Supplementary materials

Supplementary materials include patient and primer information, cytokine arrangement of cytokine antibody array, Tarbase and Targetscan database verification information, and gene literature summary.

name	Accession number	sequence
hsa-miR-15a-5p	MIMAT0000068	UAGCAGCACAUAAUGGUUUGUG
hsa-miR-16-5p	MIMAT0000069	UAGCAGCACGUAAAUAUUGGCG
hsa-miR-103a-3p	MIMAT0000101	AGCAGCAUUGUACAGGGCUAUGA
hsa-miR-195-5p	MIMAT0000461	UAGCAGCACAGAAAUAUUGGC
hsa-miR-107	MIMAT0000104	AGCAGCAUUGUACAGGGCUAUCA
hsa-miR-424-5p	MIMAT0001341	CAGCAGCAAUUCAUGUUUUGAA
hsa-miR-497-5p	MIMAT0002820	CAGCAGCACACUGUGGUUUGU
hsa-miR-503-5p	MIMAT0002874	UAGCAGCGGGAACAGUUCUGCAG
hsa-miR-646	MIMAT0003316	AAGCAGCUGCCUCUGAGGC
hsa-miR-6838-5p	MIMAT0027578	AAGCAGCAGUGGCAAGACUCCU

Supplementary table 1:Schematic diagram of miR-15/107 gene family sequence

Patient	Gender	Age (years)	Disease duration (years)	RF (IU/ml)	ESR (mm/h)	CRP (mg/l)
OA1	Female	68	16	9	8	3
OA2	Female	71	18	4	9	9
OA3	Male	76	23	3	16	4
OA4	Female	72	12	7	17	8
OA5	Female	58	13	6	7	2
OA6	Male	71	13	5	12	9
OA7	Female	63	12	6	21	6
OA8	Male	72	18	7	7	10
RA1	Male	64	12	254	53	13
RA2	Female	48	10	131	51	62
RA3	Female	53	7	378	31	15
RA4	Female	51	9	63	45	45
RA5	Female	55	6	157	57	27
RA6	Male	69	11	59	53	22
RA7	Female	74	12	257	59	17
RA8	Female	62	10	212	43	18

Supplementary table 2: Patient characteristics

RF, rheumatoid factor; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; CCP, cyclic citrullinated peptide

Anti-CCP antibody are all positive for RA patitents.

name	product	Sequence (from 5' to 3')
'DNA NG	Mimio	Sense UUCUCCGAACGUGUCACGUTT
	MIIIIC	Antisense ACGUGACACGUUCGGAGAATT
miR-424-5p	Mimio	Sense CAGCAGCAAUUCAUGUUUUGAA
	Withic	Antisense CAAAACAUGAAUUGCUGCUGUU
miR-497-5p	Mimic	Sense CAGCAGCACACUGUGGUUUGU
		Antisense AAACCACAGUGUGCUGCUGUU
miRNA NC	Inhibitor	CAGUACUUUUGUGUAGUACAA
miR-424-5p	Inhibitor	UUCAAAACAUGAAUUGCUGCUG
miR-497-5p	Inhibitor	ACAAACCACAGUGUGCUGCUG

Supplementary table 3: MiRNA mimic and inhibitor sequence information

NC: negative control

name	product	Sequence (from 5' to 3')
NC siRNA	.:DNA	Sense UUCUCCGAACGUGUCACGUTT
	SIKINA	Antisense ACGUGACACGUUCGGAGAATT
DICERI siRNA 1	siRNA	Sense GGACCAUUUACUGACAGAATT
		Antisense UUCUGUCAGUAAAUGGUCCTT
DICER1 siRNA 2	siRNA	Sense GGCCAUUGGACACAUCAAUTT
		Antisense AUUGAUGUGUCCAAUGGCCTT
DICER1 siRNA 3	siRNA	Sense CCUCCUGGUUAUGUAGUAATT
		Antisense UUACUACAUAACCAGGAGGTT

