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Definition of Bound and Unbound States

To compute the binding free energy between CB7 and the guest molecules with DeepBAR,

we first need to precisely define the bound state A and the unbound state B such that the

binding free energy ∆Fbinding equals FA − FB.

Based on previous studies,S1,S2 the equilibrium binding constant between the host and a

guest molecule, Kb, can be derived as

Kb =

∫
site

dxg
∫

dx∗h e
−βU(x∗

h,xg)[∫
bulk

dxg δ(rg − r′) e−βU(xg)
] [∫

dx∗h e
−βU(x∗

h)
] . (S1)

We use xh and xg for the full phase space of host and guest and x∗h and x∗g for the ones

with translational and rotational degrees of freedom removed. r′ indicates an arbitrary but

fixed location in the bulk region that is far away from the host and rg represents the guest’s

center of mass. U(x∗h,xg) is the total potential energy of both host and guest molecules,

while U(xg) and U(x∗h) are the individual energy. By definition, Kb has a unit of volume

(e.g. nm3). The standard binding free energy ∆Fbinding is related to Kb as

∆Fbinding = −kbT ln [KbC
◦] , (S2)

where C◦ is the standard concentration of 1 mol/L or equivalently 1/V ◦ with V ◦ = 1.661

nm3. Combining Equation S1 and S2, we have

∆Fbinding = −kbT ln
[ ∫

site

dxg

∫
dx∗h e

−βU(x∗
h,xg)

]
−
(
− kbT ln

[
V ◦ ·

∫
bulk

dxg δ(rg − r′) e−βU(xg)
]
− kbT ln

[ ∫
dx∗h e

−βU(x∗
h)
])
.

(S3)
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Equation S3 shows that, to make ∆Fbinding = FA − FB with

FA = −kbT ln
[ ∫

site

dxg

∫
dx∗h e

−βU(x∗
h,xg)

]
, (S4)

and

FB = −kbT ln
[
V ◦ ·

∫
bulk

dxg δ(rg − r′) e−βU(xg)
]
− kbT ln

[ ∫
dx∗h e

−βU(x∗
h)
]
, (S5)

we can define the bound and the unbound state as follows (see Figure 2a and 2b of the main

text). The bound state A is the host-guest ensemble where the host has a fixed location and

orientation, and the guest is inside the binding site. Therefore, the configurational space and

energy function for state A can be denoted as xA = (x∗h,xg) and UA(xA) = U(x∗h,xg). The

unbound state B corresponds to the conformational ensemble in which the host has a fixed

location and orientation, and the guest’s center of mass is inside a box that is in the bulk

region far away from the host and has a volume of V ◦. In state B, the integral corresponding

to the guest can also be written as

V ◦ ·
∫
bulk

dxg δ(rg − r′) e−βU(xg) = V ◦ · 8π2 ·
∫

dx∗g e−βU(x∗
g), (S6)

where 8π2 is the result of integrating the guest’s rotational degrees of freedom. Using Equa-

tion S6, FB in Equation S5 can also be written as

FB = −kbT ln
[ ∫

dx∗g

∫
dx∗h e−β[U(x∗

g)+U(x∗
h)−β

−1 ln(8π2·V ◦)]
]
. (S7)

Therefore for state B we have xB = (x∗h,x
∗
g) and UB(xB) = U(x∗g)+U(x∗h)−β−1 ln(8π2 ·V ◦).
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Simulation Details for Bound and Unbound States

Biasing potentials were applied to the host to restrain its position and orientation in sim-

ulations of both state A and state B. Specifically, three anchor particles, represented as

P1, P2, and P3 in Figure S25, were added to the host-guest system. These particles

were fixed at (0.0, 0.0, 0.0)nm, (0.1, 0.0, 0.0)nm, and (0.0, 0.0, -0.1)nm, respectively.

