Supplemental Information

miR-15a/16-1 deletion in activated B-cells promotes plasma cell and mature B-cell neoplasms

Tomasz Sewastianik,^{1,2*} Juerg R. Straubhaar,³ Jian-Jun Zhao,⁴ Mehmet Samur,⁴⁻⁶ Keith Adler,¹ Helen E. Tanton,¹ Vignesh Shanmugam,⁷ Omar Nadeem,⁴ Peter S. Dennis,¹ Vinodh Pillai,⁷ Jianli Wang,¹ Meng Jiang,¹ Jianhong Lin,⁴ Ying Huang,¹ Daniel Brooks,⁸ Mary Bouxsein,⁸ David M. Dorfman,⁷ Geraldine S. Pinkus,⁷ Davide F. Robbiani,⁹ Irene M. Ghobrial,⁴ Bogdan Budnik,¹⁰ Petr Jarolim,⁷ Nikhil C. Munshi,^{4,11} Kenneth C. Anderson,^{4,11} and Ruben D. Carrasco^{1,7*}

¹Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ²Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland; ³FAS Informatics, Harvard University, Cambridge, MA, USA; ⁴Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ⁵Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA, USA; ⁶Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁷Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; ⁸Center for Advanced Orthopedic Studies, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; ⁹Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA; ¹⁰Mass Spectrometry and Proteomics Resource Laboratory, FAS Division of Science, Harvard University, Cambridge, MA, USA; ¹¹Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

Corresponding authors*:

Tomasz Sewastianik, address: Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; email: Tomasz_Sewastianik@DFCI.HARVARD.EDU

Ruben D. Carrasco, address: Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; phone: 617-582-8159; fax: 617-582-8761; email: ruben_carrasco@dfci.harvard.edu

Supplemental Methods

miR ISH, and IF/ISH double stains

For ISH, rehydrated slides were incubated with HCI (0.2M, RT, 20min), treated with proteinase K (100µg/ml, 37°C, 20min; Invitrogen), re-fixed with paraformaldehyde (PFA; 4% in PBS, RT, 5min), with each step followed by washing, and air-dried. Digoxigenin (DIG)-labeled locked-nucleic acid (LNA) probes (**supplemental Table 2**; Bio Basic) were hybridized in DIG Easy Hyb buffer (Roche) for 18h at 4°C, washed, blocked, and developed with anti-DIG-AP (Roche) and a solution of nitro blue tetrazolium chloride and 5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP; Roche). The slides were counterstained with Fast Red (Sigma) or mounted without counterstaining. Expression of miR-15a and miR-16 was checked across mouse tissues using RT-qPCR and ISH, and muscle and thymus were used as negative and positive parallel controls, respectively (**supplemental Figure 8A-B**). Tissues from *WT* and *KO* mice were placed on a single paraffin block and processed in parallel. Control and malignant human tissues were likewise processed at the same time.

For miR-15a/16/CD138 IF/ISH double-staining, frozen human LN sections were fixed with 4% PFA for 30 min, washed, blocked with 5% BSA for 20 min, and stained with primary anti-CD138 antibody (#MCA2459GA, Bio-Rad Laboratories) for 18h at 4°C, then with secondary anti-mouse IgG Alexa Flour 488 conjugate (#A-11029, Invitrogen) for 2h at room temperature. Sections were counterstained with 4',6-diamidino-2-phenylindole (DAPI; Sigma), mounted using BrightMount medium (Abcam), and scanned in IF mode. Thereafter, coverslips were removed and sections were re-fixed in 10% formalin for 10 min, dried, baked, rehydrated, and processed according to the ISH protocol described above but without the counterstaining. Slides were next scanned in the bright-field mode.

Given better epitope preservation, miR-16/CD10 and miR-16/PD-1 ISH/IHC double-staining was performed on FFPE sections according to standard ISH protocol, followed by standard IHC protocol and development with PermaRed/AP.

IF, IHC, and ISH image acquisition and analyses

IHC and ISH images were acquired using Leica DM2000 microscope (Leica Microsystems) unless otherwise specified. Ki-67, cleaved caspase-3, CD138, and VEGF-A stainings in spleens of immunized *WT* and *KO* mice were scanned using Vectra 2 Intelligent Slide Analysis System (Caliper LifeSciences). Intensity of pERK staining, area of GCs, and percentage of CD138⁺ PCs were assessed using HALO Image Analysis Software (PerkinElmer). GC area was normalized to the total tissue area. Percentage of cells positive for cleaved caspase-3 was assessed using inForm Cell Analysis software (PerkinElmer).

For IF/ISH and IHC/ISH double stains, slides were scanned using the Vectra 2 Intelligent Slide Analysis System. IF/ISH binary images were overlaid according to slide coordinates using Photoshop (Adobe). Red was employed for miR ISH, green for CD138 IF, and blue for DAPI IF channels in both individual and merged images. For miR-15a, miR-16, and CD138 IHC colocalization, serial consecutive sections were scanned using ScanScope slide scanner (Aperio).

EP cases (n=11) were scored into three categories 'strong', 'week', and 'negative' as compared to normal nodal PCs independently by two certified pathologists.

Immunoglobin heavy chain (IgH) variable region mutation analysis

IgH variable regions were amplified from genomic DNA by PCR using Phusion High-Fidelity PCR Master Mix (New England Biolabs) and appropriate primers (**supplemental Table 2**). Clonal bands were extracted from agarose (Sigma) gels with a QIAquick Gel Extraction Kit (Qiagen) and cloned with a Zero Blunt TOPO PCR Cloning Kit (Invitrogen). Plasmids were prepared using a QIAprep Spin Miniprep Kit (Qiagen), sequenced, and analyzed using the international ImMunoGeneTics information system.¹

Whole-exome sequencing

For mouse analysis WES was performed on one EP and one DLBCL FFPE samples as well as one FFPE spleen from a healthy animal as a control as described;² except, 200ng of DNA was used for libraries preparation and sequenced on NovaSeq 6000 (Illumina). Mean target coverage was 123X. Reads were processed and analyzed as described.² Mutations were compared to human lymphoid malignancies from cBioPortal and mapped on proteins with maftools.³⁻¹⁷

Human WES was performed on eleven FFPE samples from primary EP cases and one control. Libraries were prepared using KAPA HyperPrep Kit (Roche). Sequencing libraries were constructed using SureSelect Human All Exon V5 plus POPv3.1 SV ONLY 3191451 spike-in and SureSelect XT HS Hybrid Capture kit (Agilent), pooled and sequenced using NovaSeq 6000 (Illumina). Mean target coverage was 152X (range 107-212X). Paired-end reads were aligned to the reference human genome using BWA-mem.¹⁸ Duplicated reads were marked and base quality score recalibration was performed using MarkDuplicates and ApplyBQSR with GATK4.19,20 Mutect2 was used to call single nucleotide variants (SNVs) and small insertions and deletions (indels). Raw mutation calls then filtered using FilterMutectCalls from GATK4 and only the mutations PASS all the filters applied by FilterMutectCalls and has at least 10X coverage for tumor samples extracted with bcftools for further analysis. SNVs and indels were annotated using Variant Effect Predictor (VEP) from Ensembl and converted to MAF files using VCF2MAF.^{21,22} dbSNP v154 were used filter SNP sites and the population variant resource containing allelespecific frequencies from gnomAD to filter alleles.^{23,24} COSMIC and cBioPortal databases were used to identify somatic mutations.^{4,25,26} Chromosome arm level copy number variants were identified using RobustCNV, which relies on localized changes in the mapping depth of sequenced reads to identify changes in copy number at the loci sampled during targeted capture. Mutation calls were validated using Sanger sequencing. Single nucleotide and copy number variants were compared to MM and visualized using maftools and R.^{3,27-30} Pathways were assigned using OncogenicPathways function.³ Chromosomal rearrangements were visualized

using Circos and ClicO FS.^{31,32} Genetic alterations were clustered using 1-pearson correlation and visualized using Morpheus (<u>https://software.broadinstitute.org/morpheus</u>).

Amplicon sequencing

Gna13, *Hist1h1c*, *Hist1h1e*, and *Pim1* coding regions were amplified from genomic DNA (*Hist1h1c* and *Hist1h1e*) or cDNA (*Gna13* and *Pim1*) using Q5 DNA Polymerase (New England Biolabs) and purified using QIAquick Gel Extraction Kit (Qiagen). Amplicons were fragmented to approximately 250bp using Covaris adaptive focused acoustics on the M220 platform. Illumina sequencing libraries were prepared using Swift S2 Acel reagents on a Biomek i7 liquid handling platform. Finished libraries were quantified by Qubit fluorometer, Agilent TapeStation 2200, and RT-qPCR using the Kapa Biosystems library quantification kit according to manufacturer's protocols. Uniquely indexed libraries were pooled in equimolar ratios and sequenced on an Illumina MiSeq with paired-end 150bp reads by the Dana-Farber Cancer Institute Molecular Biology Core Facilities.

Sequencing data were aligned to the *Mus musculus* genome version 10 (mm10) using bwa-mem (v0.7.17) aligner¹⁸ and converted to sorted BAM files with samtools (v1.10).³³ Duplicate reads in the BAM files were marked and tagged using Picard functionalities (v2.23.4). The base qualities of each read were recalibrated against known SNP databases using GATK (v4.1.6.0).¹⁹ Variants were identified using MuTect2 (GATK) in 'single sample' mode with default parameters. The resulting variants were annotated with Ensembl Variant Effect Predictor (VEP) (v99) and reformatted with vcf2maf package (v1.6.16).^{21,22}

X-ray, serum protein electrophoresis (SPE), and enzyme-linked immunosorbent assay (ELISA)

Radiographs of mouse forelimbs were acquired with a Faxitron X-ray cabinet (Model 43855A, Hewlett-Packard), on Oncology EDR2 film (Carestream) with 76 kVp x-ray tube energy, exposure times of 6 or 4 minutes (with or without musculature, respectively), and no magnification.

