 (m, 1H), 7.37 – 7.32 (m, 1H), 7.24 – 7.18 (m, 2H), 6.68 (s, 1H), 5.02 (s, 1H), 4.87 (s, 1H), 4.13 (t, *J* = 8.4 Hz, 1H), 3.65 (d, *J* = 7.9 Hz, 1H), 3.45 – 3.20 (m, 4H), 2.43 (s, 3H), 2.23 (septet, *J* = 6.9 Hz, 1H), 1.83 (bs, 4H), 1.31 (s, 9H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.79 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 177.0, 166.6, 157.5, 147.1, 145.0, 139.8, 138.8, 138.0, 128.4, 128.2, 125.5, 122.2, 121.4, 81.5, 69.3, 69.0, 54.6, 49.3, 46.4, 45.8, 36.1, 28.6, 26.8, 25.1, 19.7, 19.6, 15.2. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₉H₃₈N₃O₄S⁺: 524.2583. Found 524.2578.

(±) *tert*-Butyl 2-isobutyramido-3-(2-(methylcarbamoyl)phenyl)-1,2,3,4tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4h): Derived from *N*methylbenzamide (27.0 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 2 h. Purification by reverse phase chromatography

(40-100% acetonitrile in water with 0.1% triethylamine) afforded the product **4h** (52.1 mg, 56% yield) as an off-white solid. IR (neat): 3241 (br), 2972, 1710, 1633, 1552, 1329, 1154, 753, 577 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.89 (s, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.53 – 7.40 (m, 2H), 7.38 – 7.30 (m, 1H), 7.30 – 7.20 (m, 4H), 6.56 (s, 1H), 5.05 (s, 1H), 5.00 (s, 1H), 4.24 (t, *J* = 7.8 Hz, 1H), 3.23 (d, *J* = 7.1 Hz, 1H), 2.68 (d, *J* = 2.8 Hz, 3H), 2.13 (septet, *J* = 6.6 Hz, 1H), 1.34 (s, 9H), 0.85 (d, *J* = 6.9 Hz, 3H), 0.40 (d, *J* = 4.4 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 179.0, 171.1, 157.4, 148.7, 144.6, 140.7, 136.7, 130.2, 129.1, 128.6, 128.3, 127.9, 127.9, 123.0, 120.9, 81.5, 69.2, 67.6, 55.4, 49.5, 35.5, 28.6, 26.5, 19.5, 19.4. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₇H₃₄N₃O₄⁺: 464.2549. Found 464.2560.

(±) *tert*-Butyl 2-isobutyramido-3-(3-methyl-2-(1*H*-pyrazol-1-yl)phenyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4i): Derived from 1-(o-tolyl)pyrazole (31.6 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (25%

ethyl acetate in hexanes) afforded the product **4i** (83.1 mg, 85% yield) as an off-white foam. IR (neat): 2973, 2872, 1701, 1675, 1509, 1342, 1161, 751 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.74 – 7.58 (m, 2H), 7.53 (s, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.41 – 7.35 (m, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.19 – 7.13 (m, 2H), 6.29 (s, 1H), 5.97 (s, 1H), 5.12 (s, 1H), 4.86 (s, 1H), 4.00 (t, *J* = 8.8 Hz, 1H), 2.52 (d, *J* = 7.9 Hz, 1H), 2.13 (septet, *J* = 6.8 Hz, 1H), 1.88 (s, 3H), 1.34 (s, 9H), 0.90 (d, *J* = 7.0 Hz, 3H), 0.61 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 177.1, 157.3, 148.3, 144.7, 141.2, 141.0, 138.3, 137.9, 133.7, 130.5, 130.3, 128.5, 128.0, 126.6, 122.7, 120.8, 106.6, 81.5, 68.4, 68.1, 54.2, 46.4, 35.8, 28.6, 19.6, 19.4, 17.5. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₉H₃₅N₄O₃⁺: 487.2709. Found 487.2703.

(±) *tert*-Butyl 2-isobutyramido-3-(4-methyl-2-(1*H*-1,2,3-triazol-4-yl)phenyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4j): Derived from 1-benzyl-4-(m-tolyl)triazole (49.9 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-isopropyl-1,4,2-dioxazol-5-one (77.5 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by reverse phase chromatography (40-100% acetonitrile in water with 0.1% triethylamine)

afforded the product **4j** (60.7 mg, 52% yield) as a white foam. IR (neat): 2972, 2929, 1700, 1665, 1498, 1367, 1156, 718, 564 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.92 (s, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 7.1 Hz, 1H), 7.34 – 7.15 (m, 10H), 5.74 (d, *J* = 9.2 Hz, 1H), 5.52 – 5.43 (m, 2H), 5.17 (s, 1H), 4.87 (s, 1H), 4.17 (t, *J* = 8.7 Hz, 1H), 3.37 (d, *J* = 8.0 Hz, 1H), 2.36 (s, 3H), 2.04 – 1.96 (m, 1H), 1.35 (s, 9H), 0.81 (d, *J* = 7.0 Hz, 3H), 0.50 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 176.8, 157.3, 148.3, 148.3, 147.6, 137.9, 137.1, 135.1, 133.0, 131.3, 130.4, 130.0, 129.3, 128.8, 128.5, 128.3, 127.9, 124.7, 122.5, 121.0, 81.3, 68.4, 68.3, 54.5, 48.1, 35.8, 30.5, 28.6, 21.0, 19.6, 19.3. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₅H₄₀N₅O₃⁺: 578.3131. Found 578.3124.

(±) *tert*-Butyl 2-acetamido-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4k): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-methyl-1,4,2-dioxazol-5-one (60.6 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel

Me⁻ 6 C 10⁻ 13⁻ H. Furtheatton was conducted at 70⁻ C 10⁻ 13⁻ H. Furtheatton by since get chromatography (90-100% ethyl acetate in hexanes) followed by preparative TLC (90/10/1 CH₂Cl₂/MeOH/NH₄OH) afforded the product **4k** (81.5 mg, 86% yield) as a white foam. IR (neat): 2974, 2874, 1704, 1672, 1615, 1366, 1336, 1153 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.74 (d, *J* = 7.9 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.38 – 7.30 (m, 2H), 7.28 – 7.19 (m, 3H), 5.99 (s, 1H), 5.12 (s, 1H), 4.88 (s, 1H), 4.15 (t, *J* = 8.6 Hz, 1H), 3.44 (d, *J* = 8.3 Hz, 1H), 3.40 – 3.33 (m, 2H), 3.19 – 3.11 (m, 1H), 3.10 – 3.04 (m, 1H), 1.88 – 1.71 (m, 4H), 1.59 (s, 3H), 1.34 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 170.0, 169.4, 157.4, 148.4, 144.9, 140.1, 137.0, 130.2, 129.2, 128.4, 128.0, 127.5, 122.6, 120.9, 81.4, 68.9, 68.3, 54.4, 49.5, 47.1, 46.2, 28.6, 26.8, 25.1, 23.2 (2 aromatic peaks overlap). HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₈H₃₄N₃O₄⁺: 476.2549. Found 476.2538.

(±) *tert*-Butyl 2-pivalamido-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4tetrahydro-1,4-epiminonaphthalene-9-carboxylate (41): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-tert-butyl-1,4,2-dioxazol-5-one (85.9 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (60% ethyl acetate in hexanes) followed by preparative TLC

(90/10/1 CH₂Cl₂/MeOH/NH₄OH) afforded the product **4I** (65.6 mg, 63% yield) as an off-white foam. IR (neat): 2972, 2873, 1705, 1624, 1338, 1154, 752 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.77 (d, *J* = 7.9 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.40 – 7.32 (m, 2H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.25 – 7.21 (m, 2H), 5.64 (d, *J* = 7.9 Hz, 1H), 5.20 (s, 1H), 4.90 (s, 1H), 4.03 (t, *J* = 8.1 Hz, 1H), 3.40 – 3.31 (m, 3H), 3.15 – 3.02 (m, 2H), 1.86 – 1.70 (m, 4H), 1.35 (s,

9H), 0.84 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 178.2, 169.2, 156.9, 148.2, 144.8, 140.7, 136.9, 130.5, 128.4, 128.0, 127.8, 122.6, 120.9, 81.4, 68.6, 67.6, 54.4, 49.5, 47.3, 46.2, 39.3, 28.6, 27.5, 26.8, 25.1 (2 aromatic peaks overlap). HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₁H₄₀N₃O₄⁺: 518.3019. Found 518.3030.