By definition, the vector P3-P1 aligns with the z-axis, and the vector P1-P2 aligns with

the x-axis. Three virtual sites, represented as H1, H2, and H3 in Figure S25, were de-

fined based on the positions of host atoms. They correspond to the average position of

the 14 spiro carbon atoms of the host, the average position of the 14 nitrogen atoms on

one side of the host and between H1 and P1, and the average position of the four car-

bon atoms belonging to one of the eight-atom rings. Three harmonic potentials were

applied on H1 to restrain its position: 0.5 × 105 · (distance(H1,P1) − 0.5)2 on the dis-

tance between H1 and P1, 0.5 × 103 · (angle(H1,P1,P3) − π)2 on the angle H1-P1-P3, and

0.5 × 103 · (|dihedral(H1,P1,P2,P3)| − π)2 on the dihedral angle H1-P1-P2-P3. Here and

henceforth, distances, angles and energies are in units of nanometer, radius and kj/mol,

respectively. Two biasing potentials were used to restrain H2 such that the vector H1-H2

aligns closely with the z-axis: 0.5 × 103 · (angle(H2,H1,P1))2 on the angle H2-H1-P1, and

0.5×103 ·(dihedral(H2,H1,P2,P1))2 on the dihedral angle H2-H1-P2-P1. One biasing poten-

tial was added to restrain H3 such that the vector H1-H3 points to the same direction as the

vector P1-P2: 0.5×103 ·(dihedral(H3,H1,H2,P2))2 on the dihedral angle H3-H1-H2-P2. We

note that the above restraining potentials do not affect the host’s conformational ensemble.

No restrictions were applied to the guest molecules for simulations of state A, and they

remain bound to the host throughout the simulations. In simulations of state B, the guest

molecules were positioned at 2.8 nm away from the host, and there are no interactions

between the guest and the host. We further restricted the translation and rotation of guest

molecules using harmonic biasing potentials. As shown in Equation S7, these degrees of

freedom are not needed for computing the absolute free energy. Details on the restraining
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potentials applied to the guest molecules can be found in Section: Restraining potential on

guests’ position and orientation.

Generative Models for Reference State Construction

As mentioned in the main text, because the host and the guest interact with each other

in state A, we modeled x∗h and xg as dependent variables in qA◦(x∗h,xg) of state A◦, i.e.,

qA◦(x∗h,xg) = qA◦(x∗h) · qA◦(xg|x∗h). In contrast, there are no interactions between the host

and guest molecules in state B, and x∗h and x∗g were modeled as independent variables in the

reference state B◦: qB◦(x∗h,x
∗
g) = qB◦(x∗h) · qB◦(x∗g).

Because the host is relatively rigid and has small fluctuations in both state A and B, we

modeled both qA◦(x∗h) and qB◦(x∗h) as results of applying an invertible linear transformation

(ILT) to a standard normal random variable u∗h ∼ N (0, I). In detail, x∗h = T (u∗h) =

MA◦u∗h+µA◦ and x∗h = T (u∗h) = MB◦u∗h+µB◦ for state A◦ and B◦, respectively, where MA◦

and MB◦ are 3Nh× 3Nh invertible matrices, µA◦ and µB◦ are vectors with 3Nh components,

and Nh = 126 is the number of host atoms. As a result, the distribution of x∗h in state A◦

can be derived as

qA◦(x∗h) = pu(u
∗
h)|detJT (u∗h)|−1 (S8)

= pu
(
M−1

A◦(x∗h − µA◦
)
|detJT (u∗h)|−1

=

(
1√
2π

)3Nh

exp

{
−1

2
(x∗h − µA◦)T(MA◦MT

A◦)−1(x∗h − µA◦)

}
|detJT (u∗h)|−1

The Jacobian JT (u) is the 3Nh× 3Nh matrix of all partial derivatives of T given by MA◦ . It

is evident that qA◦(x∗h) is a multivariate normal distribution with mean µA◦ and covariance

matrix Σ = MA◦MT
A◦ . Correspondingly,

log qA◦(x∗h) = −1

2
(x∗h − µA◦)TΣ−1(x∗h − µA◦)− 1

2
log det(Σ)− 3Nh

2
log 2π, (S9)

S-5



where det(Σ) is the determinant of the covariance matrix Σ. A similar formula as Equation

