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Short title: LEA genes in Secale cereale L. 

Abstract: Late embryogenesis abundant (LEA) proteins are members of a large and 

highly diverse family that play critical roles in protecting cells from abiotic stresses 

and maintaining plant growth and development. However, the identification and 

biological function of genes of Secale cereale L. LEA (ScLEA) have been rarely 

reported. In this study, we identified 112 ScLEA genes, which can be divided into 

eight groups and are evenly distributed on all rye chromosomes. Structure analysis 

revealed that members of the same group tend to be highly conserved. We identified 

12 pairs of tandem duplication genes and 19 pairs of segmental duplication genes, 

which may be the expansion way of LEA gene family. Expression profiling analysis 

revealed obvious temporal and spatial specificity of ScLEA gene expression, with the 

highest expression levels observed in grains. According to qRT-PCR analysis, selected 

ScLEA genes were regulated by various abiotic stresses, especially PEG treatment, 

decreased temperature, and blue light. Taken together, our results provide a reference 

for further functional analysis and potential utilization of the ScLEA genes in 

improving the stress tolerance of crops. 
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Introduction 

Plants are affected by a variety of biotic and abiotic stresses during their lifetime due 

to their inability to escape harmful external environmental conditions. Late 

embryogenesis abundant (LEA) proteins are highly hydrophilic proteins with 

antioxidant and ion binding properties that function in membrane and protein 

stabilization, osmotic regulation, and as a protective buffer against dehydration [1]. 

Thus, they play important roles in protecting cells from abiotic stress, and in normal 

growth and development. LEA proteins were first isolated from cotyledons of cotton 

at the late embryonic development stage [2], and in recent decades, have also been 

found in species ranging from algae to angiosperms, such as cyanobacteria [3], 

Arabidopsis thaliana [4], rice (Oryza sativa L.) [5], wheat (Triticum aestivum L.) [6], 

maize (Zea mays L.) [7], and in prokaryotes and invertebrates, such as rotifers [8, 9]. 

In plants, LEA genes are highly expressed at the late stage of seed maturation [2] and 

LEA proteins accumulate in roots, stems, and other organs throughout the plant 

growth phase [10].  

In higher plants, based on the similarity of amino acid sequences and differences in 

conserved domains, the LEA family is generally divided into eight groups: LEA1, 

LEA2, LEA3, LEA4, LEA5, LEA6, Dehydrin, and seed maturation protein (SMP) 

[11]. In recent studies abscisic acid (ABA) stress ripening (ASR) proteins were 

classified as LEA7 group proteins [12, 13], extending the LEA family to nine groups. 

The division of LEA family members varies among species [14]. Most LEA genes 

encode small proteins with molecular weights ranging from 10 to 30 kDa, and they 

are predominantly composed of a repeating arrangement of hydrophilic amino acids 

that form a highly hydrophilic structure [15]. Each group of LEA proteins has its own 

unique conserved motif [16]. For example, LEA1 proteins contain a 20-amino-acid 

motif (GGETRKEQLGEEGYREMGRK) [17]; Dehydrin proteins contain a motif 

called the K-segment (EKKGIMDKIKEKLPG) [18, 19]; LEA4 proteins have a 

conserved domain of 11-amino-acid sequences (TAQAAKEKAGE) [18]. These 

conserved sequences (motifs) have been preserved through long-term evolution, and 
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play an important role in plant responses to environmental stress. 

Previous studies have shown that LEA proteins are ubiquitous and localized in the 

cytoplasm, nucleus, chloroplast, mitochondria, and endoplasmic reticulum [20]. Thus, 

not all LEA proteins are localized the same part of the cell, and that their particular 

functions depend on their intra-cellular locations. The expression of LEA proteins is 

often induced by abiotic stresses such as drought, heat, cold, and exogenous hormone 

at different development stages and tissues of plants [1, 4]. Moreover, overexpression 

of LEA genes can improve stress tolerance of transgenic plants. For example, 

overexpression of the barley (Hordeum vulgare L.) HVA1 gene promoted drought and 

salt stress tolerance in rice [21] and wheat [22]. Overexpression of the Arabidopsis 

Dehydrins group proteins altered pathogenesis-related protein expression and 

activated defense response [23]. The above studies demonstrate that LEA genes could 

potentially be used to improve the abiotic stress tolerance of crops. 

Rye (Secale cereale L.) is a diploid Triticeae species closely related to wheat and 

barley, and an important crop for feed and food [24]. Rye has excellent disease and 

stress resistance, and it has been used as a source to improve wheat resistance to 

pathogens in the past few decades [25]. Rye-wheat chromosome translocation has 

been widely used in wheat breeding around the world, and translocation lines have 

notably increased yield [26, 27]. Studies on LEA proteins in wheat and barley have 

been reported [6, 22]. However, the distribution and function of LEA proteins in rye 

have been rarely reported [28]. In this study, we identified 112 Secale cereale L. LEA 

(ScLEA) genes based on rye genome sequence. The phylogenetic analysis, structural 

characterizations, evolutionary relationships, and expression profiles of ScLEA genes 

were systematically analyzed. These results will contribute to our understanding of 

the LEA family in rye and to the utilization of these LEA genes in homologous or 

heterologous systems. 
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Materials and methods 

Plant materials, sample preparation, and stress treatments  

Rye (Weining) plants were grown under greenhouse conditions with a temperature of 

18°C and a 16 h light/8 h dark photoperiod. For RNA sequencing (RNA-seq), root, 

stem, leaf, and spikelet samples were collected at the heading stage. The developing 

grain samples were collected at 10, 20, 30, and 40 days after anthesis (DAA). Leaves 

were collected from plants cultivated under normal conditions (CK) and cold 

conditions (-10°C) for 0 h, 1 h, 4 h, and 8 h. For drought treatment, the leaves were 

dried between folds of tissue paper for 0 h, 3 h, 6 h, and 12 h. Three biological 

replicates were collected for each sample. 

