Pandemic velocity: forecasting COVID-19 in the U.S. with a machine learning & Bayesian time series compartmental model, supplemental material

Gregory L. Watson¹, Di Xiong¹, Lu Zhang¹, Joseph A. Zoller¹, John Shamshoian¹, Phillip Sundin¹, Teresa Bufford¹, Anne W. Rimoin², Marc A. Suchard^{1,3}, Christina M. Ramirez¹

1 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California, United States of America

2 Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, United States of America

3 Departments of Computational Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America

Model	Parameter	Value/Distribution
SIRD	$ ho^{-1}$	N(10, 1)
Velocity Model	μ_{μ}	N(0, 0.1)
Velocity Model	μ_{ϕ}	U(0,1)
Velocity Model	$\mu_{ au}$	Gamma(0.001, 0.001)
Velocity Model	σ_{μ}^2	0.01
Velocity Model	σ_{ϕ}^2	0.05
Velocity Model	$\sigma_{ au}^2$	1
Velocity Model	n.iter	500,000
Velocity Model	n.burnin	10,000
Velocity Model	n.thin	1500
Random Forest	ntree	500
Random Forest	mtry	9
Random Forest	nodesize	5

 Table S1. Parameter Values & Distributions

Values and prior distributions for the parameters of each component of the model. The ρ parameter governs flow out of the I compartment of the SIRD model. Its inverse, ρ^{-1} , is interpreted as the expected amount of time until an infected individual recovers or dies.