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Methodological Details

GW approximation

We obtain quasiparticle (QP) energies, and thus fundamental band gaps and band structures,

by using Green’s function-based many-body perturbation theory (MBPT),1,2 a formalism

that has been used with great success for solids,3–5 interfaces,6 and molecules.7 In standard

MBPT calculations, the QP eigensystem is most commonly obtained by solving one-particle

equations

[−1

2
∇2 + Vext + VH + Σ(EQP

nk )]ψQPnk = EQP
nk ψ

QP
nk , (S1)

in which Σ = iG0W0 is the non-local, energy-dependent self-energy operator. G0 and W0

are the zeroth-order one-particle Green’s function and screened Coulomb interaction, re-

spectively, here constructed from a DFT eigensystem calculated using the local density

approximation (LDA). EQP
nk and ψQPnk are the QP energies and wavefunctions, respectively.

Assuming that ψQPnk = ψLDAnk , Eq. S1 can be solved approximately at the level of first-order

perturbation theory, namely

EQP
nk = ELDA

nk + Z(ELDA
nk )〈ψnk|Σ(ELDA

nk )− Vxc|ψnk〉, (S2)

where Vxc is the LDA exchange-correlation potential, and Z(ELDA
nk ) =

[
1− ∂ Re(Σ)

∂ω

∣∣
ω=ELDA

nk

]−1

is the QP renormalization factor.

Bethe-Salpeter equation

We calculate optical excitations by solving the Bethe-Salpeter equation (BSE)8–11 with the

Tamm-Dancoff approximation (TDA)11 for each exciton state S. In reciprocal space, this

equation takes the form

(EQP
ck − EQP

vk )ASvck +
∑
v′c′k′

〈vck|Keh |v′c′k′〉 = ΩSASvck, (S3)
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where ASvck are the coefficients of the exciton wave function written in the free electron and

hole basis |vck〉, ΩS is the excitation energy, and Keh is the electron-hole interaction kernel.9

The optical absorption spectrum can be obtained from the imaginary part of the transverse

dielectric function:

ε2(ω) =
16π2e2

ω2

∑
S

∣∣∣∣∣ê ·∑
vck

ASvck 〈vk| p̂ |ck〉
∣∣∣∣∣
2

δ(ω − ΩS), (S4)

where p̂ is the momentum operator and ê is the direction of polarization of light.

In order to quantify the spatial extent of the exciton, we employ a similar approach as in

Ref. 12 and define the electron–hole correlation function FS(r) =

∫
Ω

d3rh|ΨS(re = rh + r, rh)|2.

FS(r) provides the probability of finding electron and hole pair separated by the vector

r = re − rh. We compute the integral as a discrete sum over rh, with rh=r(Ag+), r(B3+)

and r(X−). To approximately account for the symmetry and finite number of hole positions,

we introduce the weight wh and normalize FS(r) with respect to its cumulative sum:

FS(r) =

∑
h (|ΨS(re = rh + r, rh)|2 · wh)∑

e,h (|ΨS(re, rh)|2 · wh)
(S5)

where wh =

 6 for re = r(X−)

1 otherwise
. Using the distribution function defined in expression S5,

we compute the average electron-hole separation σr =
√
〈|r|2〉 − 〈|r|〉2, where 〈|r|n〉 =∫

Ω
d3r|r|nFS(r), and use it to quantify the degree of localization of the excitonic wave func-

tion.
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Computational Details

Electronic structure

We calculate the DFT band structure of Cs2AgBiBr6 within the LDA13,14 using the Quan-

tum espresso software package.15,16 We use a set of norm-conserving, fully relativistic

Troullier-Martins17 pseudopotentials, as previouslly reported in Ref. 18, with the following

atomic configurations: 5s25p66s1 for Cs, 4s24p64d105s1 for Ag, 5d106s26p3 for Bi, 4d105s25p3

for Sb, 4s24p5 for Br and 3s23p5 for Cl.

For the ground-state calculations, the Kohn-Sham orbitals are expanded in plane-wave

basis sets with a cutoff energy of 150 Ry and the Brillouin zone is sampled using an un-

shifted 10 × 10 × 10 uniform k-point mesh, comprising 220 irreducible points. The LDA

eigensystem is then used to construct the zeroth-order one-particle Green’s function G0

and screened Coulomb interaction W0 in order to obtain the QP band structure. We include

fully-relativistic spin-orbit coupling (SOC) in the construction of G0 and W0 for all materials.