(±) *tert*-Butyl 2-octanamido-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4m): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-heptyl-1,4,2-dioxazol-5-one (111 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by silica gel chromatography (60% ethyl acetate in hexanes) afforded the product 4m (102

mg, 91% yield) as an orange foam. IR (neat): 2927, 2857, 1698, 1668, 1618, 1530, 1427, 1339, 1154, 752 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.73 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.38 – 7.29 (m, 2H), 7.28 – 7.16 (m, 3H), 5.97 (d, J = 8.8 Hz, 1H), 5.10 (s, 1H), 4.89 (s, 1H), 4.16 (t, J = 8.4 Hz, 1H), 3.41 – 3.30 (m, 3H), 3.18 – 3.03 (m, 2H), 1.92 – 1.84 (m, 1H), 1.84 – 1.72 (m, 5H), 1.34 (s, 9H), 1.32 – 1.25 (m, 3H), 1.23 – 1.13 (m, 5H), 1.07 (q, J = 7.9, 7.4 Hz, 2H), 0.89 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 173.1, 169.5, 157.3, 148.4, 144.9, 140.3, 137.0, 130.2, 129.2, 128.4, 128.1, 128.0, 127.5, 122.6, 120.9, 81.4, 68.9, 68.4, 54.4, 49.6, 47.5, 46.3, 37.1, 32.5, 29.8, 28.6, 26.8, 26.3, 25.2, 23.4, 14.5 (2 aliphatic peaks overlap). HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₄H₄₆N₃O₄⁺: 560.3488. Found 560.3465.

(±) *tert*-Butyl 2-benzamido-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4n): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-phenyl-1,4,2-dioxazol-5-one (97.9 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by reverse phase chromatography (40-100% acetonitrile in water with 0.1% triethylamine) afforded the product **4n** (75.0 mg, 69% yield) as a brown solid. IR (neat): 2974,

2874, 1703, 1619, 1338, 1153, 570 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.86 (d, *J* = 7.9 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.46 – 7.42 (m, 1H), 7.41 – 7.36 (m, 2H), 7.35 – 7.29 (m, 4H), 7.29 – 7.24 (m, 3H), 6.45 (s, 1H), 5.26 (s, 1H), 5.04 (s, 1H), 4.35 (t, *J* = 8.3 Hz, 1H), 3.53 (d, *J* = 8.3 Hz, 1H), 3.42 – 3.32 (m, 2H), 3.12 – 2.98 (m, 2H), 1.87 – 1.64 (m, 4H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 169.3, 167.1, 157.3, 148.3, 144.9, 140.2, 137.0, 135.6, 132.5, 130.6, 129.5, 129.1, 128.5, 128.3, 128.1, 127.9, 127.7, 122.7, 121.1, 81.4, 68.8, 67.9, 54.9, 49.5, 47.7, 46.3, 28.6, 26.7, 25.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C_{33H₃₆N₃O₄⁺: 538.2706. Found 538.2690.}

(±) *tert*-Butyl 2-(2-chlorobenzamido)-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (40): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), *tert*butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-(2-chlorophenyl)-1,4,2-dioxazol-5-one (119 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 50 °C for 2 h. Purification by silica gel chromatography (60% ethyl acetate in hexanes) afforded the product 40 (98.1 mg, 86% yield) as an orange foam. IR (neat): 2973, 2876, 1700, 1620, 1152, 750,

657 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.75 (d, J = 7.8 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.42 – 7.30 (m, 4H), 7.28 – 7.22 (m, 3H), 7.22 – 7.15 (m, 1H), 6.99 – 6.88 (m, 1H), 6.65 (d, J = 8.7 Hz, 1H), 5.20 (s, 1H), 5.07 (s, 1H), 4.39 (t, J = 8.6 Hz, 1H), 3.38 (d, J = 8.2 Hz, 1H), 3.37 – 3.30 (m, 2H), 3.13 (m, 2H), 1.86 – 1.69 (m, 4H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 169.5, 166.8, 157.0, 148.4, 144.7, 140.2, 136.8, 136.4, 132.4, 131.5, 131.0, 130.5, 130.5, 129.2, 128.6, 128.3, 128.1, 128.0, 127.6, 122.8, 121.0, 81.5, 68.6, 68.1, 55.5, 49.6, 47.9, 46.3, 28.6, 26.8, 25.2. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₃H₃₅ClN₃O₄⁺: 572.2316. Found 572.2318.

(±) tert-Butyl 2-(3-bromobenzamido)-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4p): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), tert-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-(3-bromophenyl)-1,4,2-dioxazol-5-one (145 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 50 °C for 2 h. Purification by reverse phase chromatography (40-100% acetonitrile in water with 0.1% triethylamine) afforded the product 4p (82.1 mg, 66% yield) as an off-white solid. IR (neat): 2974, 2875, 1703, 1620, 1337,

1152, 745, 572 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.84 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.43 – 7.34 (m, 3H), 7.30 – 7.20 (m, 5H), 6.60 (s, 1H), 5.25 (s, 1H), 5.03 (s, 1H), 4.35 (t, J = 8.4 Hz, 1H), 3.51 (d, J = 8.2 Hz, 1H), 3.42 – 3.30 (m, 2H), 3.17 – 2.96 (m, 2H), 1.88 – 1.64 (m, 4H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 169.3, 165.8, 157.3, 148.4, 144.8, 140.0, 137.9, 136.9, 135.2, 131.4, 130.9, 130.5, 129.4, 128.5, 128.4, 128.1, 127.9, 126.7, 123.0, 122.7, 121.1, 81.4, 68.7, 67.9, 55.0, 49.5, 48.1, 46.3, 28.6, 26.7, 25.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₃H₃₅BrN₃O₄⁺: 616.1811. Found 616.1823.

(±)

tert-Butyl 2-(2-(pyrrolidine-1-carbonyl)phenyl)-3-(4-(trifluoromethyl)benzamido)-1,2,3,4-tetrahydro-1,4-

epiminonaphthalene-9-carboxylate (4q): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-[4-(trifluoromethyl)phenyl]-1,4,2-dioxazol-5-one (139 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 50 °C for 2 h. Purification by silica gel chromatography (40% ethyl acetate in hexanes) followed by

preparative TLC (90/10/1 CH₂Cl₂/MeOH/NH₄OH) afforded the product **4q** (99.6 mg, 82% yield) as a white solid. IR (neat): 2974, 2875, 1697, 1620, 1324, 1161, 1126, 753 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 7.7 Hz, 1H),

7.49 – 7.46 (m, 1H), 7.44 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 7.5 Hz, 2H), 7.29 – 7.20 (m, 3H), 6.75 (s, 1H), 5.23 (s, 1H), 5.05 (s, 1H), 4.38 (t, J = 8.5 Hz, 1H), 3.51 (d, J = 8.3 Hz, 1H), 3.43 – 3.31 (m, 2H), 3.14 – 3.00 (m, 2H), 1.87 – 1.66 (m, 4H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 169.4, 166.1, 157.4, 148.4, 144.9, 140.1, 139.4, 136.9, 133.3 (q, $2J_{C-F} = 32.4$ Hz), 130.5, 129.4, 128.6, 128.5, 128.4, 128.1, 127.9, 126.4 (q, $3J_{C-F} = 3.8$ Hz), 125.2 (q, $1J_{C-F} = 271.7$ Hz), 122.7, 121.1, 81.5, 68.7, 68.0, 55.2, 49.6, 48.2, 46.3, 28.6, 26.7, 25.1. ¹⁹F NMR (470 MHz, CD₃CN, 50 °C) δ -63.01. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₄H₃₅F₃N₃O₄⁺: 606.2580. Found 606.2560.

(±) tert-Butyl 2-(4-methylbenzamido)-3-(2-(pyrrolidine-1-carbonyl)phenyl)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate (4r): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), tert-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-(p-tolyl)-1,4,2-dioxazol-5-one (106 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 50 °C for 2 h. Purification by silica gel chromatography (40-80% ethyl acetate in hexanes) afforded the product 4r (67.1 mg, 61% yield) as an off-white foam.

IR (neat): 2973, 2879, 1702, 1613, 1339, 1154, 749, 658 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.85 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.41 – 7.32 (m, 2H), 7.29 – 7.22 (m, 3H), 7.19 (d, J = 7.6 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.40 (s, 1H), 5.24 (s, 1H), 5.02 (s, 1H), 4.34 (t, J = 8.5 Hz, 1H), 3.48 (d, J = 8.2 Hz, 1H), 3.37 – 3.31 (m, 2H), 3.10 – 2.97 (m, 2H), 2.32 (s, 3H), 1.87 – 1.62 (m, 4H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 169.3, 167.2, 157.3, 148.3, 144.9, 143.1, 140.2, 137.0, 132.8, 130.5, 130.1, 129.0, 128.5, 128.3, 128.1, 127.8, 122.7, 121.0, 81.5, 68.8, 67.9, 54.9, 49.5, 47.8, 46.3, 28.6, 26.7, 25.1, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₄H₃₈N₃O₄⁺: 552.2863. Found 552.2849.