S9 applies to log qB◦(x∗h). The parameters {MA◦ ,µA◦} and {MB◦ ,µB◦} can be directly

estimated based on host conformations sampled from state A and B, respectively. With

estimated {MA◦ ,µA◦} for state A◦ ( or {MB◦ ,µB◦} for state B◦), we can easily calculate the

value of log qA◦ (or log qB◦) for any conformation x∗h using Equation S9 (or a similar equation

for state B◦). Moreover, we can draw independent samples of x∗h from qA◦ (or qB◦) by first

sampling u∗h from the standard normal distribution N (0, I) and converting it into x∗h using

x∗h = MA◦u∗h + µA◦ (or x∗h = MB◦u∗h + µB◦).

Compared to the host, the guest molecules are more flexible. For state B, we modeled the

distribution of their Cartesian coordinates qB◦(x∗g), through the distribution of its internal

coordinates z∗g . Specifically, we first parameterized the distribution of z∗g by applying a series

of bijective transformations to a uniformly distributed random variable u∗g, i.e.,

z∗g = T ∗K(· · ·(T ∗2 (T ∗1 (u∗g)))) (S10)

where u∗g has the same dimension as z∗g . T
∗
k (·), for k = 1, ..., K, are bijective transformations.

Then we computed the Cartesian coordinates x∗g from z∗g based on molecular topology. Let

us represent this transformation as x∗g = T ∗K+1(z
∗
g) = T (u∗g). Because we could also compute

z∗g from x∗g, the transformation TK+1 is also bijective. Using the formula of changing variables

in probability density functions, we have

qB◦(x∗g) = pu(u
∗
g)|detJT (u∗g)|−1 (S11)

Since all the transformations are invertible and differentiable, the Jacobian determinant of

the overall transformation T can be computed from the Jacobian determinant of individual
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transformations as

detJT (u∗g) =
K+1∏
k=1

detJT ∗
k
(uk−1g ) (S12)

Correspondingly,

log qB◦(x∗g) = log pu(u
∗
g)−

K+1∑
k=1

log |det(JT ∗
k
(uk−1g ))|, (S13)

where ukg = T ∗k (...T ∗1 (u0
g)), u

0
g = u∗g, z

∗
g = uKg and det(JT ∗

k
(·)) is the determinant of the

Jacobian matrix JT ∗
k

of the transformation T ∗k .

Unlike those in state B, guest molecules in state A can also translate and rotate as a whole

inside the binding site. Hence the distributions of their Cartesian coordinates, qA◦(xg|x∗h)

were modeled through the distributions of position, orientation and internal coordinates, the

union of which is represented using zg. Similarly as state B◦, zg is modeled as the result of

multiple bijective transformations of a uniform random variable ug. Because the distribution

of xg in qA◦(xg|x∗h) is conditional on x∗h, we made the transformations between ug and zg

dependent on xh too, i.e.,

zg|xh = TK(· · ·(T1(T0(ug;xh);xh));xh) (S14)

where Tk(u;xh) are bijective transformations of u that depends on xh. Based on guest

molecules’ topology, zg can be reversibly converted into xg for state A◦, say with xg =

TK+1(zg). Then we can compute log qA◦(xg|x∗h) using a similar equation as Equation S13 by

replacing T ∗k (·) with Tk(·;x∗h) for k = 1, ..., K + 1.

For both state A◦ and state B◦, the bijective transformations of both Tk(·;x∗h) and T ∗k (·),

for k = 1, ..., K, were modeled using rational quadratic neural spline flows with coupling lay-

ers (RQ-NSF(C))S3–S5 and learned based on samples from state A and state B, respectively.