For abiotic stress treatments, the rye (Weining) seedlings were grown in 

hydroponics with a temperature (18°C) for 10 days, and then treated with 20% (w/v) 

PEG6000, 200 mM NaCl, 100 mM mannitol, 100 μM ABA, or temperatures of 0°C or 

4°C. Leaves were collected after 0 h, 3 h, 6 h, 9 h, 12 h, and 24 h. Leaf samples were 

treated with sterile water and similarly collected as a control. For different light 

treatments, seedlings were grown in the dark for seven days and subsequently 

transferred to far-red (FR) light (5 µmol·m-2·s-1), red (R) light (17.56 µmol·m-2·s-1), 

blue (B) light (13 µmol·m-2·s-1), or White (W) light (85 µmol·m-2·s-1) for 4 h. For 

each sample, three leaves treated in parallel represented three biological replicates. All 

treated tissue samples were stored at -80℃ for subsequent analysis. 

Identification of LEA genes in the rye genome 

The nucleotide and protein sequences, as well as the gene annotation files, were 

downloaded from the rye genome database 

(http://pgsb.helmholtz-muenchen.de/plant/rye/index.jsp). The HMM profiles (LEA1: 

PF03760, LEA2: PF03168, LEA3: PF03242, LEA4: PF02987, LEA5: PF00477, 

LEA6: PF10714, Dehydrin: PF00257, SMP: PF04927) were downloaded from the 

Pfam database (http://pfam.sanger.ac.uk/). Then HMMER 3.0 was used to search the 

encoded protein sequences with the default parameters and a filter threshold of 0.01. 

In addition, the obtained amino acid sequences were used as queries in searches 

http://pgsb.helmholtz-muenchen.de/plant/rye/index.jsp
http://pfam.sanger.ac.uk/
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against both the CDD database (https://www.ncbi.nlm.nih.gov/cdd/), and SMART 

database (http://smart.embl-heidelberg.de/), and the repeated or non-LEA domain 

sequences were eliminated manually. Finally, the identified rye LEA proteins were 

named according to group and gene ID order. The physical and chemical properties of 

ScLEA proteins were analyzed using the ProtParam online tool 

(https://web.expasy.org/protparam/). 

Phylogenetic analysis of LEA proteins in rye 

To investigate the evolutionary relationships of LEA proteins in rye, multiple 

alignments of the full-length protein sequences were performed using MAFFT [29] 

(http://mafft.cbrc.jp/alignment/software/) with the default parameters. A phylogenetic 

tree was constructed based on these alignments using the Neighbor-Joining (NJ) 

method with a bootstrap test of 1000 replicates for assessing internal clade reliability 

using MEGA X software [30]. The Evolview website 

(https://www.evolgenius.info/evolview/#login) was used to modify the phylogenetic 

tree. 

Analysis of gene structures and conserved domains of LEA genes in rye 

The exon-intron structures of the ScLEA family genes were determined by aligning 

the coding sequences with the corresponding genomic sequences, and visualized 

using the online software GSDS (http://gsds.gao-lab.org/index.php). Conserved 

domains of the ScLEA proteins were predicted using MEME 

(http://meme-suite.org/index.html).  

Distribution of LEA genes on rye chromosomes  

ScLEA genes were mapped on rye chromosomes according to the positional 

information from the rye genome annotation database, and the chromosome physical 

location map was displayed using Mapchart [31] software. The Multiple Collinearity 

Scan toolkit (MCScanX) [32] with default parameters was used to analyze gene 

duplication events. 

Expression profile analysis of rye LEA genes 

The transcripts of the datasets were aligned, followed by merging and removal of 

redundant sequences using Hisat (http://ccb.jhu.edu/software/hisat/index.shtml) 

https://www.ncbi.nlm.nih.gov/cdd/
http://smart.embl-heidelberg.de/
https://web.expasy.org/protparam/
http://mafft.cbrc.jp/alignment/software/
https://www.evolgenius.info/evolview/#login
http://gsds.gao-lab.org/index.php
http://meme-suite.org/index.html
http://ccb.jhu.edu/software/hisat/index.shtml
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(version 2.0.4) and Stringtie (http://ccb.jhu.edu/software/stringtie/) (version 1.2.3). 

The software featureCounts [33] was used to calculate the number of reads and 

normalized gene expression levels. Expression heatmaps were generated using 

TBtools software [34].  

RNA extraction and gene expression analysis 

Total RNA was extracted from the leaves of rye using Eastep® Super RNA Kit 

(Promega). The GoScript™ Reverse Transcriptase Kit (Promega) was used to reverse- 

transcribe RNA into cDNA. Quantitative real-time PCR (qRT-PCR) was carried out 

with the Roche Lightcyler® 480 instrument using SYBR Green (TaKaRa). The 

ScActin gene was used as an internal control. The thermal cycler program used was 95℃ 

for 10 min, and followed by 45 cycles of 95℃ for 10 s, 60℃ for 10 s, and 72℃ for 20 s. 

Each reaction was performed in three technical replicates, and the data from qRT-PCR 

were calculated using the 2–ΔΔCt method [35]. Sequences of the primers used in this 

study are shown in Table S1. 

Cis-acting element analysis 

The Plant CARE website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) 

was used to predict cis-acting elements in the regions 1000 bp upstream of the gene 

start codon and a diagram was visualized using TBtools software [34]. 

Results 

Genome-wide identification and phylogenetic analysis of ScLEA genes 

Based on genome-wide blast searches, 112 ScLEA genes were identified from the rye 

genome database. The identity of the sequences was verified by checking for the 

presence of conserved domains using the CDD and SMART tools. These 112 genes 

were divided into eight groups (LEA1–LEA6, Dehydrin, and SMP) based on the 

phylogenetic analysis (Figure 1). The largest group was LEA2, which contained 56 

members, while the smallest groups, LEA4 and LEA6, had only two members each. 

Groups Dehydrin, LEA1, LEA5, SMP, and LEA3 contained 18, 14, 8, 7, and 5 

members, respectively. 

The physical and chemical parameters of the 112 ScLEA proteins were calculated 

http://ccb.jhu.edu/software/stringtie/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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using the ProtParam online tool (Table S2). The smallest ScLEA protein had 78 amino 

acid residues with a molecular weight of 8.24 kDa (ScLEA5-8) and the largest had 

965 amino acid residues with a molecular weight of 99.64 kDa (ScDehydrin-12). The 

isoelectric point (pI) values ranged from 4.22 (ScSMP-6) to 11.07 (ScLEA2-17), with 

an average of 8.37. Most LEA proteins have low hydrophobicity and a large net 

charge [4, 36, 37], which allow them to be “completely or partially disordered”, these 

proteins may form molecular chaperones that contribute to the protection of plants 

from desiccation [38, 39]. Consistent with this, grand average of hydropathicity 

(GRAVY) index analysis indicated that most of the ScLEA proteins were hydrophilic. 