For these calculations, we use the BerkeleyGW software package,19 with the generalized

plasmon-pole method of Godby and Needs.20 We use a total of 600 bands, a polarizability

cutoff of 10 Ry and an energy cutoff of 60 Ry for the bare Coulomb interaction. With these

settings our QP band gaps are converged to within 50 meV. DFT-LDA and G0W0@LDA

band structures are obtained by Wannier interpolation using the Wannier90 code21 and

are shown in Figure S1 for all materials. We construct a set of maximally localized Wannier

functions for the interpolation of the DFT band structure of Cs2AgBX6 in the vicinity of

the band gap using the Ag-s, Ag-d, B-s, B-p and X-p states as the initial guess, leading

to 42 and 24 maximally localized Wannier functions for the valence and conduction bands,

respectively. To obtain accurate effective masses (reported in Table S1), it is important that

both valence and conduction states are interpolated over simultaneously.
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Calculation of effective masses

In order to compute the effective mass tensor, we calculate the second derivatives of the

valence and conduction band edges with respect to the wave vector k along the three crys-

tallographic directions

1

m∗αβ
=

1

h̄2

∂2ε

∂kα∂kβ
(S6)

for α, β = x, y, z. We calculate the second-order partial derivatives using finite differences

in the first order. The effective mass tensor is diagonalized for the conduction and valence

band to obtain the electron and hole effective masses, respectively. We calculate the isotropic

hole and electron effective masses as the harmonic mean m∗ =
3m1m2m3

m1m2 +m2m3 +m3m1

of the

valence and conduction band effective masses, respectively, where the indices correspond to

three orthogonal directions in a reference frame where the matrix of partial derivatives is di-

agonal. The effective mass m3 corresponds to the direction from X to Γ (longitudinal), while

m1 and m2 , the transverse effective masses, correspond to the two directions perpendicular

to that path.

In Table S1 we report the effective masses of Cs2AgBX6 (B=Bi, Sb and X=Br, Cl) at the

point of the lowest direct transition calculated with DFT-LDA and G0W0@LDA, respectively.

Note, that the CBM at X is almost dispersionless. We therefore approximate the reduced

effective mass with the isotropic hole effective mass:
1

µ
=

1

m∗h
. In contrast, for Cs2AgSbBr6

the lowest direct transition is at L instead of at X. We find that at L the VBM changes its

curvature along two of the three orthogonal directions, leading to an ill-defined hole effective

mass. We therefore approximate the reduced effective mass of Cs2AgSbBr6 with the isotropic

electron effective mass:
1

µ
=

1

m∗e
.

We compute the effective masses by evaluating the second derivative of the electronic

band energy numerically on a dense reciprocal space grid. In Table S2 we show that the grid

spacing introduces an uncertainty of up to ∼14% in the hole effective mass. Furthermore,

the interpolation scheme (linear vs Wannier) used to compute the energies of the bands
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introduces a systematic error of ∼8%. We also observe a subtle dependence of the effective

masses on the DFT starting point (also shown in Table S2). Using the linear interpola-

tion scheme, the hole effective masses calculated with G0W0@LDA and G0W0@PBE are the

same. However, the electron effective mass is ill-defined using G0W0@PBE. Wannier inter-

polation leads to a difference of ∼10% (20%) between the G0W0@LDA and G0W0@PBE hole

(electron) effective masses. All effective masses reported in the main text were calculated

using the Wannier interpolation scheme within the G0W0@LDA approximation and using a

grid spacing of 0.02 Å−1.

We quantify the anisotropy of the effective mass tensor by introducing the anisotropy

factor λ as defined in Ref. 22:

λ =

(
m⊥
m‖

)1/3

, (S7)

where m⊥ =
2mh1mh2

mh1 +mh2

is the harmonic mean of the transverse effective masses and m‖ =

mh3 is the longitudinal hole effective mass. The limit λ → 1 defines the case of a fully

isotropic effective mass, while λ > 1 reflects the fact that the longitudinal effective mass is

smaller than the transverse one. In table S1 we show that the hole effective mass is highly

anisotropic, with the longitudinal component at least 4 times smaller than the transverse

components. The valence band along X to Γ is very disperse, leading to a light longitudinal

hole effective mass. Qualitatively, we find that the larger the anisotropy of the hole effective

mass, the larger the deviation between the first principles exciton binding energy as compared

to the Wannier-Mott model. This observation does not hold for Cs2AgSbBr6, for which the

lowest direct transition is at L and the Wannier-Mott exciton binding energy is dominated

by the almost completely isotropic electron effective mass.

Following the approach described by Schindlmayr in Ref. 22, we rewrite the Wannier-

Mott binding energy taking into account the effect of effective mass anisotropy and define
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the corrected exciton binding energy as

Ex(λ) = −3

(
1

ε∞

)2(
2

m⊥
+

1

λ2m‖

)−1(
arcsinh

√
λ2 − 1√

λ2 − 1

)2

RH . (S8)

In Table S3 we show that by including the effective mass anisotropy in the Wannier-Mott

model, the difference between the Wannier-Mott exciton binding energies and our first prin-

ciples results decreases. The correction to the isotropic Wannier-Mott model increases with

increasing anisotropy factor. We attribute the remaining difference between the BSE and

Wannier-Mott exciton binding energies to an interplay of local field effects and the non-

parabolicity of the band edges.

