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Appendix Figure S1: Comparison of prototype trajectories sampling strategies. a-d,
Different strategies to sample prototype trajectories from the GF ERK/Akt dynamics dataset

are presented on the same t-SNE projection of the CNN latent features of trajectories from the

validation set. Prototype trajectories are indicated with diamonds, 10 trajectories are shown

for each GF with each strategy. Missing diamonds in b or c indicate that none, or only a small

proportion of trajectories reached the minimum confidence threshold. a, Random selection, b,
Uncorrelated CNN features and minimal confidence of 90%, c, Uncorrelated CNN features

and minimal confidence of 50%, d, Worst classification: high confidence and wrong prediction.

e-k, Comparison of prototype trajectories identified using different sampling strategies. e,
Starved, f, IGF, g, HRG, h, HGF, i, BTC, j, EGF, k, EPR.
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Supplementary Notes

Appendix Note 1: Rationale for the choice of CNN architecture.

We encourage the use of a simple CNN architecture (Table EV1) that was previously reported

in the literature, and that we also found to be a solid baseline through a wide range of datasets

(Zhou et al, 2015; Wang et al, 2016). We believe that as little effort as possible should go into

the network design and training, such that emphasis can be put on the interpretation of results.

We thus favorized the ease of model training over predictive power, with smaller models that

are easier and faster to train.

This CNN architecture also displays desirable aspects for our application. First, its plain feed-

forward structure reduces the range of parameters to tweak if the classification performance

is not satisfactory with the defaults. Optimizing a CNN architecture is a very time-consuming

activity that requires expertise and, despite recent advances(Springenberg et al, 2016; Frankle

& Carbin, 2018), still involves a lot of trials and errors. Reducing the time spent on this step is

essential to quickly start with mining the results. Second, the reduced number of parameters

enables fast training, even on consumer-grade GPU, and the use of smaller training datasets.

The latter implies that training a CNN from scratch is realistic even with relatively small

datasets that are usually obtained in single-cell biology. This is an important requirement in

cases where no similar and large annotated datasets can be used for transfer learning. Third,

a strong countermeasure to overfitting is embedded in this architecture, in the form of a global

average pooling (GAP) layer. Not only does GAP help to obtain a reasonable model, the

introduction of a bottleneck in the size of the latent features is also useful to project them in

low dimensions without large distortions. [PAG2] Finally, this architecture is compatible with

the creation of CAMs which we use to identify characteristic motifs in the trajectories.

Though the exact architecture of the CNN is flexible, the CAM motif mining approach is

restraining the choice of architectures because it explicitly requires the use of global average

pooling (Zhou et al, 2015). This limitation can however be circumvented by replacing CAM

with another technique that creates saliency maps such as: grad-CAM, a generalization of

CAM which is compatible with more architectures (Selvaraju et al, 2017) or guided

backpropagation, another popular choice (Springenberg et al, 2014).

As a general guideline to start training such a model, we recommend to keep the number of

CNN features, L2 penalty and the initial learning rate at their default value and to focus on

adjusting the learning rate decrease schedule. If the model underfits after a few trials, try
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increasing the number of features. If the model overfits, try to decrease the number of features

and/or to increase the L2 penalty.

Appendix Note 2: CODEX creates features that isolates dynamics in synthetic data.

We first evaluated the ability of a supervised CNN classifier to classify the dynamic landscape

in a synthetic time-series dataset, even if this separation is not necessary to perform the

classification task perfectly. To do so, we created a synthetic dataset resembling pulsatile

signaling activities and trained a CNN to recognize the different synthetic classes (Fig.EV1).

All trajectories comprise 4 peak events which can be either full Gaussian peaks or half

truncated ones. The dataset comprises 2 classes which differ by their number of full peaks.

Trajectories from the first class comprise 0, 1 or 2 full peaks, while trajectories in the second

class comprise 2, 3 or 4 full peaks (see Methods). Because the abundance of full peaks is the

only difference in the process that generates these curves, there is an ambiguous case when

an input trajectory comprises 2 full peaks. Hence the theoretical maximum accuracy for this

classification task is 80%, a performance that the CNN reached after a few epochs of training.

The projection of theCNN features learnt for this task showswell-separated trajectory clusters

which are grouping together trajectories with a common number of full peaks (Fig.EV1a, b).

The trajectories for which the model was most confused between the 2 classes (“Low

confidence”) all harbored 2 full peaks, hence were sampled from the only ambiguous case.