However, the ScLEA2 group was atypical with 67.8% of proteins were predicted as 

hydrophobic. The aliphatic index reflects the thermal stability of the protein. 

Phylogenetic analysis (Figure 1) revealed two major clades of the ScLEA family. 

The LEA2 group proteins were clustered in one clade, while the proteins in the other 

seven groups formed another clade. According to the evolutionary relationships, one 

clade including the Dehydrin group (18 numbers) and LEA5 group proteins (8) was 

closely related to the LEA4 (2), LEA1 (14), and SMP (7) groups, but distant from the 

LEA6 (2) and LEA3 (5) groups. 

Structural characterization of ScLEA genes 

The structure of genes is important for determining their expression and function. 

Structural analysis revealed that the ScLEA genes contain few introns; 42% of ScLEA 

genes have one intron, 5.4% have two introns, 0.8% have three introns, and 51.8% 

possess no introns (Figure 2). There were four intron-free genes and fourteen 

single-intron genes in the ScDehydrin group. In the ScLEA1 group, seven genes 

contained no intron, six genes contained one intron, and only one gene contained two 

introns (ScLEA1-7). In the ScLEA2 group, there were 41 intron-free genes, nine 

single-intron genes, five double-intron genes, and a triple-intron gene (ScLEA2-37). 

There were four free-intron genes and one single-intron gene in the ScLEA3 group. 

All genes in the ScLEA4, ScLEA5, and ScSMP groups had one intron, and all genes 

in the ScLEA6 group had no introns. ScLEA genes in the same group had similar 

numbers of exons and introns, indicating that members of the same family tend to be 
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highly conserved. 

To elucidate the similarity and diversity of protein domains, each group was 

separately submitted to MEME for structure analysis. The results showed that each 

group contained one or more conserved LEA domains (Figure 2). Moreover, members 

of the same group were more similar to each other than to members of other groups, 

indicating that each group of ScLEA proteins may have specific functions.  

Chromosomal locations and gene duplication of ScLEA genes 

The distribution of ScLEA genes was determined by mapping their positions on the 

rye chromosomes. The 112 ScLEA genes were distributed on all seven chromosomes, 

and their distribution was nearly even among different chromosomes (Figure 3). 

Chromosome 5 had the most ScLEA genes (17.8%, 20 genes), and chromosome 7 had 

the fewest (12.5%, 14 genes). Chromosomes 1, 2, 3 and 6 each contained 15 genes. 

Moreover, genes of the largest group may be distributed across all chromosomes to 

ensure maximum functionalization [6]. For example, members of ScLEA2 group are 

distributed on all chromosomes. However, other LEA groups have a limited 

distribution and are mainly found on specific chromosomes. 

High-density ScLEA gene clusters were identified in certain chromosomal regions. 

According to Holub [40], we defined a chromosomal region of 200 kb containing two 

or more genes as a tandem duplicated event. Twenty-eight ScLEA genes (ScLEA5-1/2, 

ScLEA5-4/5, ScLEA2-9/10, ScLEA2-13/14/15, ScLEA2-18/19, ScLEA1-2/3, 

ScLEA3-2/3, ScLEA2-31/32, ScSMP-1/2, ScDehydrin-7/8/9/10, ScDehydrin-12/13, 

and ScDehydrin-14/15/16) were clustered into 12 tandem duplicated regions on 

chromosomes 1, 2, 3, 4, 5, and 6 (Table S3). Chromosome 2 had four clusters, 

indicating that it is a hot spot for ScLEA genes. In addition to the tandem duplication 

events, 19 segmental duplication events with 27 ScLEA genes were also identified 

using BLASTP and MCScanX (Figure 4, Table S4). These results indicated that some 

ScLEA genes were possibly generated by tandem duplication and segmental 

duplication events. 

The expression profiles of ScLEA genes  

RNA-seq data for rye (Weining) different tissues (root, stem, leaf, spikelet, and grain) 

插入号
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were used to explore the potential biological functions of ScLEA genes in growth and 

development. Expression profiles showed that most ScLEA genes were expressed with 

obvious spatial specificity (Figure 5). ScLEA2-26 and ScLEA2-43 were only 

expressed in spikelets, while ScLEA2-3, ScLEA2-4, ScLEA2-27, ScLEA2-28, and 

ScLEA2-29 were only expressed in roots. The expression levels of ScLEA1-3, 

ScLEA1-11, ScLEA2-22, ScDehydrin-5, and ScDehydrin-13 increased continuously 

during grain development, and reached a maximum at 40 DAA, indicating that these 

genes may be involved in grain grouting. In addition, ScDehydrin-11, ScLEA2-20, 

ScLEA2-31, and ScLEA2-51 were highly expressed in different tissues, indicating that 

they are important at all stages of rye growth and development.  

One characteristic of LEA proteins is induction of expression under environmental 

stresses such as drought and ABA [5, 6]. Therefore, we analyzed the expression 

profiles of 112 ScLEA genes after drought treatment (Figure S1). We found that the 

expression levels of ScDehydrin-10, ScDehydrin-11, ScDehydrin-13, and 

ScDehydrin-16 increased the most, followed by ScLEA1-11, ScLEA1-13, and 

ScLEA1-14; thus, these genes may play major roles in drought stress response. The 

responses of ScLEA2 group genes were diverse due to its large number of members. 

For example, ScLEA2-22 and ScLEA2-31 respectively showed a significant 

upregulation and downregulation to drought stress. The responses of the ScLEA5 and 

ScLEA6 group genes were not obvious, with only the induction of ScLEA5-5 being 

prominent.  