The detailed architecture of the RQ-NSF(C) layer is as follows. To simplify the notation,

we will use ug and vg as the input and output of the RQ-NSF(C) layer, respectively. In
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each RQ-NSF(C) layer, components of the input vector ug were randomly split into two

groups: uIg and uCg . The components in uIg were kept the same in the transformation, i.e.,

the corresponding components of the output vector, vIg , is equal to uIg. The components in

uCg were transformed by applying a component-wise monotonic rational-quadratic splines,S4

where both positions of knots and derivatives on the knots for the spline were parameterized

using residual neural networksS6 with uIg and x∗h as the input for Tk(·;x∗h) and with just uIg

as the input for T ∗k (·) (Fig. S2). In detail, the transformation applied by a RQ-NSF(C) layer

is as follows:

vIg = uIg (S15)

vCg = gθ(u
C
g ) (S16)

where ug = (uIg,u
C
g ) and vg = (vIg ,v

C
g ) are the input and the output of the RQ-NSF(C) layer,

respectively, and the transformation gθ is a component-wise monotonic rational-quadratic

splines with 4 knots. The parameters θ of the spline include positions of the 4 knots and

derivatives on the 4 knots and these parameters are parameterized using a neural network.

For the transformation Tk(·;x∗h) used in state A◦, the input to the neural network include

both uIg and x∗h, i.e., θ = NN(uIg,x
∗
h). For the transformation Tk(·) used in state B◦, the input

to the neural network is just uIg, i.e., θ = NN(uIg). The Jacobian matrix of the RQ-NSF(C)

layer is a triangular matrix, so the value of its determinant is the product of its diagonal terms

and the diagonal terms can be calculated using the backpropagation algorithm. Because

gθ is a component-wise monotonic rational-quadratic splines, its inverse g−1θ can be solved

analytically. With g−1θ , the inverse of the RQ-NSF(C) layer can be evaluated as follows:

uIg = vIg (S17)

uCg = g−1θ (vCg ), (S18)

where θ = NN(vIg ,x
∗
h) for Tk(·;x∗h) and θ = NN(vIg) for Tk(·). For more details on construct-
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ing monotonic rational-quadratic splines and its inverse, see the reference S4 and S7.

Bijective transformations between Cartesian and internal coordi-

nates

From simulated configurations of state B, we removed the translational and rotational degrees

of freedom of guest molecules to obtain x∗g as follows. Three reference particles, represented

as R1, R2 and R3, were chosen from the guests’ atoms such that R1 is bonded to R2 and

R3. Based on the three reference particles, we aligned their conformations such that (1) the

position of R1 is (0.0, 0.0, 0.0); (2) the position of R2 is (0.0, 0.0, zR2); (3) the position

of R3 is (0.0, yR3, zR3). After alignment, the x, y, z coordinates of R1, the x, y coordinates

of R2 and the x coordinates of R3 were all fixed at zeros. The Cartesian coordinates x∗g

include zR2, yR3, zR3 and the x, y, z coordinates of other guest atoms that were not chosen

as reference particles.

With the three reference particles specified as above, we can also represent the guest

conformations using internal coordinates z∗g . zR2 can be determined using the length of the

bond R1-R2 (bR1−R2). yR3 and zR3 can be specified using the length of the bond R1-R3

(bR1−R3) and the angle R2-R1-R3 (aR2−R1−R3). Therefore, the Cartesian coordinates of R1,

R2 and R3 can be specified using the internal coordinates (bR1−R2, bR1−R3, aR2−R1−R3). To

specify the Cartesian coordinates of other guest atoms using internal coordinates, we label

R1, R2 and R3 particles as atom 1, 2 and 3 respectively, and incrementally label other

atoms in the order of querying by a depth-first-search with R1 as the root node and the

guest molecular topology as the tree structure. The internal coordinates of atom l(l ≥ 4)

include the bond length bl, the angle al, and the dihedral angle dl. If atom l is directly

bonded with R1, its internal coordinates are defined with respect to R1, R2 and R3, i.e.,

the bond length of l-R1, the angle of l-R1-R2 and the dihedral of l-R1-R2-R3. If atom l

is directly bonded with R2 (or R3), its internal coordinates are defined with respect to R2

(or R3), R1, and R3 (or R2). For atom l that is not directly bonded to R1, R2 or R3, its
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coordinates are defined with respect to atoms i, j, k such that i < j < k < l and the four

atoms are consecutively bonded, i.e., atom i is bonded with atom j which is bonded with

atom k and atom k is further bonded with atom l. Because atoms are labeled using the

depth-first-search order, we can alway identify atoms i, j, k that satisfy these two conditions

for atom l that is not directly bonded to R1, R2 or R3. Therefore, the internal coordinates z∗g

of a guest include bR1−R2, bR1−R3, aR2−R1−R3 and the bond bl, the angle al, and the dihedral

angle dl of atom l for l ≥ 4.