This empirical observation is interesting because the model is only optimized to minimize the

classification loss, such that the clusters containing 0 or 1 full peak and the clusters containing

3 and 4 full peaks could be merged together without affecting the classification performance.

This illustration exposes the core intuition behind CODEX, that CNN features can naturally

evolve to capture shapes in the data even without hard constraints.

Further, we verified that the motifs captured by CAMs (see Methods) were cleanly isolating

class-discriminative motifs (Fig.EV1c, d). As expected, these motifs contained the tips of the

peaks which are either full or truncated, but no flat part of the trajectories which are common

to both classes. This also shows that both symmetries of truncation are captured. Finally, one

can notice a bias towards the right over the left truncation since cluster 2 is less represented

than cluster 3 despite being equally abundant in the trajectories. This last point indicates that

the abundance of CAM clusters should be taken with caution. The possible sources of

variation are the model training itself as well as the selection of trajectories from which to

extract the motifs.
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Appendix Note 3: CODEX identifies TGFꞵ dose-dependent signaling states.

To further showcase CODEX, we used it to analyze a dataset in which SMAD2 activity is

measured in response to a dose challenge of TGFꞵ in MCF10A cells (Strasen et al, 2018). In

this study, a fusion reporter between SMAD2 and YFP provides a readout for SMAD2 activity

by computing the relative abundance of the reporter between the nucleus and the cytoplasm.

We trained a CNN to recognize the doses of TGFꞵ that were given to the cells based on their

SMAD2 trajectories.

In the original study, shape-based clustering of single-cell trajectories using DTW revealed a

continuum of SMAD2 heterogeneous signaling states in response to the TGFꞵ dose response.

We used this already published DTW-based clustering as a global indication of the shape of

each trajectory. We then compared how the CNN features for each trajectory were arranged

with respect to both the TGFꞵ dose and the DTW clusters. The projection of the CNN features

revealed some entanglements between the TGFꞵ doses which matched the heterogeneity of

SMAD2 signaling at all stimulation doses (Fig.4a). Interestingly, this entanglement seemed

largely smoothed out when comparing the CNN features to the DTW clusters (Fig.4b). This

again hints that despite the CNN features being learnt with the objective to separate the input

classes, they still evolve to capture dynamic trends of the data.

From this observation we hypothesized that directly clustering the CNN features could also

provide classes of representative dynamics in the data, similarly to what is done by DTW

clustering (Fig.4c). We found the resulting clusters to be in slightly better agreement with the

DTW clusters than with the TGFꞵ doses (Fig.4d, e). To summarize, we found that the CNN

features clusters also efficiently captured trajectory profiles (Fig.4f). Visual inspection of

representative trajectories suggests that the CNN features performed slightly better in

separating flat from weak responders in comparison with the DTW clusters (CNN features

clusters 1 and 2; DTW cluster 1).

Appendix Note 4: CODEX identifies cell line-specific p53 responses under increasing
ionizing radiation doses.

To further showcase CODEX, we used it to analyze a much larger dataset with more classes.

We used a study in which p53 activity dynamics was reported in 12 cancer cell lines under

exposure to 5 different doses of ionizing radiation, yielding a total of 60 classes (Stewart-

Ornstein & Lahav, 2017). p53 abundance was reported with a live-cell reporter consisting of

a p53-YFP fusion construct.
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After training, the projection of the CNN features shows that cell lines, irrespectively of the

radiation dose, tend to have trajectories with similar features (Fig.5a, b). This strongly

suggests that the cell line, rather than the radiation dose, is the major factor of p53 response

variability in this dataset.

We then evaluated whether CODEX could recapitulate cell line-specific behaviors that were

previously reported. To do so, we clustered the trajectories on the base of their CNN features

into 6 clusters (Fig.5c). Similarly to what we observed for the TGFꞵ/SMAD2 dataset (Fig.4f),

we found that the CNN features clusters capture identifiable trajectory shapes (Fig.5d):

sustained activity for cluster 1 and 2, flat baseline for cluster 3, oscillations of large amplitude

for cluster 4, oscillations of small amplitude for cluster 5 and a single pulse of activity for cluster

6. We then reported the distributions of these different clusters through the combinations of

cell lines and radiation doses (Fig.5e, f). We found similar results to the original study, in which

curated features were used to discriminate among dynamic signaling states. For example,

MCF7 trajectories strikingly switch from a single pulse (cluster 6) to an oscillatory regime

(cluster 5) with increasing radiation doses. Similarly, U2OS cells switched from an oscillatory

regime (cluster 5) to a more sustained one (clusters 1 and 2) at high radiation doses. Other

cell lines, on the contrary, adopted a consistent behavior through all radiation doses such as

HCT116 cells which only display a single pulse of p53 activity (cluster 6) or MALME3 cells

which display only low amplitude responses (clusters 3 and 6). CODEX could therefore

recapitulate important findings in a large time-series dataset with very little human input and

in about one hour for training the model.