Plasma was isolated by centrifugation in Microtainer tubes (BD) and analyzed on SPIFE Serum Protein Gels with SPIFE 3000 (Helena Laboratories). Mouse VEGF (Sigma-Aldrich), IgM, and IgG (Innovative Research) ELISA Kits were used to assess plasma VEGF-A and immunoglobulin concentrations according to the manufacturers' protocols.

Proteomics

Sorted GC B-cells were washed in PBS and snap frozen in -80°C. Next, samples were resuspended in 5% sodium dodecyl sulfate and subjected to complete lysis and DNA shearing using a S220 Focused ultrasonicator (Covaris) in 1ml glass vials; reduced (tris(2carboxyethyl)phosphine added to 20mM, 90°C for 20 minutes); cooled to room temperature (RT); and alkylated (iodoacetamide added to 50mM, RT in the dark for 30 minutes). Individual samples were subjected to detergent removal and enzymatic digestion using the S-Trap (ProtiFi); dried to near full dryness on a SpeedVac (Eppendorf); and resuspended in 100ul 50mM triethylammonium bicarbonate. Subsequently, samples were labeled with TMT10plex Isobaric Label Reagent Set (Thermo Scientific) for 1 hour at RT. Reaction was quenched with the addition of 5% hvdroxvlamine for 15 min. Labeled samples were then combined and fully dried in the SpeedVac. Combined peptides were separated on 1200 HPLC system (Agilent) using PolyWAX LP column (PolyLC; 200x2.1 mm, 5µm, 300Å) running under ERLIC (Electrostatic Repulsion-Hydrophilic Interaction Chromatography) mode conditions. Peptides were separated across 90 min gradient of buffer A (90% Acetonitrile (ACN), 0.1% Acetic Acid) and 0% to 75 % buffer B (30% Acetonitrile, 0.1% Formic Acid) with 20 fractions collected by time. Each fraction was dried in SpeedVac and re-suspended in 0.1% formic acid solution.

Each sample was submitted for single LC-MS/MS run on an LTQ Orbitrap Elite (Thermo Fischer) equipped with NanoAcquity HPLC pump (Waters). Peptides were separated in a 100 µm inner diameter microcapillary trapping column packed first with approximately 5 cm of C18 Reprosil resin (5 µm, 100 Å, Dr. Maisch GmbH, Germany) followed by analytical column ~20 cm of Reprosil

resin (1.8 µm, 200 Å, Dr. Maisch GmbH, Germany). Separation was achieved by a gradient of 5– 27% ACN in 0.1% formic acid over 90 min at 200 nl/min. Electrospray ionization was enabled by applying a voltage of 1.8 kV using a home-made electrode junction at the end of the microcapillary column and sprayed from fused silica pico tips (New Objective). The LTQ Orbitrap Elite was operated in data-dependent mode. The mass spectrometry survey scan was performed in the Orbitrap in the range of 400 –1800 m/z at a resolution of 6 × 10⁴, followed by the selection of the twenty most intense ions (TOP20) for CID-MS2 fragmentation in the ion trap using a precursor isolation width window of 2 m/z, AGC setting of 10,000, and a maximum ion accumulation of 200 ms. Singly charged ion species were not subjected to CID fragmentation. Normalized collision energy was set to 35 V and an activation time of 10 ms. Ions in a 10 ppm m/z window around ions selected for MS2 were excluded from further selection for fragmentation for 60 s. The same TOP20 ions were subjected to HCD MS2 event in Orbitrap part of the instrument. The fragment ion isolation width was set to 0.7 m/z, AGC was set to 50,000, the maximum ion time was 200 ms, normalized collision energy was set to 27V and an activation time of 1 ms for each HCD MS2 scan.

Raw data were submitted for analysis in Proteome Discoverer 2.4 (PD; Thermo Scientific) software. Assignment of MS/MS spectra was performed using the Sequest HT algorithm by searching the data against a protein sequence database including all entries from the Mouse Uniprot database (SwissProt 2017) and other known contaminants. Sequest HT searches were performed using a 20ppm precursor ion tolerance and requiring each peptides N/C termini to adhere with trypsin protease specificity, while allowing up to two missed cleavages. 10-plex TMT tags on peptide N termini and lysine residues (+229.162932 Da) was set as static modifications while methionine oxidation (+15.99492 Da) was set as variable modification. MS2 spectra assignment FDR of 1% on protein level was achieved by applying the target-decoy database search. Filtering was performed using a Percolator.³⁴ For quantification, a 0.02 m/z window centered on the theoretical m/z value of each of the ten reporter ions and the intensity of the signal

closest to the theoretical m/z value was recorded. The total signal intensity across all peptides quantified was summed for each TMT channel, and all intensity values were adjusted to account for potentially uneven TMT labeling and/or sample handling variance for each labeled channel. The spectrum search results with PD were read into R²⁷ and filtered against a list of common contaminants. Data structures provided by the MSnbase library³⁵ in R/Bioconductor³⁶ were used to represent the filtered matrix, which provided convenient functions for data manipulation and visualization. Data matrix was normalized with a MSnbase wrapper function that uses the vsn R/Bioconductor library.³⁷ Normalization step was validated with a principal component analysis (PCA) and the first 2 components were used to visually inspect the separation between *WT* and *KO* samples. Unwanted variation was removed by adding latent model terms to the model equation. The additional parameters were determined from the residuals of a regression analysis. Proteins differentially expressed (DE) between *WT* and *KO* samples were the result of applying a linear model to the abundance data and contrasting on the *WT* versus the *KO* using the limma library³⁸ of R/Bioconductor.

miR target enrichment was performed on proteins upregulated (FDR<0.1) in GC B-cells from *KO* compared to *WT* mice using MIENTURNET and TargetScan database.^{39,40} Metaspace⁴¹ was used for functional enrichment and interactome analysis of DE proteins (FDR<0.1) using recommended settings. Differential expression analysis of microarray data was used to determine genes upregulated in light zone (LZ up) vs dark zone (DZ up; GSE38696,⁴² FDR<0.1; top 150 fold-changed probes, given the limited number of DE genes between LZ and DZ cells) and GC (GC up) vs plasma cells (PC up; GSE11961,⁴³ FDR<0.01, top 400 fold-changed probes). Gene set enrichment analysis⁴⁴ of these genesets and the 'hallmark' genesets from MSigDB⁴⁵ was run using recommended settings. R²⁷ packages were used to visualize the data: pheatmap⁴⁶ for heatmap, ggplot2²⁸ for PCA, DE, and GSEA bubble plots as well as miR target enrichment bar plot, and Rtoolbox (https://github.com/PeeperLab/Rtoolbox) for GSEA mountain plots.

Supplemental Tables Supplemental Table 1. Primary antibodies

Antigen	Application	Source	Catalog number
B220 (mouse)	IHC	BD Biosciences	550286
BCL2 (mouse)	IHC/ Immunoblotting	Abcam	ab182858
BCL6 (mouse)	IHC	Santa Cruz Biotechnology	sc-858
CD10 (human)	IHC	Leica Biosystems	NCL-L-CD10- 270
CD138 (human) CD138 (mouse) CD21 (mouse) CD3 (mouse)	IHC IHC IHC IHC	Beckman Coulter BD Biosciences Dako Dako	PN IM2757 553712 M0784 A0452 50403 PP02
CD5 (mouse)	IHC	Sino Biological	50403-1(102-
Cleaved caspase 3 (mouse)	IHC	Cell Signaling Technology	9664
Cre (mouse)	IHC IHC	Millipore Cell Signaling Technology	69050 4370
laG (mouse)	IHC	SouthernBiotech	1070-01
IgM (mouse)	IHC	SouthernBiotech	1020-01
Kappa (mouse)	IHC	SouthernBiotech	1170-01
Ki-67 (mouse)	IHC	Vector Laboratories	VP-K451
Lambda (mouse)	IHC	SouthernBiotech	1175-01
MYC (mouse)	IHC	Abcam	ab32072
PAX5 (mouse)	IHC	Cell Signaling Technology	12709
PD-1 (human)	IHC	Cell Marque	315M-95
VEGF-A (mouse)	IHC	Abcam	ab52917
CD138 (human)	IF	Bio-Rad Laboratories	MCA2459GA
B220 (mouse)	FACS	BD Biosciences	553087
CD138 (mouse)	FACS	BD Biosciences	553714
CD21/CD35 (mouse)	FACS	BioLegend	123418
CD23 (mouse)	FACS	BioLegend	101618
CD3 (mouse)	FACS	eBioscience	17-0031-83
CD38 (mouse)	FACS	BioLegend	102720
CD86 (mouse)	FACS	BioLegend	105007
CD95 (mouse)	FACS	BD Biosciences	557653
CXCR4 (mouse)	FACS	eBioscience	17-9991-80
Actin (mouse)	Immunoblotting	Santa Cruz Biotechnology	sc-1615
CHEK1 (mouse)	Immunoblotting	Santa Cruz Biotechnology	sc-8408
Cyclin-D2 (mouse)	Immunoblotting	Santa Cruz Biotechnology	sc-593
Cyclin-E1 (mouse)	Immunoblotting	Cell Signaling Technology	20808