We included the full set of Cartesian coordinates to model guest molecules in the bound

state A, and the corresponding zg was defined as follows. Similarly to the case for state B,

three reference particles, represented as R1, R2 and R3, were chosen from the guests’ atoms

and other guest atoms were labeled using the same depth-first-search order. The position of

R1 was directly specified using its xyz coordinates as in xg, i.e., (xR1, yR1, zR1). The position

of R2 was specified using a spherical coordinate system with R1 as the origin, i.e., using

rR2, θR2, and ϕR2 which are the radial distance, polar angle, and azimuthal angle of R2,

respectively. The position of R3 could be similarly determined using rR3, θR3, and ϕR3 with

R1 as the origin. After specifying the positions of R1, R2 and R3, we defined the position

of atom l using the bond length bl, the angle al, and the dihedral angle dl with respect to

atoms i, j, k as in the case for state B. Therefore, the coordinates zg for state A include

xR1, yR1, zR1, rR2, θR2, ϕR2, rR3, θR3, ϕR3 and bl, al, and dl of atom l for l ≥ 4.

Details on PMF calculations

As mentioned in the main text, intermediate states for PMF calculations were designed in

three phases. In the first, attachment phase, a restraining potential was applied to the host

CB7 to slowly enlarge its cavity portal. A positional restraining potential was also applied

on the guest molecules to keep them inside the binding pocket. In the second, pulling phase,

the guest molecules were restrained at increasing distances from the host along the axis that
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passes through the host’s center of mass and is perpendicular to the host’s middle section

plane. In addition, the orientation of guest molecules was also restrained to the same pose

they adopt when bound with the host. The cavity opening restraints introduced in the first

phase facilitates the exit of guest molecules. In the last state of the pulling phase, the guest

molecules were positioned far enough from the host so that there are no interactions between

them. In the final, release phase, the restraining potential on the host that was turned on

during the attachment phase and kept on during the pulling phase, was slowly turned off.

In addition to the various restraining potentials in different phases, all PMF simulations

were subject to the restraints on translational and rotational degrees of freedom specified in

Section: Simulation Details for Bound and Unbound States.

Restraining potential for host cavity opening

A restraining potential was applied to the host to enlarge its cavity portal and facilitate guest

existing. Towards that end, we defined a virtual site H4 on the host as the average position

of the seven carbon atoms that are bonded to oxygen atoms around the cavity portal and

on the opposite side of the host from the anchor particles (Figure S26). Harmonic biasing

potentials were applied on the distances (d, Figure S26) of H4 from each of the seven carbon

atoms that were used in determining the position of H4. The form of the potentials is

k
2
· (d − dc)2 with k = 5 × 104. dc is the equilibrium distance that the potential is biasing

towards.

For the 10 intermediate states from the attachment phase, the equilibrium distance, dc,

was linearly increased from 0.48 to 0.55 nm. dc was kept at 0.55 nm for all the 75 intermediate

states of the pulling phase. During the release phase, dc was linearly decreased from 0.55 to

0.48 nm for the 10 intermediate states.
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Restraining potential on guests’ position and orientation

For all intermediate states in the attachment phase, a biasing potential was applied on the

guest molecules to keep them inside the binding pocket (Figure S27). The potential adopts

the form of k
2
· H(dg1 − dcg1) · (dg1 − d

c
g1

)2, with k = 2000. The Heaviside step function H(x)

is 1 when x ≥ 0 and 0 when x < 0. dg1 is the distance between G1 and P1. The virtual site

G1 and the value of dcg1 for the four guest molecules were chosen as follows:

• GI: G1 is the average position of the six carbon atoms and dcg1 = 0.60 nm.

• GII: G1 is the average position of the six carbon atoms in the benzene ring and dcg1 =

0.575 nm.