(±) tert-Butyl 2-(2-(pyrrolidine-1-carbonyl)phenyl)-3-(thiophene-2-carboxamido)-1,2,3,4-tetrahydro-1,4-epiminonaphthalene-9-carboxylate
(4s): Derived from phenyl(pyrrolidin-1-yl)methanone (35.0 mg, 0.200 mmol, 1.0 equiv), tert-butyl 1,4-dihydro-1,4-epiminonaphthalene-9-carboxylate (97.3 mg, 0.400 mmol, 2.0 equiv), and 3-(2-thienyl)-1,4,2-dioxazol-5-one (101 mg, 0.600 mmol, 3.0 equiv). The reaction was conducted at 70 °C for 15 h. Purification by reverse phase chromatography (40-100% acetonitrile in water

with 0.1% triethylamine) afforded the product **4s** (49.3 mg, 45% yield) as a brown foam. IR (neat): 2973, 2875, 1704, 1620, 1421, 1337, 1257, 1154, 732, 567 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.39 – 7.34 (m, 2H), 7.29 – 7.23 (m, 3H), 7.03 (d, *J* = 3.7 Hz, 1H), 6.97 (dd, *J* = 5.0, 3.7 Hz, 1H), 6.46 (s, 1H), 5.24 (s, 1H), 5.04 (s, 1H), 4.30 (t, *J* = 8.4 Hz, 1H), 3.53 (d, *J* = 8.3 Hz, 1H), 3.43 – 3.33 (m, 2H), 3.13 – 3.00 (m, 2H), 1.87 – 1.66 (m, 4H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CD₃CN, 50 °C) δ 169.3, 161.8, 157.4, 148.4, 144.9, 140.3, 140.0, 136.8, 131.5, 130.5, 129.3, 128.8, 128.8, 128.5, 128.4, 128.1, 128.0, 122.7, 121.1, 81.5, 68.8, 67.8, 54.9, 49.6, 47.9, 46.3, 28.6, 26.8, 25.1. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₁H₃₄N₃O₄S⁺: 544.2270. Found 544.2291.

V. Asymmetric Rh^{III}-Catalyzed Coupling Reactions

General Procedure:

In a N₂-filled glove box, a 2–5 mL microwave vial was charged with the indicated C–H bond substrate (0.050 mmol, 1.0 equiv), alkene (0.100 mmol, 2.0 equiv or 0.200 mmol, 4.0 equiv), and dioxazolone (0.150 mmol, 3.0 equiv), followed by sodium acetate (4.1 mg, 0.050 mmol, 1.0 equiv), precatalyst **6** (3.6 mg, 0.0025 mmol, 0.050 equiv), AgSbF₆ (6.9 mg, 0.020 mmol, 0.40 equiv) and either 1,2-dichloroethane or 1,4-dioxane (0.25 mL, 0.2 M). The reaction vial was then equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glove box. The reaction mixture was then stirred at 70 °C in a preheated oil bath. After 48 h, the reaction mixture was allowed to cool to room temperature and filtered through a small celite plug (1 cm long in a pipette), which was washed with CH₂Cl₂. The resulting mixture was then concentrated and purified by the corresponding chromatographic method to afford the desired product.

Authentic racemic products were synthesized by the same method for 15 h using [Cp*Rh(MeCN)₃](SbF₆)₂ as the catalyst system.

3,5-Dimethyl-*N*-((1*R*,2*S*,3*S*,4*S*)-**3**-(2-(pyrrolidine-1carbonyl)phenyl)bicyclo[2.2.1]heptan-2-yl)benzamide (5a): Derived from phenyl(pyrrolidin-1-yl)methanone (8.8 mg, 0.050 mmol, 1.0 equiv), bicyclo[2.2.1]hept-2-ene (18.8 mg, 0.200 mmol, 4.0 equiv), and 3-(3,5dimethylphenyl)-1,4,2-dioxazol-5-one (28.7 mg, 0.150 mmol, 3.0 equiv). The reaction was conducted in DCE at 70 °C for 48 h. Purification by silica gel chromatography (70% ethyl acetate in hexanes), followed by preparative TLC (1% methanol in CH₂Cl₂) afforded the product **5a** (12.2 mg, 59% yield) as a white solid.

 $[\alpha]_D^{20}$ +40.55° (c = 0.1, CHCl₃). 90:10 er (Chiralpak AD-H, 80:20 hexanes:isopropanol, 1 mL/min, 254 nm, tr (minor) = 11.30 min, tr (major) = 12.88 min). IR (neat): 2958, 1622, 1596, 1510, 1423, 1092, 1028, 729 cm⁻¹; ¹H NMR (500 MHz, CD₃CN, 50 °C) δ 7.54 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.06 (s, 1H), 6.83 (s, 2H), 6.06 (s, 1H), 4.09 (t, J = 7.9 Hz, 1H), 3.56 (t, J = 7.1 Hz, 2H), 3.25 (d, J = 8.4 Hz, 1H), 3.09 – 2.99 (m, 2H), 2.47 (d, J = 1.5 Hz, 1H), 2.38 (d, J = 4.8 Hz, 1H), 2.22 (s, 6H), 2.02 (d, J = 9.6 Hz, 1H), 1.93 – 1.87 (m, 2H), 1.81 – 1.73 (m, 2H), 1.72 – 1.66 (m, 1H), 1.65 – 1.58 (m, 1H), 1.46 – 1.35 (m, 3H). ¹³C NMR (151 MHz, CDCl₃, 3 mm tube) δ 169.2, 166.6, 138.7, 138.2, 137.6, 134.4, 133.0, 129.5, 127.2, 127.1, 126.8, 124.5, 57.2, 48.9, 48.0, 45.9, 42.5, 41.6, 36.3, 31.0, 26.1, 25.4, 24.5, 21.2. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₇H₃₃N₂O₂⁺: 417.2542. Found 417.2541.

3,5-Dimethyl-*N***-((1***R***,2***S***,3***S***,4***S***)-3-(4-methyl-2-(1***H***-pyrazol-1-yl)phenyl)bicyclo[2.2.1]heptan-2-yl)benzamide (5b):** Derived from 1-(m-tolyl)pyrazole (7.9 mg, 0.050 mmol, 1.0 equiv), bicyclo[2.2.1]hept-2-ene (18.8 mg, 0.200 mmol, 4.0 equiv), and 3-(3,5-dimethylphenyl)-1,4,2-dioxazol-5-one (28.7 mg, 0.150 mmol, 3.0 equiv). The reaction was conducted in DCE at 70 °C for 48 h. Purification by silica gel chromatography (20% ethyl acetate in hexanes) afforded the product 5b (11.6 mg, 58% yield) as a white solid. $[\alpha]_D^{20}$

+3.81° (c = 0.77, CHCl₃). 92:8 er (Chiralpak IB, 97:3 hexanes:isopropanol, 1 mL/min, 230 nm, tr (minor) = 27.08 min, tr (major) = 22.18 min). IR (neat): 2960, 1648, 1604, 1510, 1313, 1239, 1042

cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 1.8 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 2.4 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.18 (s, 1H), 7.02 (s, 1H), 6.71 (s, 2H), 6.38 (t, J = 2.0 Hz, 1H), 5.55 (d, J = 8.1 Hz, 1H), 3.86 (t, J = 8.3 Hz, 1H), 3.15 (d, J = 8.4 Hz, 1H), 2.55 (d, J = 2.4 Hz, 1H), 2.42 (s, 3H), 2.37 (d, J = 4.3 Hz, 1H), 2.22 (s, 6H), 1.74 (d, J = 10.5 Hz, 1H), 1.64 – 1.58 (m, 1H), 1.57 – 1.50 (m, 1H), 1.41 (d, J = 10.5 Hz, 1H), 1.36 – 1.24 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 166.4, 141.1, 140.8, 138.3, 137.6, 134.9, 134.0, 132.9, 131.4, 129.9, 128.7, 127.1, 124.5, 106.6, 57.0, 46.2, 42.7, 40.9, 36.0, 30.5, 25.7, 21.3, 20.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₆H₃₀N₃O⁺: 400.2389. Found 400.2387.