Oligonucleotide	Application	Sequence (5' $ ightarrow$ 3')/Assay ID	Source
LNA-miR-15a	ISH	DIG-CACaaAcCatTatgTgctGcta	Bio Basic
LNA-miR-15b	ISH	DIG-TGTaaAcCatGatgTgctGcta	Bio Basic
LNA-miR-16	ISH	DIG-cgcCaatAtTtAcGtgCtGcTa	Bio Basic
V _H J558a (forward)	Mutation analysis	SAGGTCCAGCTGCAGCAGTCTGG	IDT
V _H Q52 (forward)	Mutation analysis	CAGGTGCAGCTGAARCAGTCA	IDT
V _H 36-60/4 (forward)	Mutation analysis	GAGGTGMAGCTTCYSGAGTC	IDT
V_H7183b (forward)	Mutation analysis	GTGAAGCCTGGAGGGTCCC	IDT
V _H 7183c (forward)	Mutation analysis	GGCTTAGTGMAGCCTGGAGG	IDT
V_H6/7 (forward)	Mutation analysis	GAGGTGAAGCTKGYGGAGTCT	IDT
V _H Gam3.8 (forward)	Mutation analysis	CAGATCCAGTTGGTRCAGTCT	IDT
JH4int2 (reverse)	Mutation analysis	ACTATCCCTCCAGCCATAGG	IDT
miR-15a	RT-qPCR	000389	TaqMan
miR-15b	RT-qPCR	000390	TaqMan
miR-16	RT-qPCR	000391	TaqMan
snoRNA234	RT-qPCR	001234	TaqMan
U6	RT-qPCR	001973	TaqMan

Supplemental Table 2. Oligonucleotide sequences and TaqMan assays

Supplemental Table 3. Differentially expressed proteins between GC B-cells from KO and

WT mice (FDR<0.1)

Protein ID	logFC	P.Value	adj.P.Val
Q8BX57	0.542415296	6.56E-08	0.000245625
Q8R2K4	-0.285471243	1.90E-07	0.000245625
Q920A7	-0.331438319	1.70E-07	0.000245625
P58871	-0.455588746	6.76E-07	0.000655451
Q61704	0.338861714	1.30E-06	0.001010369
Q9D084	0.568352367	6.76E-06	0.002623497
Q8BG32	-0.155876073	6.44E-06	0.002623497
Q9CRC8	-0.184341255	4.52E-06	0.002623497
P61358	-0.186470332	5.10E-06	0.002623497
Q8K4Q7	-0 247010724	6.37E-06	0.002623497
Q9D187	0 208342195	8 28E-06	0.002921554
Q8R4K2	-0.346631241	1 23E-05	0.003961302
P40336	0.373021651	1.82E-05	0.004151638
09DB40	0 214146466	1.78E-05	0.004151638
063844	0.214140400	1.70E 00	0.004151638
Q03044 00CP11	0.103-003	1.61E-05	0.004151638
OGROCE	-0.101000000	1.60=-05	0.004101000
	-0.202000040	2 105 05	0.004101000
C8CE64	0.190000441	2.100-00	0.004427409
	-0.193304309	2.1/E-U0	0.004427409
Q33711	0.100027541	2.33E-U3	0.004471782
	0.140931249	2.4/E-UD	0.004471782
Q8K3H0	-0.231/139/1	2.54E-05	0.004471782
Q60649	-0.249692844	2.70E-05	0.004561472
P35980	-0.170808869	2.89E-05	0.004606872
Q9D8V0	-0.296361201	2.97E-05	0.004606872
Q80U49	0.119550921	4.24E-05	0.006329608
Q8BFQ8	0.131647128	4.50E-05	0.006470541
Q9CR80	0.119737325	4.68E-05	0.006489895
Q923D2	0.143728952	6.34E-05	0.008091648
P23198	0.134750463	7.09E-05	0.008091648
Q9D1R9	-0.11248519	7.03E-05	0.008091648
Q922X9	-0.166441294	6.67E-05	0.008091648
Q7TSJ6	-0.189477062	6.32E-05	0.008091648
Q99KN2	-0.447081691	6.73E-05	0.008091648
P21107	0.216614289	8.64E-05	0.00894771
P49710	0.148514472	8.53E-05	0.00894771
Q9JIH2	0.134846018	8.76E-05	0.00894771
Q9QZE7	-0.376461444	8.25E-05	0.00894771
Q497H0	0.141426005	9.07E-05	0.009026114
Q9D8T2	0.210358071	9.81E-05	0.009172107
Q8K1L5	0.181516079	0.000106343	0.009172107
Q9DBU0	0.163428184	0.00010493	0.009172107
A2AR02	0.132090828	0.000109733	0.009172107
P42232	-0.184751234	0.000107574	0.009172107
Q6GYP7	-0.189412181	0.000111105	0.009172107
Q9R0P5	-0 206914708	0.000102056	0.009172107
Q8CGP0	-0.211811826	9.49F-05	0.009172107
Q8K0U4	0.321382672	0 000116581	0.009185377
P29758	0 108501667	0.000115006	0 009185377
F907E2	-0 162/18052	0.000110000	0.000105077
	-0.102410302	0.000120730	0.009100011
0011004	-0.200904024	0.000119004	0.0091003//
Q30021	-0.301223318	0.000124133	0.009202247
0/0220	0.24/119532	0.000136553	0.009996713
Q01/12	0.214340713	0.00016185	0.010106135
Q91W18	0.1899211/9	0.000160539	0.010106135
P09926	0.171627331	0.000163556	0.010106135

P26369	0.157728877	0.000167637	0.010106135
Q60821	0.151884858	0.000148637	0.010106135
P17225	-0.118632206	0.000149473	0.010106135
O8CBW3	-0 1/796551	0.0001/78/3	0.010106135
	0.17078366	0.000147040	0.010106135
Q95HK4	-0.17078500	0.000109304	0.010100135
Q9CZMZ	-0.179404557	0.000160563	0.010106135
Q8K4B0	-0.180070899	0.000169214	0.010106135
Q9CR02	-0.292703602	0.000144054	0.010106135
Q8BPB0	-0.356532075	0.000156748	0.010106135
090036	-0.332649006	0 000177238	0 010419426
P97386	-0.233801309	0.00018/3//	0.010675452
E00200	0.126004002	0.000100617	0.010719777
	-0.120994093	0.000190017	0.010718777
QODID39	-0.205371277	0.000166227	0.010718777
Q6ZQ08	-0.141262364	0.000197663	0.010956187
Q8VE97	0.123729211	0.000211487	0.011557314
Q99P21	0.378562956	0.00022909	0.01156051
Q80VR2	0.210521757	0.000216144	0.01156051
Q9CXG9	0.176755978	0.000217564	0.01156051
Q8.17K9	0 131030072	0 000226906	0.01156051
025055	0 1206022	0.000220000	0.01156051
000067	0.1300033	0.000229423	0.01150051
Q90R57	-0.135060775	0.000228669	0.01156051
Q02819	0.126544114	0.000233327	0.011606506
Q8VE92	0.160112671	0.000238213	0.011697957
O70338	-0.177785165	0.000241195	0.011697957
Q61599	0.173687646	0.000269903	0.012928692
Q91Z53	0.203369854	0.000277632	0.012965045
Q9DBM1	-0 125241979	0 000284028	0 012965045
011011	-0 144971699	0.000283552	0.012965045
B07030	0.176025734	0.000200002	0.012065045
	-0.170025754	0.000279120	0.012500045
B2RQC0	-0.173075057	0.00030122	0.013569916
Q6PDY2	0.125748856	0.000309872	0.013662558
Q8BSS9	0.1036784	0.000309112	0.013662558
O88291	0.107013765	0.000320383	0.013967278
A6H8H2	-0.269568561	0.000329324	0.014197532
Q64518	-0.112139491	0.000340034	0.014498148
P19253	-0 149169478	0 000349589	0 014743538
P80315	-0 115437966	0.000359794	0.014919153
097080	-0.387038730	0.000000104	0.01/010153
	-0.307030739	0.000301443	0.014919133
Q9JKZ3	-0.151592783	0.00037444	0.015133011
Q8R060	-0.256585221	0.000371335	0.015133611
088967	-0.260847166	0.000388865	0.015554585
P83917	0.200211029	0.00039816	0.015763885
Q8K4K6	0.204824107	0.000433665	0.015992387
P57759	0.124598898	0.00041572	0.015992387
Q6AZB0	0.108796615	0.000431074	0.015992387
Q9D136	0.100236368	0.000436905	0.015992387
Q5SWD9	-0 121356536	0 000428636	0.015992387
O9CXK9	-0 125989241	0 000417379	0.015992387
067WN5	0.157611456	0.000417073	0.015002387
	-0.157011450	0.0004234	0.015002287
Q/1P35	-0.342690017	0.000422002	0.015992387
Q9WV60	-0.108499243	0.000444458	0.016116808
Q62093	0.223990518	0.000457393	0.016133506
P46467	0.129387347	0.000456711	0.016133506
Q9Z108	-0.153361547	0.000455859	0.016133506
O08677	0.593865491	0.000486844	0.016608513
P61082	0.121145793	0.000476873	0.016608513
Q3UK.17	-0 105978061	0 000487982	0.016608513
OSULDS	-0 1881868/0	0 00048100/	0.016608513
000000	0.1001000-0	0.000-0100-	0.010000010
	0.2/00009/9	0.000493177	0.010039305
Q8K3F5	0.168859229	0.000509609	0.016943923
Q8BHJ9	0.132980532	0.000510938	0.016943923
Q91ZE0	0.189633751	0.000526295	0.017106234