• GIII: G1 is the average position of the ten spiro carbon atoms and dcg1 = 0.56 nm.

• GIV: G1 is the average position of the ten spiro carbon atoms and dcg1 = 0.58 nm.

During the pulling and release phases, the biasing potential on guest molecules used in

the attachment phase was removed. New biasing potentials were defined to restrain guests at

specific positions and orientations using two virtual sites, G1 and G2 (Figure S27). Biasing

potentials of the following forms were applied on the distance dg1 between G1 and P1, the

angle θg1 between G1, P1, and P3, and the angle θg2 between G2, G1, and P1:

1

2
· 2000 · (dg1 − dcg1)

2 for dg1 ,

1

2
· 1000 · (θg1 − θcg1)

2 for θg1 ,

H(θcg2 − θg2) ·
1

2
· 200 · (θg2 − θcg2)

2 for θg2 .

The definition of the virtual site G1 is the same as that used in the attachment phase. The

virtual site G2 and the values for dcg1 , θ
c
g1

, and θcg2 were chosen as follows:

• GI: G2 is the carbon atom that is connected to a nitrogen atom; In both the pulling and

the release phase, θcg1 = 3.07 and θcg2 = 2.70. In the pulling phase, dcg1 linearly increases
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from 0.53 to 1.5nm over the first 40 intermediate states, and further linearly increases

to 2.8nm over the rest of 35 intermediate states. In the release phase, dcg1 = 2.8 nm.

• GII: G2 is the carbon atom that is connected to a nitrogen atom; In both the pulling

and the release phase, θcg1 = 3.08 and θcg2 = 2.90. In the pulling phase, dcg1 linearly

increases from 0.50 to 1.5nm over the first 40 intermediate states, and further linearly

increases to 2.8nm over the rest of 35 intermediate states. In the release phase, dcg1 = 2.8

nm.

• GIII: G2 is the carbon atom that is connected to oxygen atoms; In both the pulling and

the release phase, θcg1 = 3.11 and θcg2 = 2.90. In the pulling phase, dcg1 linearly increases

from 0.53 to 1.5nm over the first 40 intermediate states, and further linearly increases

to 2.8nm over the rest of 35 intermediate states. In the release phase, dcg1 = 2.8 nm.

• GIV: G2 is the nitrogen atom that is connected to one of the spiro carbon atoms;

In both the pulling and the release phase, θcg1 = 3.11 and θcg2 = 2.70. In the pulling

phase, dcg1 linearly increases from 0.51 to 1.5nm over the first 40 intermediate states,

and further linearly increases to 2.8nm over the rest of 35 intermediate states. In the

release phase, dcg1 = 2.8 nm.
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Figure S1: The specific atoms and dihedral angles of guest molecules mentioned in both the
main text and the Supporting Information.
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Figure S2: Illustration of the RQ-NSF(C) layer used to define the bijective transformations
of Tk(·;x∗h) and T ∗k (·) for state A◦ and state B◦, respectively. The transformation Tk(·;x∗h)
depends on x∗h and includes the components enclosed in the dashed box, whereas the trans-
formation T ∗k (·) does not. (a) The input random variable ug is randomly split into two
components, uIg and uCg . uIg is kept identical through the layer and uCg is transformed via a
component-wise monotonic rational quadratic spline gθ. The spline is defined using 4 knots
and the parameters θ of the spline include the positions (P) of the 4 knots and derivatives
(D) on the 4 knots. (b) The knots positions (P) and derivatives (D) are parameterized using
a neural network (NN) with both uIg and x∗h as inputs for Tk(·;x∗h) and with just uIg as input
for T ∗k (·). The concatenation layer concatenates its two input vectors into one vector and
the split layer does the opposite, splitting a vector into two vectors. The component labeled
as resnet is a residue network building block and its detailed architecture is shown in (c).
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Figure S3: Marginal distributions of specific degrees of freedom from state A/B and state
A◦/B◦ for the CB7-GI host-guest system. (a and b) The distribution of x-y coordinates of
atom C3 for state A (a) and state A◦ (b). (c) The distribution of the dihedral angle φ1 for
state A (blue) and state A◦ (orange). (d) The distribution of the dihedral angle φ2 for state
A (blue) and state A◦ (orange). (e) The distribution of the dihedral angle φ1 for state B
(blue) and state B◦ (orange). (f) The distribution of the dihedral angle φ2 for state B (blue)
and state B◦ (orange).
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Figure S4: Marginal distributions of specific degrees of freedom from state A/B and state
A◦/B◦ for the CB7-GII host-guest system. (a and b) The distribution of x-y coordinates of
atom C3 for state A (a) and state A◦ (b). (c) The distribution of the dihedral angle φ1 for
state A (blue) and state A◦ (orange). (d) The distribution of the dihedral angle φ2 for state
A (blue) and state A◦ (orange). (e) The distribution of the dihedral angle φ1 for state B
(blue) and state B◦ (orange). (f) The distribution of the dihedral angle φ2 for state B (blue)
and state B◦ (orange).