N-((1R,2S,3S,4S)-3-(4-Methyl-2-(1H-pyrazol-1-

yl)phenyl)bicyclo[2.2.1]heptan-2-yl)benzamide (5c): Derived from 1-(m-tolyl)pyrazole (7.9 mg, 0.050 mmol, 1.0 equiv), bicyclo[2.2.1]hept-2-ene (18.8 mg, 0.200 mmol, 4.0 equiv), and 3-phenyl-1,4,2-dioxazol-5-one (24.5 mg, 0.150 mmol, 3.0 equiv). The reaction was conducted in dioxane at 70 °C for 48 h. Purification by silica gel chromatography (20% ethyl acetate in hexanes), followed by an additional flash column (5-10% ethyl acetate in CH₂Cl₂) afforded the product **5c** (9.5 mg, 51%)

yield) as a white solid. $[\alpha]_D^{20}$ +86.88° (c = 0.1, CHCl₃). 92:8 er (Chiralpak OD-H, 90:10 hexanes:isopropanol, 1 mL/min, 230 nm, tr (minor) = 8.50 min, tr (major) = 9.87 min). IR (neat): 2953, 2810, 1648, 1515, 1483, 1284, 1099, 1041, 948, 756, 709, 691 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 1.9 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.28 (t, J = 7.8 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.16 (s, 1H), 6.39 (t, J = 2.0 Hz, 1H), 5.63 (d, J = 7.9 Hz, 1H), 3.91 (t, J = 8.2 Hz, 1H), 3.12 (d, J = 8.4 Hz, 1H), 2.53 (d, J = 2.2 Hz, 1H), 2.41 (d, J = 5.4 Hz, 1H), 2.40 (s, 3H), 1.76 (d, J = 10.5 Hz, 1H), 1.67 – 1.58 (m, 1H), 1.58 – 1.49 (m, 1H), 1.42 (d, J = 10.6 Hz, 1H), 1.37 – 1.30 (m, 1H), 1.30 – 1.23 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 141.0, 140.8, 137.7, 134.9, 133.7, 131.4, 131.4, 129.9, 128.6, 128.6, 127.1, 126.6, 106.6, 57.4, 46.2, 42.7, 41.2, 36.1, 30.5, 25.7, 20.8. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₄H₂₆N₃O⁺: 372.2076. Found 372.2064.

3,5-Dimethyl-*N***-((1***S***,2***S***,3***S***,4***S***)-3-(4-methyl-2-(1***H***-pyrazol-1-yl)phenyl)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-2-yl)benzamide (5d):** Derived from 1-(m-tolyl)pyrazole (7.9 mg, 0.050 mmol, 1.0 equiv), tricyclo[6.2.1.02,7]undeca-2(7),3,5,9-tetraene (14.2 mg, 0.100 mmol, 2.0 equiv), and 3-(3,5-dimethylphenyl)-1,4,2-dioxazol-5-one (28.7 mg, 0.150 mmol, 3.0 equiv). The reaction was conducted in dioxane at 70 °C for 48 h. Purification by silica gel chromatography (20% ethyl acetate in hexanes),

followed by trituration with hexanes afforded the product **5d** (11.2 mg, 50% yield) as a white solid. [α]_D²⁰ +30.91° (c = 0.58, CHCl₃). 90:10 er (Chiralpak AD-H, 90:10 hexanes:isopropanol, 1 mL/min, 230 nm, t_r (minor) = 23.86 min, t_r (major) = 19.23 min). IR (neat): 2998, 1651, 1516, 1460, 1210, 1041, 751, 527 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, J = 7.9 Hz, 1H), 7.55 – 7.52 (m, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.32 (d, J = 7.1 Hz, 1H), 7.30 (d, J = 2.4 Hz, 1H), 7.21 (s, 1H), 7.16 (d, J = 6.2 Hz, 1H), 7.13 – 7.06 (m, 2H), 7.05 (s, 1H), 6.78 (s, 2H), 6.25 (t, J = 2.0 Hz, 1H), 5.68 (d, J = 8.1 Hz, 1H), 3.97 (t, J = 8.2 Hz, 1H), 3.59 (s, 1H), 3.48 (s, 1H), 3.34 (d, J = 8.3Hz, 1H), 2.46 (s, 3H), 2.24 (s, 6H), 2.20 (d, J = 9.8 Hz, 1H), 2.07 (d, J = 9.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 149.3, 145.7, 141.5, 141.0, 138.4, 138.1, 134.7, 133.6, 133.1, 130.9, 130.1, 128.8, 127.2, 126.5, 126.2, 124.5, 122.8, 120.8, 106.8, 54.2, 50.4, 47.6, 46.4, 44.5, 21.3, 20.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₃₀H₃₀N₃O⁺: 448.2389. Found 448.2380.

N-((1*S*,2*S*,3*S*,4*S*)-3-(4-Methyl-2-(1*H*-pyrazol-1-yl)phenyl)-1,2,3,4tetrahydro-1,4-methanonaphthalen-2-yl)benzamide (5e): Derived from 1-(m-tolyl)pyrazole (7.9 mg, 0.050 mmol, 1.0 equiv), tricyclo[6.2.1.02,7]undeca-2(7),3,5,9-tetraene (14.2 mg, 0.100 mmol, 2.0 equiv), and 3-phenyl-1,4,2dioxazol-5-one (24.5 mg, 0.150 mmol, 3.0 equiv). The reaction was conducted in dioxane at 70 °C for 48 h. Purification by silica gel chromatography (30% ethyl acetate in hexanes), followed by an additional flash column (20% acetone

in hexanes) afforded the product **5e** (12.0 mg, 57% yield) as a white solid. $[\alpha]_D^{20}$ +71.08° (*c* = 0.58, CHCl₃). 90:10 er (Chiralpak IB, 90:10 hexanes:isopropanol, 1 mL/min, 254 nm, t_r (minor) = 11.07 min, t_r (major) = 13.59 min). IR (neat): 1649, 1516, 1483, 1458, 1285, 1042, 951, 754, 707 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 1.8 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.33 – 7.26 (m, 3H), 7.25 – 7.21 (m, 3H), 7.16 (s, 1H), 7.14 – 7.08 (m, 1H), 7.08 – 7.04 (m, 2H), 6.23 (t, *J* = 2.1 Hz, 1H), 5.74 (d, *J* = 7.7 Hz, 1H), 3.98 (t, *J* = 8.0 Hz, 1H), 3.55 (s, 1H), 3.50 (s, 1H), 3.28 (d, *J* = 8.4 Hz, 1H), 2.42 (s, 3H), 2.19 (d, *J* = 9.9 Hz, 1H), 2.05 (d, *J* = 9.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 149.4, 145.6, 141.4, 141.0, 138.2, 134.7, 133.1, 131.6, 130.8, 130.1, 128.7, 128.7, 127.2, 126.7, 126.5, 126.2, 122.8, 120.8, 106.8, 54.6, 50.3, 47.8, 46.5, 44.5, 20.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₈H₂₆N₃O⁺: 420.2076. Found 420.2083.

(1S,2S,3S,4S)-3-(4-Methyl-2-(1H-pyrazol-1-yl)phenyl)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-2-amine (7): Adapted from the published literature procedure.¹⁸ A 2–5 mL microwave vial was charged with amide 5d (9.0 mg, 0.020 mmol, 1 equiv), which was purified to 100% enantiopurity for the major enantiomer by semi-prep HPLC purification using a 10 mm x 25 cm Chiralpak

AD-H column (93:7 hexanes:isopropanol, 3 mL/min, 300 µL injection of 50 mg/mL in isopropanol, 254 nm, t_r (major) = 31.7 min). Next, 1.0 mL of a 6N HCl solution was added. The mixture was stirred and refluxed at 110 °C for 48 h. The crude reaction mixture was then treated with 1M NaOH at 0 °C until the pH was ~8. The crude product was then extracted with CH₂Cl₂ (2x), dried over MgSO₄, and concentrated in vacuo. Purification by silica gel chromatography (95/5/1 CH₂Cl₂/MeOH/NH₄OH), followed by trituration with hexanes afforded the product 7 (6.0 mg, 95% yield) as a white solid. 100:0 er (Chiralpak AD-H, 90:10 hexanes:isopropanol + 0.1% diethylamine, 1 mL/min, 254 nm, t_r (major) = 13.36 min). IR (neat): 3103, 2943, 2857, 1512, 1458, 1391, 1038, 833, 752, 519 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.46 (d, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 6.7 Hz, 1H), 7.09 (d, *J* = 6.3 Hz, 2H), 7.07 – 6.99 (m, 2H), 6.33 – 6.27 (m, 1H), 3.47 (s, 1H), 3.18 (s, 1H), 3.00 (d, *J* = 7.5 Hz, 1H), 2.69 (d, *J* = 7.4 Hz, 1H), 2.44 – 2.32 (m, 4H), 1.98 (d, *J* = 9.4 Hz, 1H), 1.44 (bs, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 147.7, 140.7, 140.4, 137.0, 135.0, 130.7, 129.9, 128.0, 127.9, 125.9, 125.8, 121.9, 120.6, 106.5, 57.4, 52.3, 48.5, 46.7, 45.7, 20.8. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₂₁N₃⁺: 316.1808. Found 316.1808.