Q8BGC0	0.148308803	0.00052336	0.017106234
Q8VEM8	-0.277825009	0.000529059	0.017106234
Q3UHC0	0.214365811	0.000539717	0.017220964
Q8CG46	-0.130189064	0.000541484	0.017220964
Q8BX10	-0.165243231	0.000565376	0.01783461
Q6DVA0	-0.135428299	0.000588221	0.018405629
Q6ZPV2	0.169805253	0.000603234	0.018724379
054781	-0 213299845	0.000615482	0.018952928
Q9DCK4	-0 111217767	0.000622497	0.019018021
O68EL 6	-0 173502505	0.000632568	0.019174704
Q9CT10	0 10147327	0.000645556	0.019230646
05BL K4	-0 144053916	0.000649282	0.019230646
O8BIY3	-0 179022888	0.000642186	0.019230646
058775	0.166614207	0.000668392	0.019286103
P27546	0.120720002	0.000671037	0.019286103
080863	-0.212230/172	0.000656622	0.019200103
09D3E6	-0 3/51720//	0.000662891	0.010286103
P42669	0.000/55760	0.000678/01	0.019200103
	0.033400872	0.000687701	0.010381600
	0.222616657	0.000007731	0.010291600
Q3A314 P42125	0.222010007	0.000003340	0.019301009
	0.140420309	0.000710102	0.01902324
	0.192200490	0.000735033	0.020307249
	0.000120041	0.00073797	0.020307249
	-0.091197909	0.000740708	0.020403009
QOF DG5 DE0206	0.000703303	0.000752926	0.020429000
P30390	0.143009073	0.000701540	0.020319423
000802	-0.110319076	0.000775502	0.020701000
	0.10004734	0.000707412	0.020920733
	0.100040200	0.000795675	0.021000774
Q71320	-0.320931309	0.000002420	0.021030370
Q9C5H3	-0.123949427	0.000626921	0.021396034
	-0.132675303	0.000827267	0.021398034
Q9D017	-0.102000100	0.000053001	0.021400332
F27003	0.402470200	0.000004122	0.021002090
	-0.122791002	0.000001970	0.022300444
F01942	0.1040100	0.000092937	0.022497302
Q303D7 D07252	0.133030297	0.000900240	0.022000201
P97332	0.217400723	0.0009211	0.022909410
033034	-0.009972403	0.000942274	0.02323273
P24270	-0.170901004	0.000951602	0.02325275
F02049	-0.263177930	0.000952665	0.02323273
A0A933	0.200096429	0.000909200	0.023932232
	-0.140040690	0.000993695	0.023932232
	-0.14233027	0.001001927	0.023990773
Q99J10 Q64244	0.104030930	0.001010	0.024035609
	-0.097632301	0.001022133	0.024035609
007102	-0.200632221	0.001011000	0.024033009
Q921K3 D1411E	0.200040000	0.001040027	0.024103511
P14113	-0.1103109	0.0010370	0.024103311
P 12970	-0.143073439	0.001046039	0.024204712
F32033	-0.103030033	0.001070090	0.0247 19431
	-0.112471473	0.001064745	0.024/0//10
P01887	0.270779373	0.001005662	0.024791432
Q8R010	-0.101662421	0.001095662	0.024791432
	-0.112304272	0.001101553	0.024791432
	-0.1043/0643	0.001108/65	0.024791432
QOAVDO	0.23/9/5//6	0.001135916	0.025119138
Q91VKZ	-0.178220342	0.001139425	0.025119138
Q621/2	0.260194092	0.001200992	0.025745019
Q30E31	0.219128023	0.001197794	0.025745019
	-0.150133023	0.001182768	0.025745019
	-0.229406681	0.001192575	0.025745019

Q9D2X8	-0.280501787	0.001197913	0.025745019
P70460	0.085491194	0.001246574	0.026575308
Q8K3I9	-0.178143934	0.001254969	0.026608082
P25444	-0.191080784	0.001270842	0.026798196
Q9Z0G2	0.128743974	0.001278591	0.026815858
Q9D7G0	0 152851352	0.001293357	0.026835435
P62911	-0 133497626	0.001288049	0.026835435
P53026	-0 182215186	0.001200040	0.020000400
06P5U7	-0.102210100	0.001312330	0.0200000000
A2A6A1	0.132040300	0.001312339	0.020341131
000246	0.140937900	0.001329709	0.027154047
Q55240	0.202307427	0.001342752	0.027270007
	0.19020155	0.001309733	0.027000790
Q0A020	0.112719749	0.001370209	0.027000790
Q921H9	0.373292994	0.001426397	0.027933004
Q9Z131	0.231285802	0.001437544	0.027935664
Q6NV83	0.196188034	0.001439983	0.027935664
Q6PF93	-0.090882016	0.001426838	0.027935664
Q6PDJ6	-0.145411348	0.001407387	0.027935664
Q9QXG2	-0.199040741	0.001422877	0.027935664
Q3UR50	-0.345342843	0.001437215	0.027935664
O09130	0.255992176	0.001492425	0.028095841
Q08879	0.194542759	0.001498914	0.028095841
P97318	0.114690398	0.001488443	0.028095841
Q8CJ40	0.10394367	0.001490366	0.028095841
Q9JJ80	-0.120822529	0.001527031	0.028095841
P97789	-0.139642321	0.001527892	0.028095841
P20664	-0.144854176	0.001459931	0.028095841
Q9CQQ7	-0.198722501	0.001478755	0.028095841
P61514	-0.205991411	0.001526818	0.028095841
P28659	-0.248474313	0.001520423	0.028095841
Q9WV66	-0.264225509	0.001525086	0.028095841
Q8BUH8	0.46612036	0.00155154	0.028130727
Q9Z1J3	0.104235134	0.001548503	0.028130727
Q99KK1	-0.250126404	0.001540554	0.028130727
P55302	0.366441245	0.001578265	0.028168494
E9PZM4	0.220031122	0.001574082	0.028168494
Q9WUQ2	0.213100019	0.001587976	0.028168494
A2AKB4	0.1848618	0.001586813	0.028168494
Q8BGB5	0.100751317	0.001589923	0.028168494
E9Q8I9	0.352962337	0.001620154	0.028310974
Q9Z1R2	0.115529543	0.001627412	0.028310974
Q8BWW4	-0 10020929	0.001634448	0.028310974
Q7TPV4	-0 128187777	0.00162413	0.028310974
Q8R1.J3	-0 144539204	0.001617632	0.028310974
P56390	0 115069389	0.001651646	0.028481712
Q9Q7E5	-0 123035679	0.001665762	0.028598037
P62267	-0 122522135	0.001687247	0.028839293
088491	-0.082385944	0.00172978	0.029436605
080056	0.202609745	0.001764519	0.020100000
P11983	-0.162100801	0.001773635	0.020000010
P14733	0.098140742	0.001793185	0.020020110
099MS7	0.000140742	0.001844375	0.030845581
OSBKC5	-0.123401433	0.0018529/3	0.030855875
	0.118655018	0.001012343	0.031600051
062/21	-0 120/25677	0.001311/4/	0.031099001
AUZHJI Ogrten	0.120420017	0.001322014	0.001740009
	0.100344002	0.001904013	0.031903909
472240 D07540	-0.1102000/9	0.001985528	0.031983969
F2/312	-0.120/0/102	0.001985501	0.031983969
Q992W4	-0.140158/46	0.00198/418	0.031983969
P4/903	-0.14/829292	0.001994876	0.031983969
Q99L04	-0.22/142244	0.001988258	0.031983969
492288	-0.252546241	0.001988546	0.031983969

Q3U1J4	0.12107813	0.002006715	0.032041383
Q8BG05	0.121338151	0.00203793	0.032300056
Q3TX08	-0.08689659	0.002043713	0.032300056
Q8CCB4	-0.139549108	0.00204789	0.032300056
P31725	0.385334148	0.002061825	0.032388175
Q9QXE7	-0.208172232	0.002078278	0.032514996
P25206	-0.088731431	0.002105832	0.032813771
Q8CHW4	-0.113784507	0.002144139	0.033056255
Q80UY1	-0.259911891	0.002142667	0.033056255
Q05816	-0.27020152	0.002146953	0.033056255
Q6IRU2	0.107495609	0.00216382	0.033184276
Q78IK4	-0.169863474	0.002176667	0.033249872
P20065	0.176011535	0.002186603	0.033270658
Q8BVY0	-0.112390356	0.002218849	0.033629434
055187	0 101723962	0.002230136	0.033668978
Q91W98	-0 10430512	0.002245593	0.033770932
P63328	0 192607733	0.002271955	0.033971718
070493	-0 10333523	0.002276455	0.033971718
Q9CWU9	-0 12847936	0.002298121	0.034163634
06P1G2	-0 131796504	0.002316354	0.034303253
P50543	0 284915117	0.002351337	0.034688925
P12894	0 159775962	0.002360855	0.034697413
0807W2	-0 198251173	0.002419646	0.035427267
058840	0.755085359	0.002415040	0.035606623
02VES1	-0 12/023131	0.002445030	0.035606623
	0.2913/8579	0.00240020	0.035769054
P/17877	0.231340373	0.00247313	0.035769054
P62301	-0 168850959	0.002400177	0.035769054
088983	0 193830931	0.002403004	0.0358////53
08VDH1	-0 116/21583	0.002512007	0.0358////53
P07371	0.13001677/	0.002505257	0.000044400
P24063	0.153233035	0.002002+33	0.037153620
P62270	-0 10500275	0.002025750	0.037185154
Δ2ΔΜ74	0.19390273	0.002000040	0.037/100104
080800	0.202220010	0.002002041	0.037404140
08K1X4	-0.213233064	0.002000224	0.037/01182
	-0.088018287	0.002711011	0.03771/026
092049	0 143307523	0.002756555	0.037813552
Q61103	0 11580342	0.00276962	0.037813552
P63166	0.086170961	0.002786175	0.037813552
P16460	-0.081335786	0.002735885	0.037813552
Q99K85	-0.091138807	0.002787288	0.037813552
P26043	-0.122120738	0.002767209	0.037813552
Q5F2E8	-0.174855661	0.002769497	0.037813552
Q05793	0.327324226	0.002874985	0.03810869
Q04207	0.128147065	0.002830909	0.03810869
Q8BVK9	0.095400261	0.002838929	0.03810869
Q9Z0R6	0.076500066	0.002844339	0.03810869
Q8BP47	-0.094642333	0.002879126	0.03810869
Q60596	-0.111003222	0.002872072	0.03810869
Q60930	-0.158323968	0.002887617	0.03810869
P51410	-0.240567313	0.002855278	0.03810869
Q99JY3	0.121914296	0.002922311	0.038435824
Q8VI36	0.103584042	0.002945204	0.038606052
Q9JLT2	0.379615259	0.00296597	0.038726584
Q56A10	-0.163061762	0.002974361	0.038726584
Q9Z130	0.183632428	0.003026296	0.039045547
Q64701	0.179736258	0.003015929	0.039045547
Q9DCZ4	0.129486893	0.003032634	0.039045547
Q9DAA6	-0.08474758	0.003039112	0.039045547
Q8VBW6	0.252426501	0.003091407	0.039198232
Q9DBP5	0.128635691	0.003082887	0.039198232