The responses of ScLEA genes to abiotic stress  

To verify the potential roles of ScLEA genes in abiotic stress, we randomly selected 

12 ScLEA genes from eight groups, and their expression in rye leaves after treatment 

with PEG, ABA, NaCl, or mannitol after 0 h, 3 h, 6 h, 9 h, 12 h, and 24 h were 

analyzed by qRT-PCR. Similar to the results of RNA-seq under drought treatment 

(Figure S1), the results of qRT-PCR showed that the expression of these ScLEA genes 

was induced by different stress treatments (Figure 6, Figure 2). Among all treatments, 

ScLEA genes showed the most intense response to PEG, and compared with the 

control group, the level of ScLEA gene upregulation hundreds of times higher (except 
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for ScLEA2-22 and ScLEA2-52) and lasted for a long time (12–24 h). The 12 ScLEA 

genes did not show the same response to ABA treatment, and even some genes were 

inhibited (ScLAE2-22 and ScLEA3-4). The expression levels of most genes reached a 

maximum within 3 h after NaCl treatment, and the subsequent changes were quite 

different between genes. For some genes, expression was maintained at a 

continuously high level (ScDehydrin-14, ScLEA1-5, ScLEA4-2, and ScSMP-4), while 

the expression levels of others decreased rapidly (ScDehydrin-10 and ScSMP-6). 

Under mannitol treatment, only the expression of ScLEA2-22 was significantly 

upregulated and the expression of some genes was inhibited (ScLEA2-52 and 

ScLEA3-4).  

The results of qRT-PCR analysis showed that genes of the ScLEA1, ScLEA2, 

ScDehydrin, and ScSMP groups were highly sensitive to the four treatments, with 

significant upregulation of gene expression. Interestingly, the expression of genes in 

the ScLEA3 group decreased under three treatments (ABA, NaCl, and mannitol), 

indicating that these treatments repressed gene expression. The above results showed 

that the gene expression patterns were different under the four treatments, and that the 

expression levels of genes in each group were also significantly different under the 

same treatment. The expression of these genes validates the RNA-seq results and also 

reflects the diversity of ScLEA gene functions in response to abiotic stress. 

The response of ScLEA genes to cold stress 

RNA-seq data analysis showed that ScLEA genes were responsive to different 

durations of low temperature stress treatment (Figure S3). Combined with the cold 

tolerance of rye [41], we analyzed the expression patterns of the same 12 genes under 

cold stress. ScLEA genes expression in rye leaves incubated at 4℃ and 0℃ for 0 h, 3 h, 

6 h, 9 h, 12 h, and 24 h were analyzed by qRT-PCR. The qRT-PCR results showed that 

most of genes were sensitive to cold stress and showed different degrees of response 

(Figure 7). The results showed that ScLEA genes expression increased with increasing 

duration of cold treatment, and expression was significantly higher than that of the 

control by 12 h. The responses of ScLEA genes to 0℃ treatment were significantly 

stronger than those to 4℃ treatment at almost all treatment time points. Among the 12 
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genes, ScDehydrin-10, ScLEA2-22, and ScSMP-6 were strongly responsive to low 

temperature, and their expression levels were upregulated to hundreds of times 

compared with the control (0 h). Similar to PEG, ABA, NaCl, and mannitol treatment, 

the gene expression of ScLEA2-52 and ScLEA3-4 to low temperature were inhibited at 

some time points, suggesting that these genes may be involved in other stress 

responses, such as biotic stress, or plant growth and development processes. In 

conclusion, the response of ScLEA genes to cold stress reflects the tolerance of rye to 

low temperatures. 

The response of ScLEA genes to photon switching 

To elucidate the possible regulatory mechanisms of ScLEA genes involved in 

environmental stress, we analyzed the stress-responsive elements in the promoter 

regions of 12 ScLEA genes (Figure S4). The ABRE, which is involved in ABA 

responsiveness, the LTRE, which responds to low temperature, the MBS (MYB 

binding site) element, which is involved in drought response, the G-box, Box 4 and 

GT1-motif, which participate in light responsiveness. The ABRE and G-box elements 

were found in most of the 12 genes, and auxin, salicylic acid, and jasmonic acid 

responsive elements were also identified. 

In this study, the responses of 12 ScLEA genes to PEG, ABA, NaCl, mannitol, and 

low temperature were confirmed. The role of LEA genes in photon switching response 

has rarely been reported. To verify whether the ScLEA genes respond to photon 

switching, the expression of ScLEA genes in rye leaves treated with FR, R, B and W 

light for 4 h were analyzed by qRT-PCR (Figure 8). Most of these ScLEA genes 

(ScLEA1-5, ScLEA1-14, ScLEA2-22, ScLEA2-52, ScLEA4-1, ScLEA4-2, 

ScDehydrin-10, and ScDehydrin-14) showed obvious responses to blue light. 

Compared with W light, ScSMP-4, ScLEA4-1, and ScLEA4-2 showed a stronger 

response to R light. The results showed that ScLEA genes respond to different types of 

light, and that the degree of response to the four types of light varied greatly. Thus, 

plants may express various genes including LEA in response to stress. 

Discussion 
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Identification and analysis of rye LEA genes 

LEA genes have been reported in many species; however, the genomic identification 

and annotation of LEA genes has not been reported in rye. In this study, 112 ScLEA 

genes were identified, and were divided into eight groups. LEA2, the largest group in 

the rye family, accounted for about 50% of the total number of family members. The 

LEA2 group of wheat is also the largest, accounting for 159 of all 281 LEA genes [6]. 

However, the largest group in rice [5] and Brassica napus [42] is Dehydrin and LEA4, 

respectively. The distributions of LEA family members in different species indicate 

that LEA genes play unique roles in stress response and regulation of plant growth and 

development in different species. These differences also suggest that the LEA family 

genes may have evolved independently after the divergence of these species. 

Normally, the diversity of structures and conserved domains caused the evolution 

of multigene families [43]. Our analysis revealed that the majority of LEA proteins in 

the same group shared similar domains, suggesting that these conserved domains may 

play crucial roles in group-specific functions. However, high divergence was also 

found in the structures between different groups. Identical results were reported 

earlier for LEA proteins in Arabidopsis [44], rice [5], and tomato (Solanum 

lycopersicon L.) [45]. Rye has the largest genome (~7.9 Gbp) among all diploid 

species in Triticeae, with more than 90% repetitive sequences [46]. Gene duplication 

is considered to be one of the primary driving forces in the evolution of genomes and 

genetic systems [47]. Twenty-eight ScLEA genes were clustered into 12 tandem 

duplication blocks, and 27 ScLEA genes were clustered into 19 segmental duplication 

blocks in rye. These results indicate that members of the same group may have 

originated via gene duplication, and that different groups may have evolved from 

different ancestral genes with various domain structures [48]. 