HPLC Traces:

Racemic 5a (Chiralpak AD-H, 80:20 hexanes:isopropanol, 1 mL/min, 254 nm):

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.861	VV	0.4728	2136.03003	67.20137	49.4702
2	12.346	VB	0.5698	2181.77759	56.83976	50.5298
Total	s :			4317.80762	124.04113	

Enantiomerically enriched **5a** (90:10 er):

Signal 2: MWD1 B, Sig=254,16 Ref=360,100 Peak RetTime Type Width Height Area Area [mAU*s] [mAU] # [min] [min] 00 _____ ----| 1 11.298 VV 0.5349 1201.02539 34.43762 9.9070 0.6405 1.09220e4 2 12.878 VV 256.65607 90.0930 Totals : 1.21230e4 291.09369

Enantiomerically enriched **5b** (92:8 er):

Signal 4: MWD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.182	VV	1.0818	1.12352e4	154.24986	91.7409
2	27.075	VB	1.3194	1011.46753	11.35285	8.2591
Total	s:			1.22467e4	165.60271	

Racemic 5c (Chiralpak OD-H, 90:10 hexanes:isopropanol, 1 mL/min, 230 nm):

Enantiomerically enriched **5c** (92:8 er):

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	0/0
1	8.497	VV	0.4604	6083.48389	190.56099	7.6424
2	9.873	VV	0.4903	7.35184e4	2316.55347	92.3576
Total	s :			7.96019e4	2507.11446	

Racemic 5d (Chiralpak AD-H, 90:10 hexanes:isopropanol, 1 mL/min, 230 nm):

Enantiomerically enriched **5d** (90:10 er):

Signal 4: MWD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 _2	19.228 23.864	VV VV VV	0.9656 1.2957	1.17157e5 1.28944e4	 1823.50867 141.42340	90.0852 9.9148
Total	ls :			1.30052e5	1964.93207	

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	11.210	VV	0.4851	1.26030e4	377.86429	50.4537
2	14.216	VV	0.5050	1.23764e4	367.40448	49.5463
Total	s:			2.49794e4	745.26877	

Enantiomerically enriched **5e** (90:10 er):

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Peak RetTime Typ # [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
	-			
1 11.069 MM	0.4564	8295.44043	302.94525	9.6996
2 13.582 MM	0.6604	7.72282e4	1948.89355	90.3004
Totals :		8.55236e4	2251.83881	

Racemic amine **7-rac** (Chiralpak AD-H, 90:10 hexanes:isopropanol+0.1% diethylamine, 1 mL/min, 254 nm):

Peak	Retiine	туре	WIGCH	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.817	VB	0.4236	1.38156e4	489.00223	50.4008
2	13.351	BB	0.5657	1.35958e4	364.08530	49.5992
Total	s :			2.74114e4	853.08752	

Enantiopure 7 (100:0 er):

VI. X-Ray Crystallographic Data

Product 7

Crystal Growth

Product 7 (6.0 mg, 0.019 mmol) was combined with 0.9 equiv of picrylsulfonic acid dihydrate (5.6 mg, 0.017 mmol) in a 1-dram vial. The mixture was dissolved in 10 drops of toluene combined with 5 drops of methanol. About 1 mL of hexanes was added dropwise until the cloud point was reached. Single crystals suitable for X-ray diffraction grew at room temperature overnight.

<u>Experimental</u>

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Dectris Pilatus3R detector with Mo K α ($\lambda = 0.71073$ Å) for the structure of 007c-21017. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The only H1A, H1B, H1C, and H10A, which were found in the difference map and freely refined. The full numbering scheme of compound 007c-21017 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 2061171 (007c-21017) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Figure 1. The complete numbering scheme of 007c-21017 with 50% thermal ellipsoid probability levels. The hydrogen atoms are shown as circles for clarity.

Table 1. Crystal data and structure refiner	nent for 007c-21017.	
Identification code	007c-21017	
Empirical formula	C28 H28 N6 O10 S	
Formula weight	640.62	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 7.6746(2) Å	α= 90°.
	b = 13.9618(4) Å	β= 90°.
	c = 26.7763(8) Å	$\gamma = 90^{\circ}$.
Volume	2869.11(14) Å ³	
Z	4	
Density (calculated)	1.483 Mg/m ³	
Absorption coefficient	0.183 mm ⁻¹	
F(000)	1336	
Crystal size	0.200 x 0.200 x 0.200 m	m ³
Crystal color and habit	Colorless Block	
Diffractometer	Dectris Pilatus 3R	
Theta range for data collection	3.016 to 30.506°.	
Index ranges	-10<=h<=10, -18<=k<=	16, -38<=l<=35
Reflections collected	25001	
Independent reflections	7751 [R(int) = 0.0188]	
Observed reflections (I > 2sigma(I))	7373	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equ	uvalents
Max. and min. transmission	1.00000 and 0.48881	
Solution method	SHELXT-2014/5 (Sheld	rick, 2014)
Refinement method	SHELXL-2014/7 (Sheld	rick, 2014)
Data / restraints / parameters	7751 / 0 / 424	
Goodness-of-fit on F ²	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0267, wR2 = 0.00	691
R indices (all data)	R1 = 0.0289, wR2 = 0.0	699
Absolute structure parameter	0.014(14)	
Largest diff. peak and hole	0.315 and -0.258 e.Å ⁻³	

	X	у	Z	U(eq)
S(1)	-300(1)	6658(1)	5914(1)	11(1)
O(1)	700(2)	5777(1)	5875(1)	16(1)
O(2)	633(2)	7436(1)	6144(1)	16(1)
O(3)	-2073(2)	6517(1)	6086(1)	16(1)
O(4)	723(2)	4867(1)	4839(1)	31(1)
O(5)	-1817(2)	4976(1)	5199(1)	26(1)
O(6)	-426(2)	7168(1)	3423(1)	20(1)
O(7)	-707(2)	8672(1)	3620(1)	17(1)
O(8)	430(2)	9374(1)	5457(1)	25(1)
O(9)	-1895(2)	8755(1)	5788(1)	19(1)
N(4)	-541(2)	5317(1)	4989(1)	18(1)
N(5)	-589(2)	7820(1)	3725(1)	13(1)
N(6)	-702(2)	8760(1)	5489(1)	13(1)
C(22)	-563(2)	7024(1)	5268(1)	10(1)
C(23)	-571(2)	6355(1)	4881(1)	13(1)
C(24)	-587(2)	6594(1)	4380(1)	14(1)
C(25)	-626(2)	7555(1)	4258(1)	12(1)
C(26)	-655(2)	8266(1)	4618(1)	12(1)
C(27)	-636(2)	7979(1)	5114(1)	11(1)
O(10)	3050(2)	4395(1)	6289(1)	26(1)
C(28)	2371(2)	3660(1)	5972(1)	24(1)
N(1)	6623(2)	4520(1)	6191(1)	13(1)
N(2)	7698(2)	2130(1)	5951(1)	12(1)
N(3)	7919(2)	2928(1)	5661(1)	15(1)
C(1)	7932(2)	4348(1)	6593(1)	11(1)
C(2)	7741(2)	5103(1)	7018(1)	12(1)
C(3)	9411(2)	5032(1)	7315(1)	13(1)
C(4)	10820(2)	5642(1)	7367(1)	16(1)
C(5)	12172(2)	5364(1)	7687(1)	19(1)
C(6)	12107(2)	4493(1)	7938(1)	20(1)
C(7)	10697(2)	3862(1)	7876(1)	17(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 007c-21017. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

) 414/(1)	/565(1)	13(1)
) 3681(1)	7427(1)	13(1)
) 3348(1)	6868(1)	11(1)
) 4583(1)	7372(1)	13(1)
) 2695(1)	6722(1)	11(1)
) 2581(1)	7027(1)	14(1)
) 1902(1)	6931(1)	15(1)
) 1287(1)	6522(1)	14(1)
) 1402(1)	6209(1)	14(1)
) 2089(1)	6304(1)	12(1)
) 529(1)	6411(1)	19(1)
) 2664(1)	5317(1)	18(1)
) 1702(1)	5377(1)	19(1)
) 1385(1)	5782(1)	17(1)
_ < < < < < < < < < < < < < < < < < < <) 4147(1)) 3681(1)) 3681(1)) 3348(1)) 4583(1)) 4583(1)) 2695(1)) 2695(1)) 2581(1)) 1902(1)) 1287(1)) 1287(1)) 2089(1)) 529(1)) 2664(1)) 1702(1)) 1385(1)) $4147(1)$ $7565(1)$) $3681(1)$ $7427(1)$) $3348(1)$ $6868(1)$) $4583(1)$ $7372(1)$) $2695(1)$ $6722(1)$) $2695(1)$ $6722(1)$) $2581(1)$ $7027(1)$) $1902(1)$ $6931(1)$) $1287(1)$ $6522(1)$) $1402(1)$ $6209(1)$) $2089(1)$ $6304(1)$) $529(1)$ $6411(1)$) $2664(1)$ $5317(1)$) $1702(1)$ $5377(1)$) $1385(1)$ $5782(1)$