D4 44 04	0.400440004	0.000004050	0.000100000
P14131	-0.120118264	0.003084652	0.039198232
P51881	-0.263268175	0.003079696	0.039198232
O54825	0.14122169	0.003188239	0.039733311
Q8BSP2	0.109020336	0.003173243	0.039733311
OSBCS0	-0 10/0603/5	0.003155584	0.030733311
	-0.104900343	0.003133304	0.009700011
P14148	-0.11956439	0.003152987	0.039733311
P62315	-0.12674316	0.00319505	0.039733311
A2A9C3	-0.246844652	0.003187406	0.039733311
P11911	0 093292966	0 003215919	0 039738969
OGZERE	0.007556278	0.002222860	0.020728060
	-0.097550576	0.003223009	0.039730909
P10032	-0.102340994	0.003236473	0.039738969
Q60597	-0.113821564	0.00323134	0.039738969
Q61107	0.162644284	0.003269756	0.039895133
Q9ESU6	0.068249774	0.003260115	0.039895133
090054	-0 235786001	0.003284067	0 039944143
	0.284042527	0.0002040079	0.0000044140
Q3TVF5	0.204042527	0.003340978	0.040085540
Q9D820	0.171430476	0.003340217	0.040085546
E9Q5K9	0.08651647	0.003331784	0.040085546
A2ARP1	-0.130565836	0.00334735	0.040085546
Q9D2R0	-0.322142335	0.003346889	0.040085546
08BM.12	-0 114923398	0.003382731	0.040384608
090287	0.202501201	0.002466151	0.040022076
	0.202591291	0.003400131	0.040933970
P06745	-0.142957743	0.003481498	0.040933976
Q8K411	-0.152007415	0.003477288	0.040933976
Q99LI7	-0.166200569	0.003462105	0.040933976
Q5DU05	-0.174130918	0.003443224	0.040933976
09D620	-0 301675615	0.003517357	0.041230653
090785	0.112255276	0.000017007	0.041200000
	0.113233270	0.00550405	0.041409704
B1AX39	-0.099751987	0.003556914	0.041409704
O08808	-0.102850141	0.003562654	0.041409704
Q6PDI5	0.090197248	0.003582276	0.041490242
Q9CQC6	-0.08511145	0.003660748	0.042272925
Q62048	0 074373808	0 003700948	0.042560602
	0 154747057	0.002707500	0.042560602
	-0.134747037	0.003707399	0.042500002
Q60952	-0.096580225	0.003720204	0.042579324
Q60767	-0.143259955	0.003746664	0.042756046
Q9CSN1	0.084392691	0.003764071	0.04282873
Q64692	0.617957677	0.003829918	0.043197911
Q5FWK3	-0.085401471	0.003807732	0.043197911
O8BMC4	-0 1/6002100	0.003823849	0.043107011
	0.420479267	0.000020040	0.043375339
	-0.420478207	0.003030019	0.043375236
Q8C804	-0.127401579	0.003869788	0.043395314
Q3UZ39	0.093112142	0.003953222	0.044083425
Q5RJG1	-0.125897443	0.003953874	0.044083425
Q3TKY6	0.073166531	0.003982069	0.044270566
Q9WUU9	0.154456598	0.003995345	0.044291258
0670K5	0 1380/8022	0.004048569	0.044753416
	0.000704022	0.004070005	0.044052466
090000	-0.063761273	0.004078223	0.044955166
P62322	0.210119639	0.004128663	0.045252013
P47911	-0.120156413	0.004124441	0.045252013
Q9Z266	0.137417883	0.004156706	0.04530343
Q3UFY8	-0.156191105	0.004151811	0.04530343
08BY77	-0.49809899	0.004182029	0 045451743
	0.205001225	0.004102020	0.045624721
	0.290001230	0.00423034	0.040034731
Q8BK35	0.109014722	0.004230539	0.045634731
Q9CXJ4	-0.113354419	0.004257673	0.045634731
P27659	-0.129092192	0.004248823	0.045634731
Q6NS60	-0.144432267	0.004237593	0.045634731
Q9D116	-0 208135628	0 004290694	0.045861961
08K274	-0.005267020	0.00/2110/5	0.04506240
	-0.030307303	0.004311943	0.04090249
raa120	0.300545645	0.004352226	0.046041106
P47757	0.095829541	0.004351485	0.046041106

Q5SX19	-0.427241233	0.004354919	0.046041106
O35450	0.107523789	0.004433698	0.046746599
Q9QXT0	0.107575435	0.00454515	0.047766726
P25976	-0.082203459	0.004555074	0.047766726
E9Q034	-0.11220241	0.004584825	0.047949118
Г04244 Л3ТИСО	-0.107403493	0.004057005	0.04007993
P97855	-0.082802883	0.004757451	0.049355371
P62627	0.144792382	0.004818812	0.04985864
Q8BH51	-0.139013344	0.004839796	0.049942575
O55087	0.155559241	0.00488926	0.050186059
Q3UHJ0	0.115259809	0.00488354	0.050186059
P97823	-0.108013759	0.00490321	0.050196448
Q69ZK0	-0.150997978	0.004932313	0.05036151
Q8R001	-0.110492966	0.004976734	0.050681702
	-0.400127751	0.005000119	0.050786554
Q9DC70 P14060	-0.104621322	0.005026904	0.050925297
0501 16	0.404493223	0.005109283	0.051224853
Q91VY9	0.096750378	0.005100318	0.051224055
Q8BZN6	-0,170420934	0.005090726	0.051224853
070494	0.202932709	0.005190385	0.051903855
Q9D1G1	-0.078906006	0.005227505	0.052140665
Q921E6	0.164166609	0.005254275	0.0522733
Q9JIX8	0.160251392	0.005275755	0.052352761
Q80VC9	0.14677921	0.005298641	0.052445737
035188	0.450570065	0.005344761	0.052500438
054931	0.126080426	0.005341407	0.052500438
P62754	-0.110730288	0.005339017	0.052500438
	-0.100000744	0.005410107	0.053067691
Q933N0 Q61074	0.220739794	0.005489999	0.053055401
Q97103	0.069346723	0.00551784	0.053745965
Q99PU8	-0.132979409	0.005548509	0.053820538
P16330	-0.082880792	0.00558097	0.053866083
Q3UJU9	-0.12305781	0.005575115	0.053866083
P61222	-0.088436969	0.00561272	0.053948351
Q8C3X2	-0.114035073	0.005631207	0.053948351
008550	-0.179343813	0.005624616	0.053948351
P60762	0.134991115	0.005648741	0.053983038
401/00 D00/02	0.1110745	0.005098675	0.054326439
FUU433 080133	-U.1112/15 -0.28/196667	0.000730142	0.004009290
Q91WG8	0.204100007	0.005720052	0.054614568
P09450	0.111088047	0.005776987	0.054614568
Q9D6J6	0.108514946	0.005794966	0.054614568
Q9JHS9	0.086137993	0.00580551	0.054614568
P50136	-0.133450095	0.005827431	0.054614568
Q9WU20	0.301295779	0.005873871	0.054861171
Q9R1Q7	-0.223834288	0.005882022	0.054861171
P62717	-0.098108506	0.00594109	0.055279206
Q9Z2D6	0.233124675	0.005973708	0.055317391
rðjöð/ 0902ke	-0.142855405	0.005969057	0.05531/391
4062NJ	0.000000104	0.000007289	0.000490911
Q922D8	-0.070401402	0.006063285	0.055747742
P23249	0.299622233	0.006104106	0.05592182
Q62383	0.098148892	0.006150481	0.05592182
P62305	-0.124350003	0.006115619	0.05592182
P41230	-0.131744741	0.006154283	0.05592182
008810	0.004044040	0.000400055	0.05502192
000010	-0.234911842	0.006128655	0.05592162

