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Supplementary Figs
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S1. Comparison our project (100G-MX) with the previous report of 12 Native Mexican WGS project.
Number of SNVs is shown. We only compared individuals from ethnic groups shared by both projects:

Tarahumara, Nahua, Totonaca, Zapoteca, Maya.
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S2. Health related SNVs per sample. Annotation was performed using registries in the most updated

releases (as of May 2019) of GWAS catalog, ClinVar and PharmGKB.
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S3. Allele frequencies (as percentage) in common variants (AF > 5 %) found in enhancer or promoter

elements.
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S4. Selection signal SNVs in PPARG. The pattern of Native Mexican common allele frequencies

suggests the existence of an haplotype absent from East Asians and shorter in other populations.



Intercontinental PCA

YRI
0.04 ® CEU

° ® CHB
> ® MXL
4
00 - o ¢ PEL
'l" ® NatMex

PC2 (22.65 %)

.
"y

-0.04 =

-0.08 - L4
-0.10 0.05 0 0.05
PC1 (52.37 %)

S5. Intercontinental PCA genetic divergence between Yoruba (YRI), Europeans (CEU), Chinese

(CHB), Mexicans (MXL), Peruvians (PEL), and Native Mexicans (NatMex).
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S$6. High frequency biased SNVs per ethnic group. Only groups with at least four samples were
included in the analysis. Particular variants were defined as those with an allele frequency of at least
50 % in the selected ethnic group, while also being in less than 5 % of the rest of the NM, and lower

than 0.5 % in the highest reported population worldwide (as reported by VEP for 1000 genomes

populations and gnomAD 2.1 whole genome data).

Supplementary Note 1. Ancestry in original samples.

We used 85% Native American ancestry as a threshold to include more samples in
the dataset, only a few individuals showed less than 90% (Fig SN1). We explored
the geographic distribution of Native American Ancestry in the dropped individuals

and found an expected pattern of admixed genome, the Northern individuals being



more european, followed by the Central and Southern individuals. The
non-uniformity of admixed ancestry in the country resulted in dropping 4 Northern
individuals, but the remaining 7 still represent populations previously unexplored by

WGS (Seri, Tarahumara, and Mayo).
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Fig SN1. Ancestry comparison between individuals included or dropped from the study. Individuals
included in the study have a high mean proportion of Native American (NatAm) ancestry. In contrast,
individuals dropped from the study have varying proportions of European (CEU), East Asian (CHB)
and African (YRI) ancestry. The threshold to drop individuals from the study was 85 % Native
American ancestry; the Central individuals with high Native ancestry were dropped due to relatedness

with other included samples. Ancestry was calculated as described in the main text of this paper.

Supplementary Note 2. Coverage comparison with gnomAD.

We calculated the mean depth of coverage from the 76 BAM files, at single
nucleotide resolution in the GRCh38 genome using bedtools. This resulted in ~3
billion data points for coverage (data available upon request); to summarize this

data, we aggregated the mean depth in 100 kb windows across the whole genome.



Since gnomAD 2.1 [1] already provides mean depth of coverage at single nucleotide
resolution for each base of the GRCh37 genome version, we lifted over this data to
GRCh38 using Crossmap; then we calculated the mean depth of coverage in the

same 100 kb windows of the GRCh38 genome as we did for our project’s coverage.

Supplementary Table 17 compiles the mean depth of coverage comparison between
our project and gnomAD 2.1 across every window of the GRCh38 genome. To
quantify the genome fraction exclusively covered by our project, we added the
window length of regions where our project had coverage > 0 but gnomAD coverage
was 0 (Supplementary Table 4). In summary, we covered 2,936,850,045 bases of
the GRCh38 genome (95.09 % of the reference file), with a mean depth of coverage
of 24.08 X; while gnomAD 2.1 covers 2,836,240,773 bases (91.83 % of the

reference file), with a mean depth of 29.9 X.
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Fig SN2. Fractions of novel variants (SNVs and indels) from our study grouped by the corresponding
coverage in gnomAD 2.1. For indels, we calculated the average coverage across every affected

nucleotide in the reference.