Supplementary table 4: siRNA sequence information

Gene symbol	Ta *(℃)	Sequences (from 5' to 3')			
hsa-miR-15a-5p	60	Forward	UAGCAGCACAUAAUGGUUUGUG		
hsa-miR-16-5p	60	Forward	UAGCAGCACGUAAAUAUUGGCG		
hsa-miR-103a-3p	60	Forward	AGCAGCAUUGUACAGGGCUAUGA		
hsa-miR-195-5p	60	Forward	UAGCAGCACAGAAAUAUUGGC		
hsa-miR-107	60	Forward	AGCAGCAUUGUACAGGGCUAUCA		
hsa-miR-424-5p	60	Forward	CAGCAGCAAUUCAUGUUUUGAA		
hsa-miR-497-5p	60	Forward	CAGCAGCACACUGUGGUUUGU		
hsa-miR-503-5p	60	Forward	UAGCAGCGGGAACAGUUCUGCAG		
hsa-miR-646	60	Forward	AAGCAGCUGCCUCUGAGGC		
hsa-miR-6838-5p	60	Forward	AAGCAGCAGUGGCAAGACUCCU		
RNU6 (U6 small	60	Forward	CTCGCTTCGGCAGCACA		
nuclear RNA)	00	Reverse	AACGCTTCACGAATTTGCGT		
II 1D	50	Forward	AGAAGTACCTGAGCTCGCCA		
ILID	59	Reverse	CTGGAAGGAGCACTTCATCTGT		
ПС	61	Forward	CAATCTGGATTCAATGAGGAGAC		
ILO	01	Reverse	CTCTGGCTTGTTCCTCACTACTC		
IL8	61	Forward	TGGAGAAGTTTTTGAAGAGGGCT		
		Reverse	ACAGACCCACACAATACATGAAG		
ммр3	59	Forward	AGTCTTCCAATCCTACTGTTGCT		
		Reverse	TCCCCGTCACCTCCAATCC		
MMD13	59	Forward	AATATCTGAACTGGGTCTTCCAAAA		
		Reverse	CAGACCTGGTTTCCTGAGAACAG		
TCFR	50	Forward	CTAATGGTGGAAACCCACAACG		
	59	Reverse	TATCGCCAGGAATTGTTGCTG		
TI D2	54	Forward	GCTAGCAGTCATCCAACAGAATC		
ILKS	54	Reverse	AGTCAACTTCAGGTGGCTGC		
TI D4	51	Forward	AATCTAGAGCACTTGGACCTTTCC		
11.K4	54	Reverse	GGGTTCAGGGACAGGTCTAAAGA		
BCI 2	60	Forward	AGGCTGGGATGCCTTTGTGG		
DUL2	00	Reverse	TTTGTTTGGGGGCAGGCATGT		
TRIM73	60	Forward	AACAAACAGGATGTTGCTGGAG		
1 NIIVI <i>43</i>	00	Reverse	GAGCCAGTCCAACCCTTCAT		
STIMO2	60	Forward	GAGAGGCAGGGCTTGTCAAT		
SUMU3	OU	Reverse	CGGGCCCTCTAGAAACTGTG		

Supplementary table 5: Primer information

CEP55	60	Forward	ACTTTTGGAGAAAATTCGAGTCCT
	00	Reverse	GTTGGTCTCTCAGTCGCTGT
Г9Г1	60	Forward	GCCATCCAGGAAAAGGTGTGA
E2F I	00	Reverse	GTGATGTCATAGATGCGCCG
CONA	60	Forward	CCAGGAGAATATCAACCCGGA
CCNAZ	00	Reverse	GGTGCAACCCGTCTCGT
K CNN4	60	Forward	CCGAGAGGCAGGCTGTTAAT
KUNIN4	00	Reverse	CAGACGATCTTGCCCCACAT
GAPDH	60	Forward	CACCCACTCCTCCACCTTTG
	00	Reverse	CCACCACCCTGTTGCTGTAG

* : Annealing Temperature

	Cytokine arrangement of Rayblo C-Series numan Cytokine antibody array C3.										
	Α	В	С	D	Ε	F	G	н	Ι	J	K
1	POS	POS	POS	POS	NEG	NEG	ENA-78	G-CSF	GM-CSF	GRO	GRO-α
2	I-309	IL-1α	IL-1β	IL-2	IL-3	IL-4	IL-5	IL-6	IL-7	IL-8	IL-10
3	IL12-p40	IL-13	IL-15	IFN-γ	MCP-1	MCP-2	MCP-3	M-CSF	MDC	MIG	MIP-1β
4	MIP-1-	RANTES	SCF	SDF-1	TARC	TGF-β1	TNF-α	TNF-β	EGF	IGF-1	Angiogenin
5	OSM	TPO	VEGF	PDGF-BB	Leptin	BDNF	BLC	СК β8-1	Eotaxin	Eotaxin-2	Eotaxin-3
6	FGF-4	FGF-6	FGF-7	FGF-9	FLT-3 Ligand	Fractalkine	GCP-2	GDNF	HGF	IGFBP-1	IGFBP-2
7	IGFBP-3	IGFBP-4	IL-16	IP-10	LIF	LIGHT	MCP-4	MIF	MIP-3a	NAP-2	NT-3
8	NT-4	OPN	OPG	PARC	PIGF	TGF-b2	TGF-b3	TIMP-1	TIMP-2	POS	POS

Supplementary table 6: Cytokine arrangement of RayBio[®] C-Series human cytokine antibody array C5.