S-17



a b
P

ro
b

a
b

ili
ty

 d
e
n

s
it
y

P
ro

b
a
b

ili
ty

 d
e
n

s
it
y

c d

P
ro

b
a
b

ili
ty

 d
e
n

s
it
y

P
ro

b
a
b

ili
ty

 d
e
n

s
it
y

P
ro

b
a
b

ili
ty

 d
e
n

s
it
y

P
ro

b
a
b

ili
ty

 d
e
n

s
it
y

e f

Dihedral angles φ
1
 (radians)

Dihedral angles φ
1
 (radians)

Dihedral angles φ
2
 (radians)

Dihedral angles φ
2
 (radians)

Figure S5: Marginal distributions of specific degrees of freedom from state A/B and state
A◦/B◦ for the CB7-GIII host-guest system. (a) The distribution of the dihedral angle φ1 for
state A (blue) and state A◦ (orange). (b) The distribution of the dihedral angle φ2 for state
A (blue) and state A◦ (orange). (c) The distribution of the dihedral angle φ1 for state B
(blue) and state B◦ (orange). (d) The distribution of the dihedral angle φ2 for state B (blue)
and state B◦ (orange). (e and f) Distributions of the value (in kcal/mol) of energy functions
UB (e) and UB◦ (f) on samples from state B (blue) and state B◦ (orange).
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Figure S6: Marginal distributions of specific degrees of freedom from state A/B and state
A◦/B◦ for the CB7-GIV host-guest system. (a and b) The distribution of x-y coordinates of
atom C4 for state A (a) and state A◦ (b). (c) The distribution of the dihedral angle φ1 for
state A (blue) and state A◦ (orange). (d) The distribution of the dihedral angle φ2 for state
A (blue) and state A◦ (orange). (e) The distribution of the dihedral angle φ1 for state B
(blue) and state B◦ (orange). (f) The distribution of the dihedral angle φ2 for state B (blue)
and state B◦ (orange).
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Figure S7: Energy function overlap between target state A/B and reference state A◦/B◦ for
the guest GI. (a and b) Distributions of the value (in kcal/mol) of energy functions UA (a)
and UA◦ (b) on samples from state A (blue) and state A◦ (orange). (c and d) Distributions
of the value (in kcal/mol) of energy functions UB (c) and UB◦ (d) on samples from state B
(blue) and state B◦ (orange).
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Figure S8: Energy function overlap between target state A/B and reference state A◦/B◦ for
the guest GII. (a and b) Distributions of the value (in kcal/mol) of energy functions UA (a)
and UA◦ (b) on samples from state A (blue) and state A◦ (orange). (c and d) Distributions
of the value (in kcal/mol) of energy functions UB (c) and UB◦ (d) on samples from state B
(blue) and state B◦ (orange).
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Figure S9: Energy function overlap between target state A/B and reference state A◦/B◦ for
the guest GIV. (a and b) Distributions of the value (in kcal/mol) of energy functions UA (a)
and UA◦ (b) on samples from state A (blue) and state A◦ (orange). (c and d) Distributions
of the value (in kcal/mol) of energy functions UB (c) and UB◦ (d) on samples from state B
(blue) and state B◦ (orange).
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Figure S10: Similar results as in Figure 4 of the main text but for guest GI.
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Figure S11: Similar results as in Figure 4 of the main text but for guest GII.
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Figure S12: Similar results as in Figure 4 of the main text but for guest GIV.
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Figure S13: Distributions of the host’s radius for states in the attachment phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GI. The most left distribution is for state A and other distributions are for intermediate states
of the attachment phase.
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Figure S14: Distributions of the distance dg1 between the guest GI’s G1 site and the anchor
particle P1 for states in the pulling phase of the PMF method with 97 windows (left), 49
windows (middle), and 33 windows (right).
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Figure S15: Distributions of the host’s radius for states in the release phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GI. The most left distribution is for state B and other distributions are for intermediate states
of the release phase.