Expression analysis and functional prediction of rye LEA genes  

Analysis of expression profiles in different tissues revealed obvious temporal and 

spatial specificity in ScLEA genes expression, with the highest expression for most 

genes mainly observed in grains (Figure 5). The expression levels of LEA genes in 

Arabidopsis [4] and wheat [49] were also reported to be generally higher in seeds. 
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Transcriptome data for rye subjected to drought stress showed that, except for 

ScDehydrin-3, all Dehydrin group genes were responsive to drought treatment (Figure 

S1). Dehydrin group genes were also specifically and highly expressed in grains 

(Figure 5). These results showed that the expression levels of Dehydrin group genes 

are upregulated during seed maturation, suggesting that the expression of these genes 

might be induced by dehydration at the later stage of seed maturation [49]. The 

correlation between LEA protein and desiccation tolerance had been confirmed in 

many orthodox seeds [21, 50]. During the mature dehydration of seeds, the Dehydrin 

protein will be present as space filler in cells, maintaining the dissolved character of 

cell fluid to avoid damage to cell architecture [15]. The molecular function of 

Dehydrin proteins in the process of seed maturation will provide new ideas for the 

genetic improvement of crops. 

Light affects plant growth and developmental processes including seed germination, 

dormancy, circadian rhythms, flower induction, plant architecture, and shade 

avoidance [51]. Studies have found that LEA protein expression in Escherichia coli 

promotes tolerance to UV radiation [52, 53]. At present, studies of LEA proteins in 

plants generally focus on drought, salt, plant hormone, and low temperature stresses, 

including UV radiation stress, but few studies have been conducted on the response to 

different light qualities. Our results showed that ScLEA genes responded to FR, R, B, 

and W light, and that the degree of response to the four light treatments varied greatly. 

Thus, ScLEA genes may play certain roles in light responses, and those finding may 

provide a new perspective for the future study of new functions of ScLEA proteins. 

Rye is mainly grown in northern Europe and North Africa [54], and the mountainous 

or colder northern parts of China. Most of the regions experience a wide range of 

temperatures, altitudes, rainfall, and light levels. Therefore, the analysis of different 

stress treatments in this study lays the foundation for exploring the function of LEA 

proteins in improving the stress tolerance of rye. 

Cis-acting elements involved in the mediation of rye LEA gene expression 

Plants frequently adapt to environmental stresses by regulating the rate of 

transcription [55]. Cis-acting elements of genes are binding sites for transcription 
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factors that activate or repress transcription [56]. Some promoter elements, such as the 

TATA, GC, and CCAAT boxes, are common to many genes. In response to abiotic 

stresses such as heat shock and hormones, a large number of specific elements are 

also involved in transcriptional regulation [56]. In Arabidopsis, most genes encoding 

LEA proteins were found to have ABRE and LTRE elements in their promoters and 

many genes containing these elements were induced by ABA, cold, or drought 

treatment [4]. In this study, we also found ABRE and LTRE elements in the ScLEA 

promoters (Figure S4). The results of qRT-PCR showed that the expression of 12 

ScLEA genes was induced by ABA treatment and low temperature, and that the 

expression levels were significantly upregulated with a decrease of temperature. 

Moreover, G-box, Box 4, and GT1-motifs were also found in the ScLEA promoter, 

and ScLEA genes responded to light. Therefore, cis-acting elements that may 

influence the expression of ScLEA should also be investigated when analyzing the 

role of ScLEA genes under various stresses. 

Conclusion 

LEAs are important proteins that respond to biotic and abiotic stresses and have been 

described in numerous plants. In this study, a total of 112 ScLEA genes were 

identified in rye and classified into eight groups. All ScLEA genes contained few or no 

introns, and all encoded proteins containing the conserved LEA domain. ScLEA genes 

were distributed on all rye chromosomes with some clustering. By analyzing promoter 

elements in combination with RNA-seq data and qRT-PCR results, we showed that 

LEA genes in rye are strongly responsive to abiotic stresses such as drought, low 

temperature, light quality, ABA, and NaCl. These results lay a foundation for further 

investigating the functions of LEA proteins and their potential use in genetic 

improvement of crops. 
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Figure 1. Phylogenetic analysis of ScLEA proteins. Multiple sequence alignment of LEA 

proteins was performed using MAFFT. The phylogenetic tree was constructed using MEGA X 

software. 
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Figure 2. Schematic representation of exon-intron structures of ScLEA genes and conserved 

domains of ScLEA proteins. (a) The exon-intron structures were examined using the GSDS 

online tool. The yellow boxes and black lines represent exons and introns, respectively. (b) The 

ScLEA protein domains were predicted using the MEME online tool.  
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Figure 3. Distribution of ScLEA genes on rye chromosomes visualized using Mapchart 

software. 
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Figure 4. Schematic representation of the chromosomal distribution and interchromosomal 

relationships of ScLEA genes derived from segmental duplication. The gray lines indicate all 

syntenic gene pairs in the rye genome, and the dark turquoise lines indicate segmental duplicated 

ScLEA gene pairs. The number of each chromosome is indicated. 
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Figure 5. RNA-seq expression profiles of 112 ScLEA genes in different tissues (spikelet, leaf, 

stem, root, and grain) of rye (Weining). The heatmap was constructed using TBtools. The color 

scale on the right represents relative expression levels: red represents high level and blue 

represents low level. 
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Figure 6. The relative expression levels of six ScLEA genes (ScDehydrin-10, ScDehydrin-14, 

ScLEA1-5, ScLEA1-14, ScLEA2-22, and ScLEA2-52) under different abiotic stresses were 

analyzed by qRT-PCR. Ten-day-old seedling leaves were sampled after 0 h, 3 h, 6 h, 9 h, 12 h, 

and 24 h under 20% PEG6000, 100 μM ABA, 200 mM NaCl, or 100 mM mannitol. The values 

represent mean ± SEM of three replicates. 
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Figure 7. The relative expression levels of 12 ScLEA genes (ScDehydrin-10, ScDehydrin-14, 

