
Feilim Mac Gabhann, PhD
Department of Biomedical Engineering
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720 Rutland Avenue
Baltimore, Maryland 21205

Jason Papin, PhD
Department of Biomedical Engineering
University of Virginia
Charlottesville, Virginia 22908

January 5, 2020

Dear Dr. Gabhann and Dr. Papin:

Thank you for again supplying us with reviewer feedback and providing us with the
opportunity to submit a revised manuscript. The rewievers’ suggestions have further
strengthened our modeling effort in general and this manuscript in specific. The most
significant changes to the manuscript are:

1. Updated forecasts using training data through December 31, 2020;

2. State-specific, time-varying forecasts of Rt, case doubling time, death doubling
time and the proportion of cases resolving in subject death are now default
outputs of the model and included with the figures in the supplemental material;

3. A revised velocity model that replaces the linear mixed model with an
autoregressive model that better fits the data, is conceptually cleaner and
computationally advantageous;

4. An improved death prediction model that now incorporates lagged death counts
and is evaluated against an autoregressive prediction model.

Additional changes were incorporated to address other reviewer suggestions. Please find
a detailed response to each comment below.

Sincerely,

Gregory L. Watson
Corresponding Author
Department of Biostatistics
UCLA Fielding School of Public Health
650 Charles E. Young Dr. South
Los Angeles, CA 90095-1772
gwatson@ucla.edu
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Reviewer 1

Comment: Dear authors,
Thank you for your comprehensive response and set of revisions. In particular, your

clarification and focus on “case velocity” has definitely sharpened the paper and its goals.

Reply: Thank you for this comment.

Comment: There are a few final issues that I think you should address to strengthen
your paper and its support for the new method you have proposed.

1) I still think it would be very worthwhile to address this point: “The random forest
component of your approach is meant to give an estimate of the transition from infection
to death, but I am not convinced that this is what it is truly doing due to my concerns
about the reliability of case reports (see below). To understand and diagnose this concern,
it would be helpful to compare your random forest model’s predictions of the number of
people transitioning from I to D to published estimates of the infection fatality rate.” If
helpful, a meta-analysis on IFR is now available https://www.imperial.ac.uk/mrc-global-
infectious-disease-analysis/covid-19/report-34-IFR/

Reply: To facilitate this comparison we now include the proportion of resolved cases
that end in death as an output of the model by default. This proportion changes over
time in both the observed data and in the model output and is graphically depicted for
each state among the figures in the state predictions supplement. This proportion
estimates the case fatality rate, and thus is higher than the infection fatality rate
estimates of Brazeau et al. Nevertheless the estimate provides a useful point of
comparison with other modeling approaches and also a depiction of how this rate has
evolved over the pandemic and what it may look like in the future.

Comment: 2) You write: “The parameters of the velocity model are not directly
comparable to the transmission rate at the heart of more traditional compartmental
models”. This clarification makes sense to me, but I do still wonder if you could include
some direct comparisons to help the reader get a handle on how velocity works, by
comparing it to more widely used (and I would argue better understood) quantities such
as: the reproduction number, growth rate, or doubling time. Perhaps, for example, you
could forward simulate from your model and then empirically calculate the doubling
time?

Reply: We now output estimates of Rt as well as the case and death doubling times
with each model run to allow for direct comparison with the output of other models.
Plots of these quantities are included with the other output for each state in the
supplemental material.

Comment: 3) Your points beginning “We agree with this characterization of the
strengths and limitations of random forest.” make sense to me; thank you for the
clarification. I would quibble with this part, however, ”It may be possible to construct a
time series model that rivals the predictive performance of random forest for our
purposes, but we are doubtful, and devising such a model would be a challenging project
in its own right and beyond the scope of the current work.” Since your focus is on
predicting one day ahead, I really think it would be helpful for you to include a very
simple baseline comparison, such as an autoregressive model, trained separately for each
state, or even a no change / constant model. If your model is significantly better than
this model, great; if it is competitive, that is fine as well, as you have persuasively
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argued that there is something to be gained by focusing on velocity rather than simply
predicting case counts.

Reply: As suggested, we have added a comparison of the random forest death model to
an autoregressive model trained separately for each state. We evaluated the mean
absolute error (MAE) of both models for each state over 4 different training and
evaluation sets. The random forest death model performed better for 3 of the 4
evaluation periods. The details and results of this evaluation are included in section S4
of the supplemental material, and are discussed in the final paragraph of the “Predictive
Accuracy” section of the manuscript.
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Reviewer 2

Comment: In this paper, “Fusing a Bayesian case velocity model with random forest
for predicting COVID-19 in the U.S.” by Watson et al. (2020), the authors propose an
approach to forecasting mortality forecasts for the ongoing COVID-19 pandemic in the
United States by fusing regression models with compartment models. This method is
validated using a holdout sample of cases and deaths data, and used to make forecasts
for future unobserved cases and deaths.

I applaud the authors for their improvements and appreciate the detailed way they
address the comments I made on the first draft. Overall I believe the paper has been
significantly strengthened now lays out an appealing fusion of epidemiological dynamics
and statistics / machine learning methodology. However, I still have a few reservations
which I detail below.

Reply: Thank you for these comments.

Comment: I am somewhat more appreciative of the merits of modeling the “velocity”
as the authors define it. The main merit seems to be that, compared to modeling the
daily case numbers, it can handle underreporting by rather looking at the proportional
daily increase in cases. However, I am still not fully convinced that the velocity model is
the best measure. The model assumes that the velocity has independent Gaussian errors
with the variance decreasing linear in time, due to the velocity being inversely proportion
to the current cumulative number of cases. I must say that this a bit clumsy to me. One
idea I had was modeling the log-growth rate. Let v(t) be the daily number of cases one
day t. The log-growth rate is

y′(t) = log
v(t)

v(t− 1)
.