Supplementary Note 3. Population structure of Native Mexicans


https://paperpile.com/c/MKgbdr/mGRqu

We explored the particular structure of NM and NP populations by PCA, using the
IPVS with only NM and 4 PEL samples with Native American ancestry > 95% (as
reported by the 1000 Genomes Project in:

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140818 ancestry dec

onvolution/). We filtered the data to keep only biallelic SNPs with MAF > 0.05, and
pruned variants by linkage disequilibrium. The remaining 647,478 SNPs were used
as input for EIGENSOFT’s smartpca. A parallel coordinate plot overview of the first
20 PCs shows the heterogeneity of individuals in our datasets (Fig SN 3.1). Only the

first 8 PCs were statistically significant (p value < 0.01).
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Fig SN3.1. Overview of Regional Principal Component Analysis. Top panel, Multi-individual parallel

coordinate plot depicting every value for every PC. Bottom left panel, Scree plot indicating the last


http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140818_ancestry_deconvolution/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140818_ancestry_deconvolution/

significant PC (orange dashed line) with a p value < 0.01. Bottom right panel, explained variance for

every significant PC; red line depicts cumulative variance.

We performed an unsupervised k-means clustering analysis. Using the 8 significant
PCs, and a number of 5 groups (k = 5) we found that the Seri individuals are so
distinctive that they form their own cluster; NP also form a particular cluster, with the
remaining samples grouping in Northern, Central and Southern clusters (Fig SN 3.2).
This unsupervised regional clustering was wused to group samples in a
Northern-Central-Southern axis for the discussion in the main text (the Seri, Mayo

and Tarahumara were gathered in the Northern group due to geographic location).
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Fig SN 3.2. K-means analysis for k = 5. NM and NP can be clustered in 5 groups based on whole
genome PCA analysis, The patterns of variation between individuals of the same group are similar,

while being dissimilar between different groups.

We identified population subclustering based on genomic variation similarity by
applying a k-means analysis, running k values from 2 to 20. We measured the

quality of clustering by the Average Silhouette (Avg. Silh.) method, where a high



Avg. Silh. value indicates an optimal number of clusters. Unsurprisingly, the most
optimal clustering occurs when k = 2 and the Seri form a group, with the second

group embedding all the other individuals (Fig SN 3.3).
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Fig SN 3.3. Population subclustering based on k-means. a, optimal clustering at different k values,
measured by the Average silhouette method. b, the most optimal clustering in the NM dataset
subdivides the Seri (group 2) from the rest of the NM and NP“individuals (group 1), due to the

distinctive Seri genomic context.

Since this is clearly an effect of the Seri genomic context, we chose the next highest

Avg. Silh. at k = 9 to identify optimal subgroups (Fig SN 3.4).
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Fig SN 3.4. Optimal clusters in Native Mexican populations. Geographic regions are identified by
colors: blue (Northern), red (Central), and green (Southern). The 9 clusters defined by the Average
Silhouette method are marked as boxes, embedding ethnic groups belonging to each cluster. The
Nahua subgrouping reflects the different location of the individuals; the same occurs in the Otomi

subgroups.

Supplementary Note 4. Phylogenetic relationships in Native Mexicans

We built maximum likelihood trees inferred by TreeMix to represent phylogeny in
Native Mexican groups in our study, including the Native Peruvians, and an East
Asian individual as outlier. We inferred the tree with 0, 1 and 2 migration events. The
tree topologies show the Native Peruvian branch separated from the main Native
Mexican branch, and regional branchings similar with the structure detected by F4;in
the main discussion. Tree topologies coincide with previous reports on Native
Mexican population substructure [2,3]. We also measured f3 statistics, with a Z score
< -2 as an indication of gene flow between populations. We only detected signals