Supplementary table 7: Dysregulated genes in RASF after gain of miR-424 function detected by using mRNA deep sequencing

	Regulation after			Autoomo oftor transfortad
Gene Symbol	transfected with	padj	Function in literature	with mimic
	mimic			
ZNF367	Down	6.56E-08	ZNF367 knockdown increased proliferation in vitro and vivo, also increased cellular invasion and migration. ¹	Promote the proliferation
BTRC	Down	3.80E-08	BTRC is negative factors controlling I κ B degradation in the type 1 TNF receptor (TNF-RI) and IL-1R pathways uponTNF- α and IL-1 β stimulation. ²	inhibit the degradation of IkB
CCNA2	Down	0.00832	CCNE2 or CCNA2 silencing markedly decreased abl cell and CWR22Rv1 cell growth. ³	inhibit proliferation
CD83	Down	0.00162	In mixed leukocyte reaction (MLR), sCD83 inhibits DC-mediated T cell activation and proliferation. ⁴	Promote the proliferation
CDC6	Down	0.01602	Down-regulation of CDC6 in HO8910 cells decreased cell proliferation and colony formation. ⁵	inhibit proliferation
CEP55	Down	0.00328	knockdown of CEP55 markedly inhibited cell viability and proliferation and CEP55-silenced cells were obviously arrested in the G0/G1 phase and presented significant cell apoptosis . ⁶	inhibit proliferation and promote apoptosis
			CEP55 knockdown significantly induced cell cycle arrest at G1 phase and suppressed OS cell proliferation, migration and invasion. ⁷	inhibit proliferation
E2F1	Down	0.01955	E2F1 silencing effectively downregulated expression of canonical E2F target genes and suppressed RANKL-induced osteoclast genesis. ⁸	Suppress osteoclast genesis
E2F2	Down	3.65E-05	In embryonic fibroblasts (MEF) of E2F2 knockout mice, the expression of IL-1 α , IL-1 β and TNF- α was suppressed. ⁹	Upregulate the expression of IL-1 α , IL-1 β , and TNF- α
			Silencing E2F2 suppresses the proliferation, migration, and invasion of RASFs in vitro. ¹⁰	inhibit proliferation
KCNN4 (KCa3.1)	Down	0.00240	Different concentrations of the KCa3.1 inhibitor significantly reduced the proliferation of RASFs. ¹¹	inhibit proliferation
STMN1	Down	0.00111	Inhibition of STMN1 showed a decrease in cell proliferation. ⁹	inhibit proliferation

	mknA deep sequencing						
Gene Symbol	Regulation after transfected with mimic	padj*	Function in literature	Outcome after transfected with mimic			
BCL2	Down	1.10E-06	SF Treg cells transcribing high levels of Bcl-2 and microRNA-21 demonstrate limited apoptosis in RA ¹² .	Promote apoptosis			
TRIM23	Down	8.16E-11	Overexpression of TRIM23 can activate the NF-κB pathway ¹³	Inhibit NF-κB pathway			
SUMO3	Down	1.28E-07	The knockdown of SUMO-2/3 significantly increased the TNF-α and IL-1β, induced expression of MMP-3 and MMP-13, accompanied by increased NF-κB activity ¹⁴ .	Promote NF-kB pathway			

Supplementary table 8: Dysregulated genes in RASF after gain of miR-497 function detected by using mRNA deep sequencing

* : p-value adjusted

Gene name	miRNA name	Experiments throughput	Cell lines	Tissues
PDCD4	hsa-miR-424-5p	low: 0 high: 6	BETA Cells, 293S, HEK293, HELA	Pancreas, Cervix, Kidney
BCL2	hsa-miR-424-5p	low: 0 high: 3	EF3DAGO2, HEK293, HELA	Cervix, Kidney
CCNE1	hsa-miR-424-5p	low: 3 high: 5	THP1, HEPG2, HELA, 293S, HEK293	Peripheral Blood, Liver, Cervix, Kidney
CCNE2	hsa-miR-424-5p	low: 1 high: 0	THP1	Peripheral Blood
CCND1	hsa-miR-424-5p	low: 2 high: 11	THP1, HEPG2, MDAMB231, HEK293,293S, HS5, HS27A	Mammary Gland, Peripheral Blood, Liver, Kidney, Bone Marrow
CCND3	hsa-miR-424-5p	low: 1 high: 0	HEPG2	Liver

Supplementary table 9: Validated miR-424 target genes from Tarbase.