ScLEA1-5, ScLEA1-14, ScLEA2-22, ScLEA2-52, ScLEA3-4, ScLEA4-1, ScLEA4-2, ScLEA5-4, 

ScSMP-4, and ScSMP-6) under cold stress were analyzed by qRT-PCR. Ten-day-old seedling 

leaves were sampled after 0 h, 3 h, 6 h, 9 h, 12 h, and 24 h at 0℃ or 4℃. The values represent 

mean ± SEM of three replicates. 
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Figure 8. The relative expression levels of nine ScLEA genes (ScDehydrin-10, ScDehydrin-14, 

ScLEA1-5, ScLEA1-14, ScLEA2-22, ScLEA2-52, ScLEA4-1, ScLEA4-2, and ScSMP-4) under 

different light conditions were analyzed by qRT-PCR. Seedlings were grown in the dark for 

seven days and subsequently transferred to FR light (5 μmol·m-2·s-1), R light (17.56 μmol·m-2·s-1), 

B light (13 μmol·m-2·s-1), or W light (85 μmol·m-2·s-1) for 4 h. The values represent mean ± SEM 

of three replicates. 
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Figure S1. RNA-seq expression profiles of 112 ScLEA genes after drought treatment for 0 h, 

3 h, 6 h, and 12 h. The heatmap was constructed using TBtools. The color scale on the right 

represents relative expression levels: red represents high level and blue represents low level. 
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Figure S2. The relative expression levels of six ScLEA genes (ScLEA3-4, ScLEA4-1, 

ScLEA4-2, ScLEA5-4, ScSMP-4, and ScSMP-6) under different abiotic stresses were 

analyzed by qRT-PCR. Ten-day-old seedling leaves were sampled after 0 h, 3 h, 6 h, 9 h, 12 h, 

and 24 h under 20% PEG6000, 100 μM ABA, 200 mM NaCl, or 100 mM mannitol. The values 

represent mean ± SEM of three replicates. 
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Figure S3. RNA-seq expression profiles of 112 ScLEA genes after incubation at -10℃ for 0 h, 

1 h, 4 h, and 8 h. The heatmap was constructed using TBtools. The color scale on the right 

represents relative expression levels: red represents high level and blue represents low level. 
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Figure S4. Predicted cis-elements in the promoters of 12 ScLEA genes (ScDehydrin-10, 

ScDehydrin-14, ScLEA1-5, ScLEA1-14, ScLEA2-22, ScLEA2-52, ScLEA3-4, ScLEA4-1, ScLEA4-2, 

ScLEA5-4, ScSMP-4, and ScSMP-6). 
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Table S1. List of qRT-PCR primers for the 12 ScLEA genes in this study. 

Gene Forward primer（5'–3'） Reverse primer（5'–3'） 

ScActin CGTGTTGGATTCTGGTGATG AGCCACATATGCGAGCTTCT 

ScDehydrin-10 AGCTCTAGCTCGTCTTCCG TGTGCTGCTGGTTGTCCT 

ScDehydrin-14 TAGTAGCTCCAGCTCGTC TTCTCCTTGATCTTATCCTTGAT 

ScLEA1-5 TCAAAGCGAAGGTCCAGG ATGCGGTCCTCCTTGTTT 

ScLEA1-14 GATAGCATCCGCTAAAATCTG GGCCTGCATGTTGTCTAG 

ScLEA2-22 ACATACCAGTGAAGGTGC GTAGTCGAGGTCCCAGTC 

ScLEA2-52 GTTCCATTTCAACATCCC AATCCTGACTTATGATACTCT 

ScLEA3-4 CAGCCTCCTCGCACAAA ACGGCGGTCTTCTCCTC 

ScLEA4-1 GAACACGCTGGGCATGAG TGATCCCTGGTGATCTTCTC 

ScLEA4-2 GACTACACCGTCGAGAAG TTGTTCTTGGTAGCCTCA 

ScLEA5-4 ATGGCCTCCGGTCAGC CCCTTCGGCGAGGTTCT 

ScSMP-4 CTGTACTACTCACCTAGCC CTCATCTTGGCGAGAAGG 

ScSMP-6 GGCATCACCGTCACCCAGAC GCTCGTGTCCTCCTCCTCCA 
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Table S2. List of the 112 ScLEA genes identified in this study. 

Gene Name Gene ID 

Amino 

Acid 

Number 

Molecular 

Weight 

(Da) 