between the East Asian outgroup and Central groups, and Maya Mayo and


https://paperpile.com/c/MKgbdr/0jRXq+7MBwJ

Tojolabal. No gene flow signals were detected between

Mexicans.
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Fig SN 4.1. Phylogenetic relationships in Native Mexicans. For each panel we show the tree topology
inferred by Treemix, with different migration events (m=X), branch length is measured by the x axis as
the amount of genetic drift; scales show 10 times the average of standard error in the covariance
matrix used to build the trees; arrows in the plot indicate migration events with gene flow direction. a,
topology inferred with no migration event. b, topology inferred with 1 migration event. ¢, topology
inferred with 2 migration events. The detected migration event between Tarahumara and CHB in B

and C, coincides with previous reports [3].
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Fig SN 4.2. Gene flow in the studied groups, measured by f3 statistics. Red line indicates cutoff to

define significant Z score values.
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Supplementary note 5. Heterozygosity analysis

We calculated the intra individual heterozygosity for the Native Mexicans (NatMX)
and the reference world populations CEU, YRI, CHB, MXL and PEL using the
Inter-population variant set (IPVS). We selected only SNVs variants, sites without
missiness and removed singletons. Then for each sample we calculated the ratio of
homozygous variants and heterozygous variants (Figure SN 5.1). We showed using
this approach that NatMX have the lowest heterozygosity ratio compared to other
populations. MXL and PEL individuals with high Native American ancestry display
the same level of heterozygosity as the NatMX (Figure SN 5.2). The Seris display

the lowest amount of heterozygosity.

In order to check the effect of the admixture inside the NatMXs, MXLs and PELs
against the heterozygosity ratio; we measured by sample without removing
singletons, the heterozygosity ratio and Native American ancestry (Figure SN 5.2).
Native American ancestry proportions in PELs and MXLs was obtained from the

1000 genomes project repository (https://www.internationalgenome.org/), Native

American ancestry of the NatMX was inferred using admixture as described in the
methods section. The heterozygosity ratio correlates negatively (pearson r= -0.588,
p.val = 1.551e%) with the level of Native American ancestry for the PELs and MXLs,

the same in NatMX (pearson r=-0.913, p.val < 2.2e76).
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Fig SN 5.1: Heterozygosity ratio (number of heterozygous variants divided by the number

of homozygous variants) in each sample from different populations.
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Fig SN 5.2: Heterozygosity ratio and native ancestry ratio. A) Ratios in MXLs and PELs
(pearson r= -0.588, p.val = 1.551e®), B) Ratio in NatMX (pearson r= -0.913, p.val <

2.26).



Supplementary Note 6. Quality Control in NGS data

Here we show the NGS QC for the 95 samples originally sequenced for the project.
We must note that some of those samples were not included in the main report. The
full Qualimap report can be downloaded at:

https://drive.google.com/file/d/1BEMPtksCPpiC _oE3mtytOkOJNqQ9drSs/view?usp=sharing

Qualimap Analysis Results

Multi-sample BAM QC analysis
Generated by Qualimap v.2.2.1
2017/07/31 16:49:22

Global QC
Number of samples 95
Total number of mapped reads 50,726,214,735
Mean samples coverage 22.32
Mean samples GC-content 42.7
Mean samples mapping quality 32.35
Mean samples insert size 322.46

In the next pages we include general QC plots for parameters of interest. Plot titles

describe the data shown, for each of the 95 original samples.
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SUPPORTING METHODS

Phylogenetic relationships. The pipeline for running treemix and f3 statistics can

be downloaded: https://github.com/jbv2/nf-vcf2treemix. In brief, from the IPVS we

selected the NM, NP, and 4 CHB individuals from the 1000 genomes project
(samples ids: NA18639, NA18640, NA18641, NA18642). We kept biallelic SNVs with
a MAF > 0.05 with bcftools, and removed variants in linkage disequilibrium (r2 >
0.85) with bcftools +prune plugin using parameters --window 2000bp --nsites-per-win
1. We ran TreeMix [4] with the parameters -k 1000 -global -root CHB -bootstrap 100
-m 0 -noss -seed 99. We then inferred one (-m 7) and two (-m 2) migration events

using the previous tree topology as a guide with the -g parameter.
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