This looks similar to the derivative of the cumulative case number, and like the velocity
measure it is more robust to underreporting. However, with the growth rate it might not
be necessary to shoehorn in the assumption of linearly decreasing variance.

Reply: The linear velocity model has indeed proved to be too restrictive, especially in
light of the second wave that has occurred over the fall and winter of 2020. We have
revised the velocity model, replacing the linear model with an autoregressive (AR) time
series model with location specific parameters. The full details of the model
specification may be found in section entitled “Bayesian Velocity Model for Forecasting
Cases,” which begins on page 4. The AR model better models the intermittent spikes or
surges that have become characteristic of the pandemic in the United States. It also
extrapolates forward in a less rigid manner, which provides more realistic trajectories.
In addition it allows for an alternative derivation of the SIRD model transition function
without solving for the value of the additional integration constant, which was required
for the linear model. This is both conceptually cleaner and computationally expedient.
The full details of the new derivation are included in supplement section S3.

Modeling the log growth rate is a potentially interesting alternative, but is a
substantial departure from the velocity approach we have taken. In particular we prefer
to continue modeling the velocity because it naturally smooths the variation in case
growth, which may be quite pronounced.

Comment: I agree with reviewer 1’s comment no. 2 regarding the expression of the
SIRD model. As the authors currently have it, it looks like subjects go into the R
compartment before going to the D compartment. This is incoherent. Rather, as
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reviewer 1 says, the I compartment should branch out into R and D. The fact that R is
unobserved is irrelevant to this fact.

Reply: We agree that requiring subjects to pass through the R compartment before
entering D would be problematic. A typical parameterization of a model that allowed
subjects to exit compartment I into R or D might look something like:

dS(t)

dt
= −ξ(t),

dI(t)

dt
= ξ(t)− ζI(t)− θI(t),

dR(t)

dt
= ζI(t),

dD(t)

dt
= θI(t).

(1)

The transition parameters ζ and θ could of course be time dependent, i.e., ζ(t) and θ(t).
We have chosen a slightly different parameterization, because we are not confident we
can accurately estimate ζ, the rate at which infectious subjects recover, especially if it
varies over time. We do have data on subjects moving into D, which we use to train the
random forest death model. This still leaves us without a mechanism for moving
subjects from I into R. We could either use a value for ζ (the rate at which subjects
enter R from I) from the literature or for ρ in our parameterization, which is the rate at
which subjects exit I for either R or D. We have chosen the latter, because we feel the
evidence was stronger for this. So we are not moving subjects into R and then D, we
are moving subjects out of I and then divvying them up between R and D. In essence
we have split the R compartment of a traditional SIR model into R and D, with θ(t)
defining the partition.

Comment: The ρ parameter in your SIRD model should correspond to estimates of the
time from infection to recovery or death rather than what is recommended by CDC; for
instance, see Verity et al. (2020): https://www.thelancet.com/journals/
laninf/article/PIIS1473-3099(20)30243-7/fulltext

Reply: Individuals in compartment I are infectious cases, and we conceptualize the
transition rate out of I as the rate at which an infectious individual who has tested
positive (and therefore is a case) becomes not infectious either by recovering or dying.
This is a simplification of the clinical reality in which many individuals are no longer
infectious before they have fully recovered from their illness. We do not require
individuals entering compartment R to be free of symptoms, only that they not be
infectious.

Using onset of symptoms as a proxy for testing positive (i.e., moving from S to I),
we set the mean for ρ−1 to be 10, based on Wölfel et al. estimating a less than 5%
probability of isolating virus at 9.78 days after symptom onset (Wölfel, Roman, et al.
“Virological assessment of hospitalized patients with COVID-2019.” Nature 581.7809
(2020): 465-469.). We have updated the discussion of ρ to clarify this point. It now
reads,

Like a traditional SIR model, we let ρI(t) denote individuals exiting the
infectious compartment, which corresponds to the −ρI(t) term in
dI(t)/dt. Since individuals do not enter compartment I until they test
positive, in our model ρ−1 is the length of time we expect an individual to
remain infectious after testing positive. Using onset of symptoms as a
proxy for testing positive, we sample ρ−1 independently for each run from
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a Gaussian distribution with mean 10 and standard deviation 1, based on
Wölfel et al. estimating the probability of isolating virus dropping below
5% at 9.78 days after symptom onset.

Comment: I believe there is an equal sign missing in line 224, which should read:
dSi(t)/dt = −dui(t)/dt=− ξi(t)

Reply: Thank you for pointing out this omission. We have corrected it in the revised
manuscript.

Comment: I don’t expect the authors to do this, but I think one ultimate goal could be
constructing a joint model combining all these components, i.e. the log-linear model for
cases, the tree model for deaths, and the differential equation system. This model would
be “fully Bayesian” if you swap in BART for random forests.

Reply: A fully Bayesian model in which BART were substituted for the random forest
death model is certainly appealing and a worthy objective of future work. We have
modified our discussion of this point to specifically include mention BART as a
Bayesian alternative to random forest. It now reads,

Future methodological improvements could include integrating all the
components of the model within a single Bayesian model by substituting
Bayesian additive regression trees (BART) for the random forest death
model. This would provide a posterior distribution for all parameters and
forecasts.
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