Optical properties

In our solution of the BSE, we use the Tamm-Dancoff approximation (TDA)11 for the

electron-hole interaction kernel Keh. Keh is expanded in a set of 22 valence and 22 conduc-

tion bands, and interpolated from a 4×4×4 coarse k-point grid to a fine grid of 12×12×12

points. The solution of the BSE is then computed using 16 occupied and 8 unoccupied

states. In Figure S2 we show that, with these settings, the exciton binding energy of the

first two excited states is converged to within better than 10 meV.

To address the significant difference between our computed exciton binding energy of

170 meV and the one reported in Ref. 23 (340 meV), we performed extensive tests. In

particular, we tested the effect of using the generalized gradient approximation of Perdew-

Burke-Ernzerhof24 (PBE) as exchange-correlation (xc) functional in our DFT calculations.

We show in Table S4 that the DFT starting point does not affect the value of the indirect

band gap of Cs2AgBiBr6, but slightly changes the direct gap. Moreover, the use of PBE

red-shifts the excitonic peak by ∼50 meV and significantly increases the exciton binding

energy by approximately 42% (see Figure S3). Additionally, we also computed the BSE

optical absorption spectrum using the same 4 × 4 × 4 k-point grid as employed in Ref.
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23, and obtained an exciton binding energy of 301 meV for the first bright state. The

remaining difference of ∼40 meV can be attributed to the use of a geometry-optimized crystal

structure and partially self-consistent GW in Ref. 23. The latter opens the QP band gaps

by ∼0.3 eV for Cs2AgBiBr6, likely also affecting the static dielectric constant. Furthermore,

the experimental lattice parameter of the cubic Fm3̄m phase used in the present work differs

by 0.05 Å from the optimized lattice parameter used by Palummo et al.23

We calculate the average electron-hole separation of the excitonic wave function, by

computing the excitonic wave function on an 8 × 8 × 8 supercell, a sufficiently large real-

space supercell to accommodate the excitonic wave function and to ensure convergence. For

Cs2AgBiBr6, we evaluate the sum in Eq. S5 by averaging over three different hole positions

(hole fixed on a Bi ion site, hole fixed on a Ag ion site and hole fixed on a Br ion site) and

over all three degenerate bright transitions that the lowest bright excitonic peak consists of,

obtaining an average electron-hole separation of 6.6 Å. This value is similar to the average

electron-hole separation of 6.3 Å obtained by averaging over the first bright transition and the

Ag and Bi site only. In Figure 4b of the main text, we therefore report the average electron-

hole separation using this averaging procedure. To visualize the excitonic wave function, we

need to fix the position of the hole. For Cs2AgSbBr6, ΨS(re, rh = r(Sb3+)) ' ΨS(re, rh =

r(Ag+)), so we sum over these two hole positions and plot in Figure S7 the resulting excitonic

wave function. For all the other systems, ΨS(re, rh = r(B3+)) � ΨS(re, rh = r(Ag+)), and

we plot only the excitonic wave function when the hole is fixed on a B ion site.
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Table S1: Hole effective masses of Cs2AgBiBr6, Cs2AgBiCl6, Cs2AgSbCl6 and
electron effective mass of Cs2AgSbBr6 at the band edges corresponding to the
lowest direct transition (in units of the electron rest mass m0, expressed in a
reference frame where the effective mass tensor is diagonal) and the anisotropy
factor λ, as computed with DFT-LDA and G0W0@LDA

mh1 mh2 mh3 m∗h λ

LDA
Cs2AgBiBr6

0.79 0.73 0.17 0.36 1.65
G0W0 0.72 0.67 0.15 0.31 1.67

LDA
Cs2AgBiCl6

1.08 0.78 0.19 0.39 1.68
G0W0 0.75 0.56 0.17 0.33 1.57

LDA
Cs2AgSbCl6

1.25 0.98 0.17 0.39 1.86
G0W0 0.96 0.71 0.15 0.32 1.77

me1 me2 me3 m∗e

LDA
Cs2AgSbBr6

0.31 0.29 0.25 0.28 1.06
G0W0 0.33 0.30 0.26 0.29 1.07

Table S2: Effective masses and reduced mass at X (in units of the electron rest
mass m0), BSE and Wannier-Mott exciton binding energies (in meV) of cubic
Cs2AgBiBr6 for LDA and PBE starting points

G0W0@LDA

Methodology
(interpolation)