S(1)-O(2)	1.4399(12)
S(1)-O(3)	1.4507(12)
S(1)-O(1)	1.4547(11)
S(1)-C(22)	1.8143(15)
O(4)-N(4)	1.224(2)
O(5)-N(4)	1.225(2)
O(6)-N(5)	1.2234(18)
O(7)-N(5)	1.2250(17)
O(8)-N(6)	1.2237(18)
O(9)-N(6)	1.2161(18)
N(4)-C(23)	1.4775(19)
N(5)-C(25)	1.4752(19)
N(6)-C(27)	1.4823(19)
C(22)-C(23)	1.396(2)
C(22)-C(27)	1.396(2)
C(23)-C(24)	1.382(2)
C(24)-C(25)	1.381(2)
C(24)-H(24)	0.9500
C(25)-C(26)	1.384(2)
C(26)-C(27)	1.388(2)
C(26)-H(26)	0.9500
O(10)-C(28)	1.430(2)
O(10)-H(10A)	0.82(3)
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
N(1)-C(1)	1.493(2)
N(1)-H(1A)	0.92(3)
N(1)-H(1B)	0.87(2)
N(1)-H(1C)	0.89(2)
N(2)-C(21)	1.353(2)
N(2)-N(3)	1.3694(18)
N(2)-C(17)	1.433(2)
N(3)-C(19)	1.333(2)

Table 3. Bond lengths [Å] and angles [°] for 007c-21017.

C(1)-C(2)	1.559(2)
C(1)-C(10)	1.585(2)
C(1)-H(1)	1.0000
C(2)-C(3)	1.511(2)
C(2)-C(11)	1.543(2)
C(2)-H(2)	1.0000
C(3)-C(4)	1.383(2)
C(3)-C(8)	1.406(2)
C(4)-C(5)	1.400(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.390(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.405(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.387(2)
C(7)-H(7)	0.9500
C(8)-C(9)	1.514(2)
C(9)-C(11)	1.553(2)
C(9)-C(10)	1.569(2)
C(9)-H(9)	1.0000
C(10)-C(12)	1.530(2)
C(10)-H(10)	1.0000
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.405(2)
C(12)-C(17)	1.405(2)
C(13)-C(14)	1.391(2)
C(13)-H(13)	0.9500
C(14)-C(15)	1.394(2)
C(14)-H(14)	0.9500
C(15)-C(16)	1.392(2)
C(15)-C(18)	1.507(2)
C(16)-C(17)	1.391(2)
C(16)-H(16)	0.9500
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800

C(18)-H(18C)	0.9800
C(19)-C(20)	1.408(2)
C(19)-H(19)	0.9500
C(20)-C(21)	1.374(2)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
O(2)-S(1)-O(3)	115.62(7)
O(2)-S(1)-O(1)	114.00(7)
O(3)-S(1)-O(1)	113.72(7)
O(2)-S(1)-C(22)	104.62(7)
O(3)-S(1)-C(22)	103.74(7)
O(1)-S(1)-C(22)	103.23(7)
O(4)-N(4)-O(5)	125.73(14)
O(4)-N(4)-C(23)	116.84(15)
O(5)-N(4)-C(23)	117.32(15)
O(6)-N(5)-O(7)	125.31(13)
O(6)-N(5)-C(25)	117.08(12)
O(7)-N(5)-C(25)	117.61(13)
O(9)-N(6)-O(8)	125.75(13)
O(9)-N(6)-C(27)	117.84(13)
O(8)-N(6)-C(27)	116.36(13)
C(23)-C(22)-C(27)	114.89(13)
C(23)-C(22)-S(1)	121.33(11)
C(27)-C(22)-S(1)	123.60(11)
C(24)-C(23)-C(22)	123.96(14)
C(24)-C(23)-N(4)	115.36(13)
C(22)-C(23)-N(4)	120.67(13)
C(25)-C(24)-C(23)	117.64(14)
C(25)-C(24)-H(24)	121.2
C(23)-C(24)-H(24)	121.2
C(24)-C(25)-C(26)	122.23(14)
C(24)-C(25)-N(5)	118.10(13)
C(26)-C(25)-N(5)	119.66(13)
C(25)-C(26)-C(27)	117.34(13)
C(25)-C(26)-H(26)	121.3

C(27)-C(26)-H(26)	121.3
C(26)-C(27)-C(22)	123.91(13)
C(26)-C(27)-N(6)	115.73(13)
C(22)-C(27)-N(6)	120.36(13)
C(28)-O(10)-H(10A)	106.1(19)
O(10)-C(28)-H(28A)	109.5
O(10)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
O(10)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(1)-N(1)-H(1A)	106.3(15)
C(1)-N(1)-H(1B)	106.1(16)
H(1A)-N(1)-H(1B)	107(2)
C(1)-N(1)-H(1C)	113.8(14)
H(1A)-N(1)-H(1C)	116(2)
H(1B)-N(1)-H(1C)	107(2)
C(21)-N(2)-N(3)	111.59(13)
C(21)-N(2)-C(17)	126.73(13)
N(3)-N(2)-C(17)	120.03(12)
C(19)-N(3)-N(2)	104.49(13)
N(1)-C(1)-C(2)	110.77(12)
N(1)-C(1)-C(10)	114.61(12)
C(2)-C(1)-C(10)	104.33(11)
N(1)-C(1)-H(1)	109.0
C(2)-C(1)-H(1)	109.0
C(10)-C(1)-H(1)	109.0
C(3)-C(2)-C(11)	100.66(12)
C(3)-C(2)-C(1)	105.08(12)
C(11)-C(2)-C(1)	100.96(12)
C(3)-C(2)-H(2)	116.0
C(11)-C(2)-H(2)	116.0
C(1)-C(2)-H(2)	116.0
C(4)-C(3)-C(8)	121.32(15)
C(4)-C(3)-C(2)	132.51(14)
C(8)-C(3)-C(2)	106.17(13)

C(3)-C(4)-C(5)	118.04(15)
C(3)-C(4)-H(4)	121.0
C(5)-C(4)-H(4)	121.0
C(6)-C(5)-C(4)	120.76(16)
C(6)-C(5)-H(5)	119.6
C(4)-C(5)-H(5)	119.6
C(5)-C(6)-C(7)	121.29(16)
C(5)-C(6)-H(6)	119.4
C(7)-C(6)-H(6)	119.4
C(8)-C(7)-C(6)	117.74(15)
C(8)-C(7)-H(7)	121.1
C(6)-C(7)-H(7)	121.1
C(7)-C(8)-C(3)	120.83(15)
C(7)-C(8)-C(9)	132.23(14)
C(3)-C(8)-C(9)	106.92(14)
C(8)-C(9)-C(11)	100.18(12)
C(8)-C(9)-C(10)	108.19(12)
C(11)-C(9)-C(10)	100.45(12)
C(8)-C(9)-H(9)	115.3
C(11)-C(9)-H(9)	115.3
C(10)-C(9)-H(9)	115.3
C(12)-C(10)-C(9)	112.30(12)
C(12)-C(10)-C(1)	118.36(12)
C(9)-C(10)-C(1)	100.78(11)
C(12)-C(10)-H(10)	108.3
C(9)-C(10)-H(10)	108.3
C(1)-C(10)-H(10)	108.3
C(2)-C(11)-C(9)	94.21(12)
C(2)-C(11)-H(11A)	112.9
C(9)-C(11)-H(11A)	112.9
C(2)-C(11)-H(11B)	112.9
C(9)-C(11)-H(11B)	112.9
H(11A)-C(11)-H(11B)	110.3
C(13)-C(12)-C(17)	115.17(14)
C(13)-C(12)-C(10)	122.15(13)
C(17)-C(12)-C(10)	122.31(13)

122.69(14)
118.7
118.7
121.10(15)
119.4
119.4
117.19(15)
120.06(15)
122.75(15)
121.47(14)
119.3
119.3
122.34(14)
115.75(14)
121.91(14)
109.5
109.5
109.5
109.5
109.5
109.5
111.81(14)
124.1
124.1
104.62(14)
127.7
127.7
107.45(14)
126.3
126.3