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Figure S16: Distributions of the host’s radius for states in the attachment phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GII. The most left distribution is for state A and other distributions are for intermediate
states of the attachment phase.
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Figure S17: Distributions of the distance dg1 between the guest GII’s G1 site and the anchor
particle P1 for states in the pulling phase of the PMF method with 97 windows (left), 49
windows (middle), and 33 windows (right).
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Figure S18: Distributions of the host’s radius for states in the release phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GII. The most left distribution is for state B and other distributions are for intermediate
states of the release phase.
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Figure S19: Distributions of the host’s radius for states in the attachment phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GIII. The most left distribution is for state A and other distributions are for intermediate
states of the attachment phase.
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Figure S20: Distributions of the distance dg1 between the guest GIII’s G1 site and the anchor
particle P1 for states in the pulling phase of the PMF method with 97 windows (left), 49
windows (middle), and 33 windows (right).
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Figure S21: Distributions of the host’s radius for states in the release phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GIII. The most left distribution is for state B and other distributions are for intermediate
states of the release phase.
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Figure S22: Distributions of the host’s radius for states in the attachment phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GIV. The most left distribution is for state A and other distributions are for intermediate
states of the attachment phase.
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Figure S23: Distributions of the distance dg1 between the guest GIV’s G1 site and the anchor
particle P1 for states in the pulling phase of the PMF method with 97 windows (left), 49
windows (middle), and 33 windows (right).
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Figure S24: Distributions of the host’s radius for states in the release phase of the PMF
method with 97 windows (top), 49 windows (middle), and 33 windows (bottom) for the guest
GIV. The most left distribution is for state B and other distributions are for intermediate
states of the release phase.
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Figure S25: Illustration of the fixed anchor particles (P1, P2, and P3) and virtual sites (H1,
H2, and H3) introduced for restraining the host’s position and orientation. The virtual sites
(H1, H2, and H3) were defined based on positions of host atoms. (a), (b), and (c) show the
definition of the three virtual sites and the position of the three anchor particles. Hydrogen
atoms of the host are not shown for clarity.
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Figure S26: The virtual site H4 of the host was defined as the average position of the seven
carbon atoms that are bonded to oxygen atoms around the cavity portal and on the opposite
side of the host from the anchor particles. Harmonic biasing potentials were applied to the
seven distances (shown as orange dashed line) between H4 and the carbon atoms.
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Figure S27: Illustration of the collective variables introduced to restrain the position and ori-
entation of guest molecules. G1 and G2 are two virtual sites defined on the guest molecules.
dg1 is the distance between G1 and P1, θg1 is the angle between G1, P1, and P3, and θg2 is
the angle between G2, G1, and P1.
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Table S1: Binding free energy a of the four guests calculated using the MM/GBSA method.

guest
MM/GBSA

∆U T∆S ∆Fbinding

GI -20.17±0.19 -16.20±0.01 -3.97±0.19
GII -24.11±0.13 -17.58±0.02 -6.53±0.15
GIII -40.25±0.22 -19.64±0.30 -20.61±0.16
GIV -43.42±0.13 -20.77±0.01 -22.65±0.14

a Standard deviations are computed using three independent repeats;
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