Q9D162	-0.188246928	0.006219915	0.056254708
E9PVA8	-0.108343365	0.006237455	0.056282155
088543	0.102933997	0.006322358	0.056652999
	0.083080182	0.006306666	0.056652999
	-0.10000388	0.0063208	0.050052999
Q9JK10	-0.11201302	0.000370403	0.057005051
Q61233	0.02057443	0.000430301	0.05714029
P54279	-0 11786606	0.006461499	0.05714029
P62245	-0.139479515	0.006440964	0.05714029
P56135	-0.196677658	0.006462368	0.05714029
Q03141	-0.277272171	0.006476742	0.05714029
E9Q784	0.07118818	0.006519178	0.057356942
Q6NZL6	0.246217531	0.006542303	0.057365176
O35129	-0.240889366	0.006549684	0.057365176
Q571I4	0.192749053	0.006609587	0.057500446
P14824	0.141907777	0.006608647	0.057500446
P06151	-0.138548596	0.006586481	0.057500446
Q9JMD0	0.374579086	0.006671737	0.05775634
	0.21238467	0.00665659	0.05775634
	-0.003032203	0.0000000000	0.057826105
Q90257	0.004333779	0.000700030	0.057820105
Q9.11K9	0.229825624	0.006801651	0.05831207
Q61097	0.181947133	0.006817249	0.05831207
Q9CWN7	-0.090257265	0.006817879	0.05831207
Q6ZWV7	-0.14192559	0.006922298	0.059029703
Q80VH0	0.068647216	0.006972071	0.059193949
Q8K039	0.068500339	0.006960902	0.059193949
Q8BMS1	-0.099656641	0.007044618	0.059679301
Q9CQE5	0.12608847	0.007108903	0.059861457
Q6ZWV3	-0.131906538	0.007112405	0.059861457
Q9D032	-0.190241531	0.007101453	0.059861457
Q9CXW4	-0.10441558	0.007171332	0.06009669
Q3U3E2	-0.119646249	0.007161355	0.06009669
	0.094313447	0.007100400	0.060260274
	0.320749930	0.007292555	0.000209274
Q9CX60	0.007333000	0.007275745	0.060269274
Q9Z0W3	-0.092141159	0.007300626	0.060269274
Q8K1R7	-0.102817689	0.00730066	0.060269274
Q9CWX9	-0.130051272	0.007223455	0.060269274
Q61048	0.178000503	0.007411686	0.061055929
Q80UG2	0.141186328	0.007474242	0.061144147
Q8R4H2	0.129240683	0.007484721	0.061144147
P70168	-0.080170059	0.00748543	0.061144147
Q8C0G2	-0.084940757	0.007453355	0.061144147
P35831	-0.092137376	0.007517005	0.061273064
WOK3H9	0.20824/646	0.007595261	0.061395029
	-U.1132993300 _0124654501	0.00757420	0.001395029
	-0.124034391	0.007569393	0.001395029
Q3V1H1	0.111903155	0.007500505	0.001595029
Q8BW96	-0 119052558	0.007646937	0.06155626
Q3UJD6	0.06724252	0.00766349	0.061561782
Q80U63	0.166212285	0.007727069	0.06194309
D3YWJ0	0.135718708	0.007748215	0.06194309
Q80Y56	0.129794923	0.007787661	0.06194309
Q9D880	-0.103840111	0.007768887	0.06194309
Q8C3I8	-0.165782644	0.00779078	0.06194309
091XB0		0 00700000	0.00400004
QUINEO	-0.144692054	0.007808903	0.06196021

Q8BHN5	0.463684568	0.007939936	0.062569599
Q91VD9	-0.079670746	0.007932353	0.062569599
Q8VI84	-0.215401914	0.007950209	0.062569599
Q5XG73	-0.092035421	0 008017844	0 062974159
Q9CZN7	-0 10192259	0.008092847	0.063434843
	0.357202450	0.000002017	0.063723327
	0.125002166	0.000130037	0.000720027
	0.125905100	0.000200901	0.003723327
QUEAPO	0.1063962	0.006261042	0.003723327
Q8C7R4	0.076210814	0.008222611	0.063723327
Q76MZ3	-0.084842752	0.008288893	0.063723327
Q9WTM5	-0.086379954	0.008263333	0.063723327
Q9D1R2	-0.129750442	0.008208306	0.063723327
P39447	-0.142075764	0.008293887	0.063723327
Q6PHZ2	-0.152143114	0.008250547	0.063723327
P28665	-0.279321115	0.008234605	0.063723327
Q922S8	-0.089464353	0.008488524	0.065089867
P62843	-0 189972989	0.008515544	0.065168267
0710H0	0.0570638	0.008566109	0.065245276
	0.124214212	0.000000100	0.065245276
	-0.124314213	0.000570054	0.005245270
QUINAWO	-0.293936466	0.000044609	0.005245276
AUAUP1	0.115657499	0.008654521	0.065623156
P60840	0.085351856	0.00865955	0.065623156
P84228	-0.12254804	0.008685726	0.065693207
Q8BNV1	0.084958557	0.008830228	0.066656196
Q91YE5	-0.076565216	0.0088476	0.066657644
P14869	-0.153038745	0.008892959	0.066869533
Q3UJV1	0.168327705	0.008968936	0.067180447
Q8K199	0.10961502	0.008956541	0.067180447
Q91YR1	-0.119269653	0.009174637	0.068588806
Q9QYI4	-0.258598346	0.009207132	0.068699367
Q9DCR2	-0.108022517	0.009248015	0.068871975
088448	0.086999207	0.009310816	0.069206832
P97372	0 120701404	0.00949693	0.070186835
091 X 1	-0 10301689	0 009479224	0.070186835
P07/32	-0 10753/639	0.000170221	0.070186835
008795	0 1/10/5678	0.003402321	0.070707000000
D15806	0.004503581	0.003555105	0.070257553
P 13000	0.120820127	0.009570929	0.070257553
000502	-0.130629127	0.00957078	0.070257555
000393	-0.130004104	0.009570605	0.070207003
P97496	-0.083930685	0.009603428	0.070304344
Q501J7	0.120262064	0.009643049	0.070461453
Q9D0C1	0.243612461	0.009743392	0.070794683
Q921K7	0.23761481	0.009737408	0.070794683
Q6PCP5	0.150192994	0.009714964	0.070794683
Q802S3	-0.102690496	0.009770233	0.070857014
Q8BHX1	-0.062492092	0.009842094	0.071245006
Q61179	0.158577921	0.009889616	0.071285704
Q02526	0.131364994	0.009866416	0.071285704
Q8VE47	0.077636678	0.009920658	0.071285704
Q60931	-0.221507	0.009921206	0.071285704
Q8C569	-0.106125447	0.009975797	0.071545457
Q8CG72	0.154943698	0.010012435	0.071675734
Q8BP78	0.085921986	0.010072566	0.071973401
Q8CG47	-0.078226634	0.010110528	0.072111852
Q91ZW3	-0.079199644	0.01016805	0.072389052
Q8BX17	-0.098672599	0.010227804	0.072681098
Q5EBH1	1.350219834	0.010305888	0.072820066
Q8K3A0	0 252207725	0 010322432	0 072820066
080960	0 060038372	0.010306085	0 072820066
ORRVMR	-1 0507111/2	0.010306660	0.072020000
00001100	0 222222201	0.010/00000	0.0727666/1
06200C	0.202200084	0.010473023	0.073966470
F 02330	0.000303009	0.01000000	0.073000470

Q8K1A5	0.122697858	0.010589415	0.074298248
Q93092	0.097430509	0.010680498	0.07480204
Q9JM14	0.113335205	0.010724765	0.074976735
Q99LG4	0.311768408	0.010788125	0.075014202
Q9UNN5	-0.098130629	0.010762896	0.075014202
Q9WU42	-0.101067928	0.010775675	0.075014202
O89079	0.130221977	0.010895134	0.075487714
Q64127	0.084631055	0.01088531	0.075487714
Q61207	0.213637775	0.010941592	0.075524233
088879	0.123604521	0.011020733	0.075524233
Q6PDM2	0.107933792	0.010974494	0.075524233
Q8VDP4	0 092147054	0 010934619	0 075524233
C0HKD9	0.091203408	0.01103666	0.075524233
P35991	-0.151461767	0.01098388	0.075524233
Q60932	-0 207505458	0.011020967	0 075524233
070370	0 189609707	0.011166408	0.075671067
Q9CVI2	0 160501786	0.01113459	0.075671067
0972Y8	0 154809735	0.011236476	0.075671067
Q4EK66	0 129987362	0.011240779	0.075671067
08K296	0.070646666	0.011210770	0.075671067
Q9D168	-0.065681289	0.011267965	0.075671067
P50431	-0.072736962	0.011272649	0.075671067
0807\/7	-0.073440399	0.011086391	0.075671067
06NZC7	-0.089007621	0.011261696	0.075671067
035972	-0.003007021	0.011201030	0.075671067
09D0M3	-0 1/7/36/28	0.0111/7122	0.075671067
OSLIEVO	-0.322362628	0.011300688	0.075728275
08/C30	-0.022302020	0.011321223	0.075735075
	0.138119562	0.011347236	0.075777369
	0.121142807	0.011366605	0.075777369
080779	0.15288//76	0.011/62315	0.07589/626
090500	-0.07971963	0.011/26738	0.07589/626
0801162	-0.13715/630	0.011420730	0.075894626
08R003	-0.137154033	0.011/62/36	0.075804626
060875	0.087070751	0.011502032	0.076033008
090060	-0.074700341	0.011526358	0.076058279
061584	0.078/83101	0.011500300	0.0761/280
B2RY56	0.05906221	0.011617678	0.07614289
O6NXH3	-0.086943326	0.011600045	0.07614289
091YT2	-0 18903557	0.011576628	0.07614289
Q8CAK3	0.078289069	0.011807098	0.076994183
P62715	0.059965412	0.011780843	0.076994183
A2RS00	-0 208807844	0.011803667	0.076994183
Q80WS3	0.657868236	0.011881105	0.077088108
Q9R053	0 245681594	0.011866682	0.077088108
Q8R1T1	0.142405701	0.01185137	0.077088108
P70193	0.176250824	0.011983835	0.077565351
Q91WG2	0.116070532	0.012054615	0.077565351
P24547	-0.07559976	0.012042973	0.077565351
Q8CCJ3	-0.115691055	0.012034242	0.077565351
P62702	-0.131627712	0.01203356	0.077565351
Q8BGU5	0 134419412	0.012173795	0.078202525
Q7TPM1	-0 149937015	0.012207881	0.078291868
Q6PFH3	-0 175216868	0.012250658	0.078436558
Q8C5S3	0.243454606	0.012368439	0.078764729
P42227	0 086274143	0.012322651	0 078764729
Q9CXF7	-0 083481884	0.012354665	0 078764729
P43275	-0 127436273	0.012383115	0 078764729
	-0.33894257	0.012451216	0 079068279
	-0 073611086	0.012536645	0.070/2/9
Q92202	-0.080750186	0.012580178	0 079496892
P97461	-0 139870094	0.012568287	0 079496892
1 01 101	0.100070004	0.012000201	0.01 070000Z