pI 

Aliphatic 

index 

GRAVY 

ScDehydrin-1 ScWN3R01G346600 218 22423.55 6.25 49.31 -0.811 

ScDehydrin-2 ScWN4R01G072800 473 45913.81 8.88 42.52 -0.618 

ScDehydrin-3 ScWN4R01G570900 132 13466.8 9.56 41.59 -1.041 

ScDehydrin-4 ScWN5R01G416400 132 13252.44 8.81 37.12 -1.034 

ScDehydrin-5 ScWN5R01G416500 137 13786.03 8.81 40 -0.978 

ScDehydrin-6 ScWN5R01G417300 149 15098.56 6.71 49.19 -0.766 

ScDehydrin-7 ScWN5R01G479300 150 15133.48 9.22 35.27 -1.026 

ScDehydrin-8 ScWN5R01G479400 150 15171.57 9.16 35.93 -1.017 

ScDehydrin-9 ScWN5R01G479800 150 15207.62 9.19 33.33 -1.062 

ScDehydrin-10 ScWN5R01G479900 150 15112.52 9.4 33.33 -1.044 

ScDehydrin-11 ScWN6R01G204000 270 28839.07 5.23 63.26 -0.942 

ScDehydrin-12 ScWN6R01G318400 965 99640.75 5.51 29.52 -1.255 

ScDehydrin-13 ScWN6R01G318700 204 20313.83 9.07 26.86 -1.039 

ScDehydrin-14 ScWN6R01G319200 163 16428.76 9.19 34.85 -1.045 

ScDehydrin-15 ScWN6R01G319400 134 13332.25 6.75 34.33 -1.004 

ScDehydrin-16 ScWN6R01G319500 153 15520.78 8.86 33.27 -1.098 

ScDehydrin-17 ScWN6R01G319600 226 23330.67 9.58 47.12 -0.783 

ScDehydrin-18 ScWN6R01G557000 124 12724.73 6.34 37.74 -1.157 

ScLEA1-1 ScWN2R01G334900 95 10186.65 10.24 65.05 -0.826 

ScLEA1-2 ScWN2R01G550900 107 11347.61 9.16 43.18 -0.998 

ScLEA1-3 ScWN2R01G551000 113 11760.1 9.58 38.41 -1.048 

ScLEA1-4 ScWN4R01G263400 80 8600.55 8.96 50.25 -1.188 

ScLEA1-5 ScWN4R01G275600 80 8600.55 8.96 50.25 -1.188 

ScLEA1-6 ScWN4R01G288100 95 10186.65 10.24 65.05 -0.826 

ScLEA1-7 ScWN4R01G457200 381 42198.19 9.55 80.97 -0.385 



36 

ScLEA1-8 ScWN4R01G467600 86 9472.7 9.74 58.26 -1.088 

ScLEA1-9 ScWN4R01G486600 154 17256.57 10.64 45.26 -1.297 

ScLEA1-10 ScWN4R01G530800 133 15106.17 9.86 49.4 -1.092 

ScLEA1-11 ScWN4R01G531000 148 15581.87 9.93 61.62 -0.732 

ScLEA1-12 ScWN5R01G179500 153 15356.83 8.07 52.68 -0.697 

ScLEA1-13 ScWN7R01G229800 122 12920.6 9.37 72.21 -0.435 

ScLEA1-14 ScWN7R01G451300 170 16807.66 9.56 57.24 -0.436 

ScLEA2-1 ScWN1R01G171300 282 29488.16 9.92 73.44 -0.003 

ScLEA2-2 ScWN1R01G171400 282 29488.16 9.92 73.44 -0.003 

ScLEA2-3 ScWN1R01G204500 266 28783.43 10.21 95.68 0.017 

ScLEA2-4 ScWN1R01G206300 254 27538.08 10.32 97.13 0.015 

ScLEA2-5 ScWN1R01G282200 208 22310.79 9.65 102.07 0.262 

ScLEA2-6 ScWN1R01G311600 241 26955.15 8.92 91.37 0.037 

ScLEA2-7 ScWN1R01G410500 206 21639.30  10.93 104.61 0.303 

ScLEA2-8 ScWN1R01G495100 259 26739.67 8.89 95.68 0.224 

ScLEA2-9 ScWN2R01G118100 187 19935.63 9.39 96.63 0.491 

ScLEA2-10 ScWN2R01G118200 210 22318.15 9.05 96.24 0.393 

ScLEA2-11 ScWN2R01G216500 214 22933.59 9.30  94.21 0.170  

ScLEA2-12 ScWN2R01G231100 242 26768.59 9.26 79.01 -0.223 

ScLEA2-13 ScWN2R01G232500 192 20580.09 8.98 111.41 0.474 

ScLEA2-14 ScWN2R01G232600 195 20865.41 9.14 107.69 0.529 

ScLEA2-15 ScWN2R01G232700 190 19936.41 10.54 107.42 0.502 

ScLEA2-16 ScWN2R01G313600 216 23193.91 8.77 101.06 0.301 

ScLEA2-17 ScWN2R01G330800 351 38093.33 11.07 68.12 -0.576 

ScLEA2-18 ScWN2R01G451300 222 23777.88 8.83 98.51 0.383 

ScLEA2-19 ScWN2R01G451400 210 22378.15 9.05 96.24 0.393 

ScLEA2-20 ScWN2R01G656000 221 24361.35 9.01 95.70  0.178 

ScLEA2-21 ScWN3R01G125000 305 33669.17 4.69 92.98 -0.335 

ScLEA2-22 ScWN3R01G222500 151 16214.62 4.89 94.24 -0.032 
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ScLEA2-23 ScWN3R01G225000 314 33856.14 9.02 76.97 -0.246 

ScLEA2-24 ScWN3R01G228600 111 12079.84 4.23 112.34 0.226 

ScLEA2-25 ScWN3R01G279000 288 29844.54 10.15 78.96 0.085 

ScLEA2-26 ScWN3R01G305900 181 19394.92 4.45 81.82 -0.125 

ScLEA2-27 ScWN3R01G370500 255 27270.63 4.85 88.24 -0.077 

ScLEA2-28 ScWN3R01G419400 314 33669.44 9.73 78.31 -0.120  

ScLEA2-29 ScWN3R01G464400 241 26377.37 9.74 79.38 -0.166 

ScLEA2-30 ScWN4R01G039100 223 24048.03 9.54 116.77 0.262 

ScLEA2-31 ScWN4R01G143600 213 23156.67 8.67 103.47 0.272 

ScLEA2-32 ScWN4R01G143700 295 30972.13 9.67 74.95 -0.149 

ScLEA2-33 ScWN4R01G156400 271 29238.82 10.53 88.15 -0.067 

ScLEA2-34 ScWN4R01G161000 273 29124.74 10.19 94.80  0.046 

ScLEA2-35 ScWN4R01G228000 219 23463.46 9.74 106.85 0.252 

ScLEA2-36 ScWN4R01G475300 241 26955.15 8.92 91.37 0.037 

ScLEA2-37 ScWN4R01G625900 759 83942.38 8.50  94.01 -0.129 

ScLEA2-38 ScWN5R01G100700 208 21840.82 9.48 94.57 0.030  

ScLEA2-39 ScWN5R01G133100 205 22029.42 8.79 94.63 0.190  

ScLEA2-40 ScWN5R01G133200 208 22731.02 8.60  100.24 0.141 

ScLEA2-41 ScWN5R01G146300 280 30370.01 10.41 81.61 -0.128 

ScLEA2-42 ScWN5R01G150500 223 23785.49 9.38 98.37 0.122 

ScLEA2-43 ScWN5R01G178000 209 22789.23 6.88 83.44 -0.077 

ScLEA2-44 ScWN5R01G227200 257 27924.60  9.34 101.28 0.167 

ScLEA2-45 ScWN5R01G574600 172 18082.92 9.46 94.63 0.254 

ScLEA2-46 ScWN5R01G618300 214 22593.09 9.40  97.38 0.231 

ScLEA2-47 ScWN6R01G075200 215 23324.15 8.94 102.47 0.127 

ScLEA2-48 ScWN6R01G183100 195 21542.22 10.61 96.46 0.053 

ScLEA2-49 ScWN6R01G202600 335 36099.93 9.86 73.13 -0.236 

ScLEA2-50 ScWN6R01G399400 204 21250.67 10.26 114.66 0.496 

ScLEA2-51 ScWN7R01G051300 325 35951.80  4.90  90.80  -0.394 
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ScLEA2-52 ScWN7R01G066100 250 26849.30  9.88 103.84 0.195 