Appendix Note 5: CODEX identifies discriminative features in Drosophila Melanogaster
speed movement data.

We then tested if CODEX can be generalized to completely different time-series datasets. For

this purpose, we applied CODEX to a univariate time-series dataset that describes the

movement speed of Drosophilamotility in a tube over 12 hours (Fulcher & Jones, 2017). There

are 4 classes in this dataset that correspond to the combination of the Drosophila sex and

whether the observation is carried under day or night light conditions. The trajectories are very

long and show a strong alternance between resting phases and extreme events that are very

different from the smooth series in the signaling datasets. Despite this, using the same CNN

architecture, the trainedmodel showed excellent prediction capabilities (accuracy of 90%) that

are similar to the ones obtained in the original study with a classifier that uses hundreds of

classical time-series features (accuracy of 95%). T-SNE projection of the CNN features clearly
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separated the 4 classes based on Drosophila motility trajectories, and identified prototype

trajectories (Fig EV5a,b).

We then investigated whether a correspondence between CODEX’s output and the classical,

interpretable features could be found. We observed that the criteria that separates male from

female behaviors were retrieved in the CNN predictions. In the previous study, two of the main

reported differences between males and females’ movements are that females present a

lower autocorrelation structure and a higher spectral flatness in their movement. We could

retrieve this trend in the data and observed that the top prototype trajectories for female

classes had a significantly lower autocorrelation and higher spectral flatness than their non-

prototype counterparts (Fig.EV5c). More generally, we observed that a lower autocorrelation

structure and a higher spectral flatness correlated with increased prediction odds for female

classes (Fig.EV5d). However, the significant sampling of extreme individuals, regarding both

features, was not observed for male prototypes. One could have expected male trajectory

prototypes to also be significantly different from the other features but with the reverse effect

than females. This could be due to the fact that the CNN was trained to separate all

combinations of sex and night and not only the Drosophila sex. This absence of trend calls for

caution when making a parallel between the CNN predictions and interpretable features from

another set, especially if the former was trained on a different grouping than the one of interest.



11

Bibliography

Frankle J & Carbin M (2018) The Lottery Ticket Hypothesis: Finding Sparse, Trainable

Neural Networks. arXiv:1803.03635 [cs]

Fulcher BD & Jones NS (2017) hctsa: A Computational Framework for Automated Time-

Series Phenotyping Using Massive Feature Extraction. Cell Syst. 5: 527–531.e3
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D & Batra D (2017) Grad-CAM:

Visual explanations from deep networks via gradient-based localization. In

Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV) pp

618–626. IEEE

Springenberg JT, Dosovitskiy A, Brox T & Riedmiller M (2014) Striving for Simplicity: The All

Convolutional Net. arXiv preprint

Springenberg JT, Klein A, Falkner S & Hutter F (2016) Bayesian optimization with robust

Bayesian neural networks. In Advances in Neural Information Processing Systems

pp 4134–4142.

Stewart-Ornstein J & Lahav G (2017) p53 dynamics in response to DNA damage vary

across cell lines and are shaped by efficiency of DNA repair and activity of the kinase

ATM. Sci. Signal. 10:
Strasen J, Sarma U, Jentsch M, Bohn S, Sheng C, Horbelt D, Knaus P, Legewie S & Loewer

A (2018) Cell-specific responses to the cytokine TGFβ are determined by variability

in protein levels. Mol. Syst. Biol. 14: e7733
Wang Z, Yan W & Oates T (2016) Time Series Classification from Scratch with Deep Neural

Networks: A Strong Baseline. arXiv:1611.06455 [cs, stat]

Zhou B, Khosla A, Lapedriza A, Oliva A & Torralba A (2015) Learning Deep Features for

Discriminative Localization. arXiv:1512.04150 [cs]