Grid
spacing (1/Å)

Effective
masses (m0)

Binding energy (meV)

m∗h m∗e µ
EWM
x

w/ µ
EWM
x

w/ m∗h

EBSE
x

ε(r, r′;ω)
EBSE
x

ε(r, r′;ω)→ ε∞

linear 0.093 0.325 1.229 0.257 100 126 170 99

Wannier
0.093 0.352 1.115 0.267 104 137
0.020 0.309 0.857 0.227 88 120

G0W0@PBE

Methodology
(interpolation)

Grid
spacing (1/Å)

Effective
masses (m0)

Binding energy (meV)

m∗h m∗e µ
EWM
x

w/ µ
EWM
x

w/ m∗h

EBSE
x

ε(r, r′;ω)
EBSE
x

ε(r, r′;ω)→ ε∞

linear 0.093 0.326 − − − 156 242 144

Wannier
0.093 0.317 0.878 0.233 111 151
0.020 0.269 0.652 0.191 91 128
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Table S3: Exciton binding energy (in meV) as computed within the G0W0+BSE
approach (EBSE

x ) and with the Wannier-Mott model (EWM
x ). Ex(λ) is the exciton

binding energy including effective mass anisotropy.

System EBSE
x (meV) EWM

x (meV) Ex(λ) (meV)

Cs2AgBiBr6 170 120 148
Cs2AgBiCl6 333 205 240
Cs2AgSbBr6 247 112 113
Cs2AgSbCl6 434 193 250

Table S4: Comparison between the computational setup used in Ref. 23 and in
the current work

Theory level Input parameter Palummo et al.23 Present work

lattice parameter 7.99 Å 7.94 Å

DFT
xc functional PBE LDA PBE
cutoff energy 520 eV 2040 eV 680 eV
k-point grid 8 x 8 x 8 10× 10× 10 10× 10× 10

GW

flavor self-consistent GW one-shot G0W0 one-shot G0W0

cutoff energy for ε 40 eV 136 eV 54 eV
cutoff energy for Σc 163 eV 136 eV 54 eV
cutoff energy for Σx 1088 eV 816 eV 680 eV
energy above VBM ∼40 eV ∼46 eV ∼46 eV

BSE

TDA yes yes yes

number of states in kernel
10 occupied 22 occupied 22 occupied

10 unoccupied 22 unoccupied 22 occupied
input k-point grid 4× 4× 4 4× 4× 4 4× 4× 4

interpolation k-point grid — 12× 12× 12 12× 12× 12
number of states on the — 16 occupied 16 occupied
interpolated k-point grid — 8 unoccupied 8 unoccupied

Table S5: Comparison between GW band gaps and computed exciton binding
energy obtained using evGW in Ref. 23 and using G0W0 in the current work

xc functional GW band gaps (eV) Binding energy (meV)
XVBM → LCBM XVBM → XCBM dark bright

evGW 23 PBE 2.1 2.7 480 340

G0W0
PBE 1.66 2.34 346 242
LDA 1.66 2.40 253 170
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Figure S1: DFT-LDA (blue dashed line) and G0W0@LDA (green solid line) Wannierized
band structures of a) Cs2AgBiBr6; b) Cs2AgBiCl6; c) Cs2AgSbBr6 and d) Cs2AgSbCl6
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Figure S2: Convergence of the exciton binding energy with respect to the number of kpoints
used for the interpolation of the kernel.
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Figure S3: Optical absorption spectrum of Cs2AgBiBr6, where the independent particle
spectrum is represented with dashed line and the BSE spectrum with green solid line. The
results using DFT-LDA starting point are represented in green and the ones using DFT-PBE
as starting point in blue.
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Figure S4: a) DFT-LDA band structure of Cs2AgBiBr6. The band structure of the primitive
unit cell of the cubic Fm3̄m phase is represented in green and for the conventional unit cell
of the tetragonal I4/m phase in blue.
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Figure S5: Imaginary part of the dielectric function as calculated within the random phase
approximation with and without local field effects.
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Figure S6: Optical absorption spectrum of a) Cs2AgBiBr6; b) Cs2AgBiCl6; c) Cs2AgSbBr6

and d) Cs2AgSbCl6, where the independent particle spectrum is represented with purple
dashed line, the BSE spectrum with green solid line and the Elliott fit with blue dashed line.
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Figure S7: 3D representation of the probability density of the exciton wave function in real
space for a) Cs2AgBiBr6; b) Cs2AgBiCl6; c) Cs2AgSbBr6 and d) Cs2AgSbCl6. We plot an
isosurface containing 95% of the excitonic wave function.
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Figure S8: G0W0@LDA band structure of Cs2AgSbBr6. The orbital character of the bands
is shown in color (halide character was omitted for clarity).
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