Gene name	miRNA name	Experiments throughput	Cell lines	Tissues
PDCD4	hsa-miR-497-5p	low: 0 high: 8	BETA Cells, 293S, HELA	Pancreas, Cervix, Kidney, Brain
BCL2	hsa-miR-497-5p	low: 0 high: 2	EF3DAGO2, HELA	Cervix
CCNE1	hsa-miR-497-5p	low: 5 high: 3	HELA, 293S, MDAMB231, SKHEP1, HEPG2, HEK293T	Mammary Gland, Liver, Cervix, Kidney
CCND1	hsa-miR-497-5p	low: 5 high: 7	HEK293A, SGC7901, SKHEP1, HEPG2,293S, HS5, HS27A, HMSC	Gastric, Liver, Kidney, Bone Marrow
CCND3	hsa-miR-497-5p	low: 3 high: 0	SKHEP1, HEPG2	Liver

Supplementary table 10: Validated miR-497 target genes from Tarbase.

Gene name	miRNA name	Experiments throughput	Cell lines	Tissues
DICER1	hsa-miR-424-5p	low: 1 high: 2	THP1, MDAMB231,293S	Peripheral Blood, Mammary Gland, Kidney
DICER1	hsa-miR-497-5p	low: 0 high: 3	293S	Kidney

Supplementary table 11: Validated DICER1 and miRNA target relationship from Tarbase

References:

- 1 Jain, M. *et al.* ZNF367 inhibits cancer progression and is targeted by miR-195. *PloS one* **9**, e101423, doi:10.1371/journal.pone.0101423 (2014).
- 2 Mu, N. *et al.* A novel NF-kappaB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. *Scientific reports* **6**, 20059, doi:10.1038/srep20059 (2016).
- 3 Zhang, C. *et al.* Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. *Cancer research* **71**, 6738-6748, doi:10.1158/0008-5472.CAN-11-1882 (2011).
- 4 Lechmann, M. *et al.* The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. *J Exp Med* **194**, 1813-1821, doi:10.1084/jem.194.12.1813 (2001).
- 5 Deng, Y. *et al.* High expression of CDC6 is associated with accelerated cell proliferation and poor prognosis of epithelial ovarian cancer. *Pathol Res Pract* **212**, 239-246, doi:10.1016/j.prp.2015.09.014 (2016).
- Liu, L., Mei, Q., Zhao, J., Dai, Y. & Fu, Q. Suppression of CEP55 reduces cell viability and induces apoptosis in human lung cancer. *Oncology reports* 36, 1939-1945, doi:10.3892/or.2016.5059 (2016).
- Xu, L. *et al.* CEP55 promotes the proliferation and invasion of tumour cells via the AKT signalling pathway in osteosarcoma. *Carcinogenesis* 39, 623-631, doi:10.1093/carcin/bgy017 (2018).
- 8 Murata, K. *et al.* Hypoxia-Sensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human Macrophages and Suppresses Osteoclastogenesis. *Immunity* **47**, 66-79 e65, doi:10.1016/j.immuni.2017.06.018 (2017).
- 9 Wang, S., Wang, L., Wu, C., Sun, S. & Pan, J. H. E2F2 directly regulates the STAT1 and PI3K/AKT/NF-kappaB pathways to exacerbate the inflammatory phenotype in rheumatoid arthritis synovial fibroblasts and mouse embryonic fibroblasts. *Arthritis research & therapy* 20, 225, doi:10.1186/s13075-018-1713-x (2018).
- 10 Zhang, R., Wang, L., Pan, J.-h. & Han, J. A critical role of E2F transcription factor 2 in proinflammatory cytokines-dependent proliferation and invasiveness of fibroblast-like synoviocytes in rheumatoid Arthritis. *Scientific reports* 8, doi:10.1038/s41598-018-20782-7 (2018).
- 11 Friebel, K., Schonherr, R., Kinne, R. W. & Kunisch, E. Functional role of the KCa3.1 potassium channel in synovial fibroblasts from rheumatoid arthritis patients. *J Cell Physiol* **230**, 1677-1688, doi:10.1002/jcp.24924 (2015).
- 12 van der Geest, K. S. *et al.* SF Treg cells transcribing high levels of Bcl-2 and microRNA-21 demonstrate limited apoptosis in RA. *Rheumatology (Oxford)* **54**, 950-958, doi:10.1093/rheumatology/keu407 (2015).
- 13 Poole, E. et al. Identification of TRIM23 as a cofactor involved in the regulation of

NF-kappaB by human cytomegalovirus. *Journal of virology* **83**, 3581-3590, doi:10.1128/JVI.02072-08 (2009).

14 Frank, S. *et al.* Regulation of matrixmetalloproteinase-3 and matrixmetalloproteinase-13 by SUMO-2/3 through the transcription factor NF-kappaB. *Annals of the rheumatic diseases* **72**, 1874-1881, doi:10.1136/annrheumdis-2012-202080 (2013).