B1AY13	-0.143485032	0.012660383	0.079873634
P62962	0.101026261	0.012721897	0.080094189
O70551	-0.077830259	0.012736627	0.080094189
Q922L6	-0.089711813	0.012792543	0.080315644
Q5SVQ0	-0.08169248	0.012874826	0.080701654
Q9D2V5	0.080663704	0.012924787	0.080753903
Q9Z2D8	-0.082944498	0.012905466	0.080753903
Q80TZ9	0.067495822	0.013045469	0.081376878
Q9DBG3	-0.083037184	0.013111957	0.081660344
Q80725	-0.088648218	0.013177174	0.081934992
B14R13	0 222049106	0.013267769	0.082366312
Q9D6T0	-0.084968071	0.013364571	0.082834719
054926	0 13632425	0.013568136	0.083828613
P48722	-0 20497791	0.013561215	0.083828613
03110110	-0.098353909	0.013696041	0.084484323
090400	-0 132053902	0.013722376	0.084512413
	0.110845084	0.01381508	0.08/861177
08BS72	-0 356682849	0.013822748	0.084861177
08K1H7	-0 13/086108	0.0130022140	0.085220964
D/6/60	-0.067530114	0.0130/2002	0.085275455
	-0.0070200303	0.013056163	0.000270400
000788	-0.00122030	0.013080065	0.085202682
OSPRSS	-0.09122034	0.013900905	0.005252002
	0 101036123	0.014002013	0.005575555
	-0.06674065	0.014071444	0.000070000
D/22/7	0.00074003	0.014170342	0.086271441
C0CVA0	0.125771057	0.014230341	0.000271441
	0.123771037	0.014272099	0.00039323
Q3K3H0	0.210672515	0.01433307	0.00002334
Q91W10	0.310672313	0.01441044	0.000092402
000000	0.210599690	0.014403204	0.000092402
QUUNKU	0.095390538	0.014000878	0.000092402
	-0.062736636	0.014449130	0.000092402
	-0.090055992	0.014391313	0.000092402
	-0.094472727	0.014403027	0.000092402
	-0.139065374	0.014399423	0.000092402
	0.104051149	0.014529750	0.000703029
AZAWA9	0.102702121	0.01402010	0.000703029
	0.00000202	0.014017555	0.000703029
	-0.080493914	0.014000027	0.000703029
	-0.15/430920	0.014030024	0.000703029
	-0.134030393	0.014571544	0.000703029
	0.133703073	0.014704457	0.086970262
067038	-0.125236094	0.014760864	0.087092817
	0.285560554	0.014709004	0.007092017
	0.20000000	0.014056069	0.007404702
D62102	0 127087101	0.0149550000	0.089122507
	-0.137907191	0.015012030	0.000122097
	-0.083500002	0.015077555	0.0000000000000000000000000000000000000
P30130	0.149540704	0.015260952	0.000000900
	0.149209302	0.015250122	0.000000900
	0.137094030	0.015160201	0.000000900
	0.105022333	0.015255155	0.000000900
	0.094000008	0.015213404	0.000000900
	-0.071323529	0.015195167	0.000000900
	-0.101207245	0.015231127	
034988	-0.093498649	0.015468304	0.009577642
Q91VY6	0.229226752	0.015513/23	0.089/06//1
	-0.11/455253	0.015821769	0.09135188
QADAK3	-0.2/2/6537	0.015846886	0.091360945
QSCISU	0.074109352	0.015903483	0.091551207
	0.165112227	0.015938273	0.091615556
Q9CQ17	-0.071410157	0.016029375	0.091867022

Q91VK1	-0.152375051	0.01602667	0.091867022
Q9CPW2	-0.103871476	0.016183367	0.092612779
Q80UU9	0.107511184	0.0163269	0.092761494
Q71M36	0.107188576	0.016273831	0.092761494
Q91YU8	0.07477137	0.016352799	0.092761494
P55200	0.060628204	0.016336013	0.092761494
P98083	-0.056939693	0.016316842	0.092761494
Q9CPR4	-0.12959256	0.016241555	0.092761494
Q9QXK2	0.075371269	0.016387313	0.092821568
Q8CDD9	0.176076683	0.016451084	0.093046948
Q61216	0.052124393	0.016592294	0.093709028
Q9QYR9	0.116007203	0.016651081	0.093768059
Q9CZB3	-1.191781915	0.01664472	0.093768059
P63276	-0.107968077	0.016688084	0.093840243
P68254	0.129371087	0.016724341	0.093908024
Q9WTQ5	0.171699199	0.016805833	0.094229235
Q80U93	-0.068814855	0.016840013	0.094284634
Q0VEE6	-0.083081128	0.017042038	0.095278254
P01901	0.177469049	0.017238253	0.096088615
P62889	-0.085139516	0.017261279	0.096088615
Q1HFZ0	-0.089362674	0.017258606	0.096088615
Q9WUD8	0.282488665	0.017321896	0.096259361
Q0VGT4	-0.261187588	0.01734157	0.096259361
O55098	0.090270314	0.017517956	0.097099529
P83741	-0.101395136	0.017574183	0.097272228
Q9CQH3	-0.153971401	0.017796179	0.098360648
Q8CAY6	-0.098745143	0.017824141	0.098375058
Q8CI75	0.083971105	0.017911437	0.098592284
Q9Z140	-0.362376991	0.01791432	0.098592284
Q6P4S8	0.11934236	0.018064782	0.098859453
Q61142	0.072591719	0.018048874	0.098859453
Q9ERD6	-0.075062808	0.018030394	0.098859453
Q9R0Q1	-0.406327537	0.018026629	0.098859453
P58501	-0.101009474	0.018178983	0.099344301

Supplemental Table 4. Summary of *VDJ* recombination and somatic hypermutation

Diagnosis	Mouse No	VH	DH	JH	VH mut.
FL	FL_1	IGHV5-17*01 F	IGHD1-1*01 F	IGHJ1*03 F	1
	FL_2	IGHV1-76*01 F	IGHD2-4*01 F	IGHJ4*01 F	13
	FL_3	IGHV2-9-1*01 F	IGHD3-1*01 F	IGHJ4*01 F	2
DLBCL	DLBCL_1	IGHV5-6*02 [F] or IGHV5-6*03 [F]	IGHD4-1*01 F	IGHJ1*03 F	4
	DLBCL_2	IGHV1-47*01 F	IGHD3-2*01 F	IGHJ2*01 F	31
	DLBCL_3	IGHV9-3*01 F	IGHD4-1*01 F	IGHJ4*01 F	1
EP	PC_1	IGHV2-2*01 F	IGHD2-4*01 F	IGHJ4*01 F	7
	PC_2	IGHV9-3*01 F	IGHD4-1*01 F	IGHJ4*01 F	2 or 0*
	PC_3	IGHV12-3*01 F	IGHD2-3*01 F	IGHJ4*01 F	6

analysis in *KO* mice with indicated lymphoma phenotypes

*6 of 9 screened colonies harboring immunoglobulin region had mutations, 3 didn't

Supplemental Table 5. Summary of somatic mutations in GC B-cells from 12-week old KO

Gene	Sample	Protein changes of variants that passed MuTect2 Filters (VAF)
Gna13	KO GC B-cells #1	-
	KO GC B-cells #2	-
	KO GC B-cells #3	p.R69W (0.37%), p.G111Efs*12 (0.51%), p.M136V (0.44%)
	KO spleen #1	-
	KO spleen #2	-
	KO spleen #3	p.T352Rfs*17 (1.07%)
	KO GC B-cells #1	-
	KO GC B-cells #2	-
List1h1a	KO GC B-cells #3	-
HISTINIC	KO spleen #1	-
	KO spleen #2	-
	KO spleen #3	-
	KO GC B-cells #1	-
	KO GC B-cells #2	-
List1h1a	KO GC B-cells #3	-
HISTINIE	KO spleen #1	-
	KO spleen #2	-
	KO spleen #3	-
Pim1	KO GC B-cells #1	-
	KO GC B-cells #2	-
	KO GC B-cells #3	-
	KO spleen #1	p.S54P (1.62%)
	KO spleen #2	p.A224T (0.94%)
	KO spleen #3	p.K94R (0.71%), p.I248T (1.2%)

mice and spleens from *KO* mice that did not develop neoplasms

Supplemental Figures

Supplemental Figure 1. miR-15a and miR-16 expression in human GCs and MM cells

(A) IHC analysis of CD10, PD-1, and CD138 expression in LNs from a normal subject. Note that most cells within the GC are CD10⁺ GC B-cells varyingly infiltrated by PD-1⁺ T_{FH} -cells and CD138⁺ PCs. H&E, hematoxylin and eosin. Scale bar = 200 μ m.

(B) miR-16 co-localization with GC B-cell marker CD10 and T_{FH} -cell marker PD-1 in human LNs. miR-16 expression was assessed by ISH (dark purple), followed by IHC analysis for CD10 or PD-1 (red) on the same FFPE slide. Three representative examples are shown. Note co-localization of miR-16 signal and CD10 in GC B-cells as well as PD-1 in T_{FH} -cells. Scale bar = 200µm.

(C) miR-15a, miR-15b, and miR-16 levels in BM CD138⁺ cells from healthy donors (normal plasma cells; NPC) and MM patients without (other) or with del(13q) from GSE16558. Graphs depict the mean ±SD. *P* values were calculated using Mann–Whitney *U*-test.