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	11(1)	11(1)	10(1)	1(1)	0(1)	1(1)
O(1)	17(1)	14(1)	15(1)	0(1)	-2(1)	6(1)
O(2)	17(1)	16(1)	16(1)	-2(1)	-4(1)	-1(1)
O(3)	13(1)	17(1)	18(1)	4(1)	4(1)	1(1)
O(4)	56(1)	16(1)	21(1)	1(1)	12(1)	14(1)
O(5)	33(1)	18(1)	25(1)	8(1)	-7(1)	-11(1)
O(6)	28(1)	21(1)	12(1)	-1(1)	-1(1)	-2(1)
O(7)	16(1)	16(1)	18(1)	7(1)	0(1)	0(1)
O(8)	27(1)	17(1)	31(1)	-8(1)	5(1)	-10(1)
O(9)	18(1)	19(1)	21(1)	-2(1)	5(1)	4(1)
N(4)	34(1)	10(1)	11(1)	0(1)	-3(1)	-2(1)
N(5)	11(1)	16(1)	13(1)	3(1)	-1(1)	-1(1)
N(6)	16(1)	10(1)	14(1)	-1(1)	-2(1)	2(1)
C(22)	9(1)	11(1)	11(1)	1(1)	0(1)	0(1)
C(23)	16(1)	9(1)	14(1)	1(1)	0(1)	-2(1)
C(24)	17(1)	11(1)	12(1)	-1(1)	0(1)	-1(1)
C(25)	11(1)	13(1)	11(1)	2(1)	-1(1)	-1(1)
C(26)	11(1)	11(1)	16(1)	2(1)	0(1)	0(1)
C(27)	9(1)	10(1)	13(1)	-2(1)	0(1)	0(1)
O(10)	17(1)	15(1)	46(1)	-5(1)	-10(1)	4(1)
C(28)	20(1)	19(1)	32(1)	-3(1)	-6(1)	1(1)
N(1)	15(1)	10(1)	14(1)	1(1)	-2(1)	1(1)
N(2)	15(1)	9(1)	13(1)	0(1)	1(1)	-1(1)
N(3)	20(1)	11(1)	14(1)	2(1)	3(1)	-1(1)
C(1)	13(1)	10(1)	11(1)	1(1)	0(1)	0(1)
C(2)	14(1)	10(1)	13(1)	-1(1)	-1(1)	1(1)
C(3)	13(1)	13(1)	12(1)	-2(1)	0(1)	1(1)
C(4)	16(1)	15(1)	17(1)	-1(1)	2(1)	-2(1)
C(5)	14(1)	22(1)	21(1)	-6(1)	0(1)	-3(1)
C(6)	14(1)	27(1)	17(1)	-3(1)	-4(1)	2(1)
C(7)	19(1)	18(1)	15(1)	0(1)	-1(1)	3(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for 007c-21017. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(8)	14(1)	14(1)	12(1)	-1(1)	2(1)	0(1)
C(9)	14(1)	13(1)	11(1)	1(1)	2(1)	-1(1)
C(10)	12(1)	10(1)	11(1)	1(1)	1(1)	0(1)
C(11)	12(1)	14(1)	14(1)	-3(1)	1(1)	0(1)
C(12)	12(1)	9(1)	13(1)	1(1)	0(1)	0(1)
C(13)	15(1)	13(1)	14(1)	0(1)	2(1)	0(1)
C(14)	14(1)	16(1)	16(1)	3(1)	1(1)	-2(1)
C(15)	15(1)	13(1)	15(1)	4(1)	-4(1)	-2(1)
C(16)	18(1)	12(1)	14(1)	1(1)	-2(1)	0(1)
C(17)	13(1)	10(1)	12(1)	2(1)	1(1)	1(1)
C(18)	20(1)	20(1)	17(1)	1(1)	-3(1)	-7(1)
C(19)	22(1)	16(1)	15(1)	-1(1)	4(1)	-2(1)
C(20)	20(1)	17(1)	18(1)	-3(1)	5(1)	1(1)
C(21)	18(1)	12(1)	19(1)	-1(1)	2(1)	2(1)

	Х	У	Z	U(eq)
	570	(115	4129	16
H(24)	-573	0115	4128	10
H(26)	-088	8925	4530	15
H(28A)	1954	3945	5660	35
H(28B)	1404	3330	6141	35
H(28C)	3292	3194	5898	35
H(1)	9129	4396	6447	13
H(2)	7392	5761	6911	15
H(4)	10869	6232	/191	20
H(5)	13144	5776	//33	23
H(6)	13034	4321	8155	23
H(7)	10669	3261	8042	20
H(9)	7200	3188	7668	15
H(10)	8854	2983	6823	13
H(11A)	5328	4443	7213	16
H(11B)	6290	4927	7692	16
H(13)	4624	2985	7310	17
H(14)	2493	1856	7148	18
H(16)	5135	1003	5923	17
H(18A)	1993	528	6053	29
H(18B)	1184	665	6599	29
H(18C)	2705	-100	6509	29
H(19)	9510	3075	5062	21
H(20)	10402	1352	5181	22
H(21)	8682	757	5919	20
H(1A)	6880(30)	4095(17)	5940(9)	27(6)
H(1B)	6840(30)	5093(18)	6073(8)	24(6)
H(1C)	5530(30)	4523(14)	6298(8)	15(5)
H(10A)	2500(40)	4879(19)	6222(10)	34(7)

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Ųx\ 10\ ³) for 007c-21017.
Table 6. Torsion angles [°] for 007c-21017.

O(2)-S(1)-C(22)-C(23)	147.19(12)		
O(3)-S(1)-C(22)-C(23)	-91.22(13)		
O(1)-S(1)-C(22)-C(23)	27.65(14)		
O(2)-S(1)-C(22)-C(27)	-27.67(15)		
O(3)-S(1)-C(22)-C(27)	93.92(14)		
O(1)-S(1)-C(22)-C(27)	-147.21(13)		
C(27)-C(22)-C(23)-C(24)	2.2(2)		
S(1)-C(22)-C(23)-C(24)	-173.13(13)		
C(27)-C(22)-C(23)-N(4)	-178.55(15)		
S(1)-C(22)-C(23)-N(4)	6.2(2)		
O(4)-N(4)-C(23)-C(24)	61.8(2)		
O(5)-N(4)-C(23)-C(24)	-114.65(17)		
O(4)-N(4)-C(23)-C(22)	-117.54(17)		
O(5)-N(4)-C(23)-C(22)	66.0(2)		
C(22)-C(23)-C(24)-C(25)	-1.0(3)		
N(4)-C(23)-C(24)-C(25)	179.63(15)		
C(23)-C(24)-C(25)-C(26)	-0.3(2)		
C(23)-C(24)-C(25)-N(5)	178.15(14)		
O(6)-N(5)-C(25)-C(24)	-4.1(2)		
O(7)-N(5)-C(25)-C(24)	176.59(14)		
O(6)-N(5)-C(25)-C(26)	174.42(14)		
O(7)-N(5)-C(25)-C(26)	-4.9(2)		
C(24)-C(25)-C(26)-C(27)	0.4(2)		
N(5)-C(25)-C(26)-C(27)	-178.08(13)		
C(25)-C(26)-C(27)-C(22)	0.9(2)		
C(25)-C(26)-C(27)-N(6)	-178.88(13)		
C(23)-C(22)-C(27)-C(26)	-2.1(2)		
S(1)-C(22)-C(27)-C(26)	173.07(12)		
C(23)-C(22)-C(27)-N(6)	177.71(14)		
S(1)-C(22)-C(27)-N(6)	-7.1(2)		
O(9)-N(6)-C(27)-C(26)	121.87(15)		
O(8)-N(6)-C(27)-C(26)	-55.81(19)		
O(9)-N(6)-C(27)-C(22)	-57.9(2)		
O(8)-N(6)-C(27)-C(22)	124.38(16)		