ScLEA2-53 ScWN7R01G092200 217 23268.20  9.34 99.03 0.197 

ScLEA2-54 ScWN7R01G192900 239 25366.38 8.93 100.79 0.304 

ScLEA2-55 ScWN7R01G312400 213 23379.12 8.63 94.79 0.255 

ScLEA2-56 ScWN7R01G555200 235 26002.43 10.07 96.68 0.108 

ScLEA3-1 ScWN1R01G098100 95 9429.5 10.46 66.53 -0.226 

ScLEA3-2 ScWN3R01G245700 95 9429.5 10.46 66.53 -0.226 

ScLEA3-3 ScWN3R01G245900 95 9451.51 10.46 66.53 -0.246 

ScLEA3-4 ScWN3R01G482900 95 9968.48 9.74 65.05 -0.273 

ScLEA3-5 ScWN7R01G388500 97 10547.14 9.65 74.74 -0.137 

ScLEA4-1 ScWN1R01G477800 180 18645.24 5.62 41.61 -0.998 

ScLEA4-2 ScWN7R01G243600 362 38447.1 6.45 47.27 -1.017 

ScLEA5-1 ScWN1R01G081900 153 16911.43 5.45 30.65 -1.551 

ScLEA5-2 ScWN1R01G082000 94 9967.75 5.25 37.45 -1.286 

ScLEA5-3 ScWN1R01G319500 133 14637.96 5.42 32.33 -1.489 

ScLEA5-4 ScWN1R01G319900 93 10003.79 5.56 37.85 -1.403 

ScLEA5-5 ScWN1R01G320000 93 9994.84 5.29 37.85 -1.317 

ScLEA5-6 ScWN3R01G198900 124 13554.98 4.85 69.35 -1.18 

ScLEA5-7 ScWN3R01G199300 124 13643 4.73 67.02 -1.267 

ScLEA5-8 ScWN6R01G061600 78 8235.95 4.97 45.13 -1.105 

ScLEA6-1 ScWN5R01G284200 118 12485.53 5.66 53.05 -1.014 

ScLEA6-2 ScWN6R01G525700 121 13038.07 5.24 52.56 -1.121 

ScSMP-1 ScWN5R01G432400 189 19092.07 5.04 73.7 -0.292 

ScSMP-2 ScWN5R01G432600 266 27096.24 5.15 77.56 -0.325 

ScSMP-3 ScWN6R01G127300 215 22870.59 10.96 65.58 -0.682 

ScSMP-4 ScWN7R01G131900 302 30451.8 5.74 74.24 -0.294 

ScSMP-5 ScWN7R01G132000 284 28975.85 4.94 69.65 -0.434 

ScSMP-6 ScWN7R01G333200 278 28537.13 4.22 66.98 -0.39 

ScSMP-7 ScWN7R01G335400 278 28479.09 4.24 67.34 -0.371 
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Table S3. Tandem duplicated ScLEA genes.  

Gene Gene Gene Gene Chromosome 

location 

Chromosomal 

region (bp) 

ScLEA5-1 ScLEA5-2   Chr1 4917 

ScLEA5-4 ScLEA5-5   Chr1 83114 

ScLEA2-9 ScLEA2-10   Chr2 36748 

ScLEA2-18 ScLEA2-19   Chr2 36941 

ScLEA1-2 ScLEA1-3   Chr2 4386 

ScLEA3-2 ScLEA3-3   Chr3 61746 

ScLEA2-31 ScLEA2-32   Chr4 11843 

ScDehydrin-12 ScDehydrin-13   Chr6 87935 

ScSMP-1 ScSMP-2   Chr5 94940 

ScLEA2-13 ScLEA2-14 ScLEA2-15  Chr2 163748 

ScDehydrin-14 ScDehydrin-15 ScDehydrin-16  Chr6 89392 

ScDehydrin-7 ScDehydrin-8 ScDehydrin-9 ScDehydrin-10 Chr5 125733 
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Table S4. Segmental duplicated ScLEA genes.  

Gene Chromosome location Gene Chromosome location E-value 

ScLEA2-7 chr1 ScLEA2-8 chr1 6.00E-12 

ScLEA2-8 chr1 ScLEA2-27 chr3 4.00E-82 

ScLEA2-7 chr1 ScLEA2-33 chr4 9.00E-35 

ScLEA2-7 chr1 ScLEA2-42 chr5 4.00E-47 

ScLEA2-12 chr2 ScLEA2-20 chr2 3.00E-11 

ScLEA2-20 chr2 ScLEA2-31 chr4 2.00E-56 

ScLEA2-10 chr2 ScLEA2-31 chr4 5.00E-13 

ScLEA2-28 chr3 ScLEA2-34 chr4 1.00E-48 

ScLEA2-26 chr3 ScLEA2-51 chr7 4.00E-19 

ScLEA1-7 chr4 ScLEA1-10 chr4 2.00E-25 

ScLEA1-4 chr4 ScLEA1-5 chr4 8.00E-51 

ScLEA1-9 chr4 ScLEA1-10 chr4 1.00E-20 

ScLEA1-6 chr4 ScLEA1-9 chr4 1.00E-28 

ScLEA2-31 chr4 ScLEA2-40 chr5 2.00E-126 

ScLEA2-33 chr4 ScLEA2-42 chr5 6.00E-78 

ScLEA2-34 chr4 ScLEA2-41 chr5 5.00E-97 

ScDehydrin-3 chr4 ScDehydrin-18 chr6 1.00E-14 

ScLEA2-39 chr5 ScLEA2-55 chr7 5.00E-17 

ScSMP-1 chr5 ScSMP-4 chr7 4.00E-16 

 

 

 

 