(D) miR-15a, miR-15b, and miR-16 levels in BM CD138⁺ cells from healthy donors (normal plasma cells; NPC) and MM patients with indicated alteration. Graphs depict the mean ±SD.

Supplemental Figure 2. miR-15a/16 and their targets expression in murine GCs

(A) Histologic and ISH analysis of miR-15a and miR-16 expression in the spleen of wild-type mouse. Note higher miR-15a and miR-16 expression in GCs within white pulp (WP) areas and lower expression in marginal zone (MZ) or follicular (Fo) B-cells. Note that birefringent red blood

cells in the red pulp (RP) area (insert) refract the light but do not stain positive for miR-15a or miR-16. H&E, hematoxylin and eosin. Scale bar = 50µm.

(B) Cre (IHC, brown) and miR-15a, miR-15b, and miR-16 expression (ISH, dark purple) in spleen sections of 12-week old *WT* and *KO* mice. One representative example of secondary follicle for each genotype is shown. Sections were counterstained with Giemsa (IHC) or Fast Red (ISH) to better identify lymphoid structures. GCs are highlighted by dotted lines, scale bars = 100µm.

(C) Changes in miR-15a/16 target genes expression after *miR-15a/16-1* cluster deletion in FACSsorted GC B-cells (B220⁺CD95⁺CD38⁻) from mice with indicated genotypes assessed by immunoblotting. Quantitative differences in protein expression level based on densitometric analysis were normalized to actin and are shown in parentheses.

(**D**) IHC analysis of VEGF-A and Ki-67 expression within splenic GCs from mice with indicated genotypes. Note high and low VEGF-A abundance within the light zone (LZ) and the dark zone (DZ), respectively. Scale bar = 100µm.

(E) Plasma VEGF-A concentrations assessed using ELISA in WT (n=6) and KO (n=6) mice immunized with SRBC. Graphs depict the mean ±SD.

Supplemental Figure 3. Analyses of proteomic changes induced by miR-15a/16-1 loss in

GB B-cells

(A) Principal component analysis (PCA) plot of protein expression profiles of GC B-cells from WT

(n=5) and KO (n=5) mice.

(B) Heatmap showing proteins differentially expressed between *WT* and *KO* GC B-cells (n=5 per group).

(C) GSEA mountain plots of 'hallmark' genesets enriched in WT or KO GC B-cells at FDR<0.2.

Supplemental Figure 4. Analyses of serum proteins and lymphocyte subpopulations in WT

and KO mice

(A) Flow cytometric analysis of indicated lymphocyte subsets in the spleen of *WT* and *KO* mice immunized with SRBC. Three animals per group were analyzed. Representative dot plots are shown.

(B) Serum protein electrophoresis of young non- and SRBC-immunized WT and KO mice.

Supplemental Figure 5. Clonality evaluation and immunophenotypic comparison of lowgrade lymphomas in *AID*^{Cre/+};*miR*-15a/16-1^{fl/fl} and *CD*19^{Cre/+};*miR*-15a/16-1^{fl/fl} mice (A) Clonality evaluated by Southern blot analysis of the *IgH* gene in DNA isolated from spleens of *KO* mice with the plasma cell (PC) neoplasm. The non-rearranged germ line (GL) band (dashed gray line) and clonally rearranged bands were identified (arrowheads).

(B) Histologic and IHC stains of indicated markers on serial sections from a spleen of $CD19^{Cre/+};miR-15a/16-1^{fl/fl}$ mouse with CLL (top) and from a spleen of premalignant (middle) or a LN of FL-bearing (bottom) $AID^{Cre/+};miR-15a/16-1^{fl/fl}$ mouse. Pictures were taken at the junction between the T-cell and B-cell rich areas. H&E, hematoxylin and eosin. Scale bars: white = 50µm; black = 20µm.

(C) Specificity validation of IHC double-stain for mouse PAX5 (brown, nuclear) and CD5 (red, membrane) in $E\mu$ -*TCL1* mouse.⁴⁷ Note red membrane and brown nuclear signal characteristic for CLL cells and single red or brown staining for B-cells and T-cells respectively. Scale bar = 20µm. (D) IHC stains of MYC from representative *KO* mice with the indicated lymphoma phenotype. Scale bar = 20µm.

Supplemental Figure 6. WES analysis of murine neoplasms from *KO* mice

Mutation frequencies in the PC neoplasm and DLBCL from KO mice determined using WES.

Variants with allele fractions between 0.05 and 0.95 are shown.

Supplemental Figure 7. WES analysis of human EP

(A), (B), and (C) Summary of transition and transversion frequencies in human EP (n=11) determined using WES. Box plots show summary for six different conversions (A) and transitions vs transversions (B), whereas bar plot shows fractions in each sample (C).

(D) Representative case (EP2) of biallelic *TRAF3* inactivation. Top: plots illustrating the coverage of chromosomes 10 and 14. Red and blue dashed lines indicate mean coverage. Note almost

50% reduction of the mean coverage for chromosome 14, compared to diploid chromosome 10, suggesting a clonal loss. Dark green dashed line indicates location of *TRAF3* on chromosome 14. Bottom right: location of the *TRAF3* mutation in EP2 and its variant allele frequency (VAF) illustrated as a pie chart. Given the limited purity of FFPE samples, this VAF also suggests a clonal alteration; altogether indicating biallelic mechanism of inactivation.

Supplemental Figure 8. miR-15a and miR-16 expression pattern in mice

(A) miR-15a and miR-16 expression determined using RT-qPCR relative to snoRNA234 (right) or unnormalized (left) in indicated tissues from a wild-type mouse. Error bars represent standard deviation of three independent replicates in a representative experiment.

(B) Histologic and ISH analysis of miR-15a and miR-16 expression in thymus and muscle used as positive and negative controls, respectively, during all ISH studies. H&E, hematoxylin and eosin. Scale bar = 50µm.

Supplemental References

1. Lefranc MP, Giudicelli V, Duroux P, et al. IMGT(R), the international ImMunoGeneTics information system(R) 25 years on. *Nucleic Acids Res*. 2015;43(Database issue):D413-422.

2. Sewastianik T, Guerrera ML, Adler K, et al. Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. *Blood Adv*. 2019;3(21):3360-3374.

3. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. *Genome Res.* 2018;28(11):1747-1756.

4. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci Signal*. 2013;6(269):pl1.

5. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. *Cell*. 2013;152(4):714-726.

6. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. *Nature*. 2015;526(7574):525-530.

7. Puente XS, Bea S, Valdes-Mas R, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. *Nature*. 2015;526(7574):519-524.

8. Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. *Nat Genet*. 2011;44(1):47-52.

9. da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. *Nat Genet*. 2015;47(12):1465-1470.

10. Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. *Nat Med*. 2018;24(5):679-690.

11. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. *Proc Natl Acad Sci U S A*. 2012;109(10):3879-3884.

12. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. *Cell*. 2017;171(2):481-494 e415.

13. Morin RD, Mungall K, Pleasance E, et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. *Blood*. 2013;122(7):1256-1265.

14. Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. *Proc Natl Acad Sci U S A*. 2013;110(45):18250-18255.

15. Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. *Cancer Cell*. 2014;25(1):91-101.

16. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. *Nature*. 2011;476(7360):298-303.

17. Braggio E, Van Wier S, Ojha J, et al. Genome-Wide Analysis Uncovers Novel Recurrent Alterations in Primary Central Nervous System Lymphomas. *Clin Cancer Res*. 2015;21(17):3986-3994.

18. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2009;25(14):1754-1760.

19. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 2010;20(9):1297-1303.

20. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet*. 2011;43(5):491-498.

21. McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. *Genome Biol*. 2016;17(1):122.

22. Kandoth C. vcf2maf v1.6.16; 2018.

23. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. *Nucleic Acids Res*. 2001;29(1):308-311.

24. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature*. 2020;581(7809):434-443.

25. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids Res*. 2019;47(D1):D941-D947.

26. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov*. 2012;2(5):401-404.

27. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria R Foundation for Statistical Computing; 2010.

28. Wickham H. Ggplot2 : elegrant graphics for data analysis (ed Second): Springer; 2016.

29. Samur MK, Aktas Samur A, Fulciniti M, et al. Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. *J Clin Oncol*. 2020:JCO2000461.

30. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. *Blood*. 2018;132(6):587-597.

31. Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. *Genome Res*. 2009;19(9):1639-1645.

32. Cheong WH, Tan YC, Yap SJ, Ng KP. ClicO FS: an interactive web-based service of Circos. *Bioinformatics*. 2015;31(22):3685-3687.

33. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-2079.

34. Kall L, Storey JD, Noble WS. Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. *Bioinformatics*. 2008;24(16):i42-48.

35. Gatto L, Lilley KS. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. *Bioinformatics*. 2012;28(2):288-289.

36. Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. *Nat Methods*. 2015;12(2):115-121.

37. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. *Bioinformatics*. 2002;18 Suppl 1:S96-104.

38. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.* 2015;43(7):e47.

39. Licursi V, Conte F, Fiscon G, Paci P. MIENTURNET: an interactive web tool for microRNAtarget enrichment and network-based analysis. *BMC Bioinformatics*. 2019;20(1):545.

40. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. *Elife*. 2015;4.

41. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nat Commun.* 2019;10(1):1523.

42. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. *Blood*. 2012;120(11):2240-2248.

43. Kaji T, Ishige A, Hikida M, et al. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. *J Exp Med*. 2012;209(11):2079-2097.

44. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102(43):15545-15550.

45. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst*. 2015;1(6):417-425.

46. Kolde R. pheatmap: Pretty Heatmaps. Vol. 2017; 2015:Implementation of heatmaps that offers more control over dimensions and appearance.

47. Gorgun G, Ramsay AG, Holderried TA, et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. *Proc Natl Acad Sci U S A*. 2009;106(15):6250-6255.