C(21)-N(2)-N(3)-C(19)	-1.82(18)
C(17)-N(2)-N(3)-C(19)	-168.17(14)
N(1)-C(1)-C(2)-C(3)	-164.15(12)
C(10)-C(1)-C(2)-C(3)	72.03(14)
N(1)-C(1)-C(2)-C(11)	91.53(14)
C(10)-C(1)-C(2)-C(11)	-32.30(14)
C(11)-C(2)-C(3)-C(4)	-145.74(17)
C(1)-C(2)-C(3)-C(4)	109.72(18)
C(11)-C(2)-C(3)-C(8)	34.53(15)
C(1)-C(2)-C(3)-C(8)	-70.02(14)
C(8)-C(3)-C(4)-C(5)	-1.7(2)
C(2)-C(3)-C(4)-C(5)	178.63(16)
C(3)-C(4)-C(5)-C(6)	1.1(2)
C(4)-C(5)-C(6)-C(7)	0.5(3)
C(5)-C(6)-C(7)-C(8)	-1.4(3)
C(6)-C(7)-C(8)-C(3)	0.8(2)
C(6)-C(7)-C(8)-C(9)	-177.49(16)
C(4)-C(3)-C(8)-C(7)	0.7(2)
C(2)-C(3)-C(8)-C(7)	-179.49(14)
C(4)-C(3)-C(8)-C(9)	179.44(14)
C(2)-C(3)-C(8)-C(9)	-0.79(16)
C(7)-C(8)-C(9)-C(11)	145.57(17)
C(3)-C(8)-C(9)-C(11)	-32.92(15)
C(7)-C(8)-C(9)-C(10)	-109.78(19)
C(3)-C(8)-C(9)-C(10)	71.73(15)
C(8)-C(9)-C(10)-C(12)	168.64(12)
C(11)-C(9)-C(10)-C(12)	-86.90(14)
C(8)-C(9)-C(10)-C(1)	-64.44(14)
C(11)-C(9)-C(10)-C(1)	40.03(14)
N(1)-C(1)-C(10)-C(12)	-3.28(19)
C(2)-C(1)-C(10)-C(12)	118.03(14)
N(1)-C(1)-C(10)-C(9)	-126.08(13)
C(2)-C(1)-C(10)-C(9)	-4.77(14)
C(3)-C(2)-C(11)-C(9)	-51.83(13)
C(1)-C(2)-C(11)-C(9)	56.00(13)
C(8)-C(9)-C(11)-C(2)	51.03(13)

C(10)-C(9)-C(11)-C(2)	-59.80(13)
C(9)-C(10)-C(12)-C(13)	12.0(2)
C(1)-C(10)-C(12)-C(13)	-104.84(16)
C(9)-C(10)-C(12)-C(17)	-160.69(14)
C(1)-C(10)-C(12)-C(17)	82.49(18)
C(17)-C(12)-C(13)-C(14)	1.6(2)
C(10)-C(12)-C(13)-C(14)	-171.55(14)
C(12)-C(13)-C(14)-C(15)	0.4(2)
C(13)-C(14)-C(15)-C(16)	-1.8(2)
C(13)-C(14)-C(15)-C(18)	178.79(15)
C(14)-C(15)-C(16)-C(17)	1.2(2)
C(18)-C(15)-C(16)-C(17)	-179.34(15)
C(15)-C(16)-C(17)-C(12)	0.8(2)
C(15)-C(16)-C(17)-N(2)	179.92(13)
C(13)-C(12)-C(17)-C(16)	-2.2(2)
C(10)-C(12)-C(17)-C(16)	170.97(14)
C(13)-C(12)-C(17)-N(2)	178.77(13)
C(10)-C(12)-C(17)-N(2)	-8.1(2)
C(21)-N(2)-C(17)-C(16)	-49.4(2)
N(3)-N(2)-C(17)-C(16)	114.70(15)
C(21)-N(2)-C(17)-C(12)	129.71(17)
N(3)-N(2)-C(17)-C(12)	-66.2(2)
N(2)-N(3)-C(19)-C(20)	0.92(19)
N(3)-C(19)-C(20)-C(21)	0.3(2)
N(3)-N(2)-C(21)-C(20)	2.04(19)
C(17)-N(2)-C(21)-C(20)	167.27(15)
C(19)-C(20)-C(21)-N(2)	-1.35(19)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)N(3)	0.92(3)	1.96(2)	2.8187(19)	155(2)
N(1)-H(1B)O(3)#1	0.87(2)	2.16(3)	2.9746(18)	156(2)
N(1)-H(1B)O(5)#1	0.87(2)	2.56(2)	2.981(2)	110.3(18)
N(1)-H(1C)O(10)	0.89(2)	1.91(2)	2.761(2)	160(2)
O(10)-H(10A)O(1)	0.82(3)	2.08(3)	2.8639(17)	160(3)
O(10)-H(10A)O(7)#2	0.82(3)	2.48(3)	2.8740(18)	111(2)

Table 7. Hydrogen bonds for 007c-21017 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x+1/2,-y+3/2,-z+1

VII. References

- Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Synthesis of Five-, Six-, and Seven-Membered Ring Lactams by Cp*Rh Complex-Catalyzed Oxidative N-Heterocyclization of Amino Alcohols. *Org. Lett.* 2004, *6*, 2785–2788.
- Neely, J. M.; Rovis, T. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators. *J. Am. Chem. Soc.* 2014, *136*, 2735–2738.
- Potter, T. J.; Kamber, D. N.; Ellman, J. A. Rh(III)-Catalyzed Aryl and Alkenyl C–H Bond Addition to Diverse Nitroalkenes. ACS. Catal. 2017, 7, 150–153.
- Ye, B.; Cramer, N. A Tunable Class of Chiral Cp Ligands for Enantioselective Rhodium(III)-Catalyzed C–H Allylations of Benzamides. *J. Am. Chem. Soc.* 2013, *135*, 636–639.
- Reddy Chidipudi, S.; Burns, D. J.; Khan, I.; Lam, H. W. Enantioselective Synthesis of Spiroindenes by Enol-Directed Rhodium(III)-Catalyzed C–H Functionalization and Spiroannulation. *Angew. Chem. Int. Ed.* 2015, *54*, 13975–13979.
- Shin, K.; Ryu, J.; Chang, S. Orthogonal Reactivity of Acyl Azides in C–H Activation: Dichotomy between C–C and C–N Amidations Based on Catalyst Systems. *Org. Lett.* 2014, 16, 2022–2025.
- Gower, M.L.; Crowley, J.D. Self-assembly of silver(I) metallomacrocycles using unsupported 1,4-substituted-1,2,3-triazole "click" ligands. *Dalton Trans.* 2010, *39*, 2371– 2378.
- Wangweerawong, A.; Bergman, R. G.; Ellman, J. A. Asymmetric Synthesis of α-Branched Amines via Rh(III)-Catalyzed C–H Bond Functionalization. *J. Am. Chem. Soc.* 2014, *136*, 8520–8523.
- 9. Too, P.-C.; Chan, G.-H.; Tnay, Y.-L.; Hirao, H.; Chiba, S. Hydride Reduction by a Sodium Hydride–Iodide Composite. *Angew. Chem. Int. Ed.* **2016**, *55*, 3719–3723.
- Liu, P. M.; Frost, C. G. Ruthenium-Catalyzed C–H Functionalization of Arylpyrazoles: Regioselective Acylation with Acid Chlorides. *Org. Lett.* 2013, *15*, 5862–5865.
- Park, Y.; Park, K. T.; Kim, J. G.; Chang, S. Mechanistic Studies on the Rh(III)-Mediated Amido Transfer Process Leading to Robust C–H Amination with a New Type of Amidating Reagent. J. Am. Chem. Soc. 2015, 137, 4534–4542.

- Bizet, V.; Bolm, C. Sulfur Imidations by Light-Induced Ruthenium-Catalyzed Nitrene Transfer Reactions. *Eur. J. Org. Chem.* 2015, 2854–2860.
- Lautens, M.; Fagnou, K.; Zunic V. An Expedient Enantioselective Route to Diaminotetralins: Application in the Preparation of Analgesic Compounds. *Org. Lett.* 2002, 4, 3465–3468.
- Gandeepan, P.; Rajamalli, P.; Cheng, C-H. Diastereoselective [3+2] Annulation of Aromatic/Vinylic Amides with Bicyclic Alkenes through Cobalt-Catalyzed C–H Activation and Intramolecular Nucleophilic Addition. *Angew. Chem. Int. Ed.* 2016, 55, 4308–4311.
- Nishimura, T.; Kawamoto, T.; Sasaki, K.; Tsurumaki, E.; Hayashi, T. Rhodium-Catalyzed Asymmetric Cyclodimerization of Oxa- and Azabicyclic Alkenes. *J. Am. Chem. Soc.* 2007, *129*, 1492–1493.
- Coe, J.; Wirtz, M.; Bashore, C.; Candler, J. Formation of 3-Halobenzyne: Solvent Effects and Cycloaddition Adducts. *Org. Lett.* 2004, *6*, 1589–1592.
- Kulkarni, K.; Zhao, A.; Purcell, A.; Perlmutter, P. The Enantioselective Total Synthesis and Unambiguous Proof of the Absolute Stereochemistry of Pervilleine C. *Synlett*, 2008, 14, 2209–2212.
- Ben-Ishai, D.; Altman, J.; Peled, N. The synthesis of p-substituted d,l-phenylglycines by the amidoalkylation of benzylchloride and N-benzylbenzamide. *Tetrahedron*, **1977**, *33*, 2715– 2717.

S45

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 30 20 10 0

S49

S51

S60

S62

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

