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19th Nov 20201st Editorial Decision

Thank you again for submit t ing your work to Molecular Systems Biology. I would like to apologise 
once again for the except ional delay in get t ing back to you with a decision, which was due to the 
fact that after repeated reminders we st ill have not received the comments of reviewer #1. The 
reason why I have waited for them unt il now it that they repeatedly promised to deliver comments, 
and I felt that it would have been const ruct ive to have a third opinion from an expert , especially on a 
new methodology. Nevertheless, to not delay the process any further, we have now decided to 
proceed with making a decision based on the two available reports. Overall, the reviewers 
acknowledge that the presented tool seems useful. However, they raise a series of concerns, which 
we would ask you to address in a major revision. 

While reviewer #3 is overall support ive, reviewer #2 raises some important points which would need 
to be convincingly addressed. Without repeat ing all of this reviewer's points, we think that it is 
important to:

- Provide further support for the superiority of the approach compared to available methods. 

- Perform some follow up analyses to more convincingly demonstrate the ability of the proposed 
approach to derive concrete biological insights. 

- Make sure that the methodology is described in sufficient detail. While reviewer #3 did not have 
issues accessing and understanding the methodology, reviewer #2 did, and we would like to 
emphasize that the methodological details and workflow should be accessible to the broader 
audience of the journal and not only to specialists. This would increase the chances of wide adoption 
of the method. I would like to point out that there are no space limitations in our Methods format. 

Please let me know in case you would like to discuss in further detail any of the issues raised. All 
issues raised by the referees would need to be satisfactorily addressed. 



1) In the second paragraph of the paper, the authors describe their CODEX approach and its
applicat ion to a synthet ic benchmark dataset. For a methods art icle, this descript ion is very short ,
so that the main ideas underlying the framework and the benchmark are hard to follow. Despite
space limitat ions, the authors should spend more efforts to describe the methodological concepts.

2) Then, the authors apply their method to a comprehensive live-cell imaging dataset comprising
thousands of single-cell measurements of Akt and Erk dynamics in response to five different
growth factors. Gaining interpretable insights into the temporal signaling dynamics in such a big
dataset is a challenge, but could lead to highly relevant insights into growth factor specificity. The
authors address this problem by training a neural network (NN), and extract  of prototype t ime
courses for each ligand by clustering of the NN features (Fig. 1B/C). The authors propose the one
part icular CNN architecture, but do not clearly mot ivate the chosen architecture or compare their
approach against  alternat ive models. For instance, they may compare their model against  standard
architecture, such as ResNet. As an alternat ive to the CAM method, the latent space

REFEREE REPORTS
-------------------------------------------------------- 

Reviewer #2: 

In their manuscript , Jaques et al. present a machine learning approach to ext ract human 
interpretable prototype t ime courses and characterist ic mot ifs from cell signaling t ime course data. 
They apply their method to a novel dataset comprising thousands of bivariate Akt and Erk single-
cell t rajectories in response to st imulat ion with various growth factors. Specifically, they t rain a 
convolut ional neural network (CNN) to classify t ime courses according to the nature of the applied 
extracellular ligand. From the trained model, they ext ract Class-Act ivat ion Maps (CAMs) to 
reconst ruct and visualize recurrent t ime course characterist ics (which they call mot ifs). Thereby, 
they assign characterist ic bivariate Akt and Erk dynamics to each growth factor which may hint 
towards underlying ligand-specific signaling mechanisms and/or network mot ifs. This approach 
generally demonst rates how the "black box" of NN can be opened up to gain interpretable biological 
insights and is of general interest in the analysis of single-cell t ime courses. However, in its present 
form, the manuscript has several weaknesses, as the descript ion of the framework remains vague, 
the superiorit y of their approach as well as its applicabilit y to gain concrete biological insights 
remain unclear. 

Specific comments 



representat ion of an autoencoder might be applied (for instance, ht tps://arxiv.org/abs/1610.04794). 

3) Based on the CNN model, recurrent t ime course characterist ics (mot ifs) are extracted using
CAMs. Thereby, bivariate Akt and Erk dynamics of variable length are assigned to each growth
factor (Fig. 2A/B). To us, this derivat ion of human interpretable t ime course characterist ics for each
ligand seemed to be the main novelty of the CODEX approach, but this is not clearly stated in the
manuscript  (see also comment 4). Furthermore, it  is not direct ly apparent how such mot ifs will lead
to biological insight. The authors write that they may be used for modeling of signaling networks.
They should be more concrete about this statement, provide a specific example for such a
modeling approach and discuss how modeling the mot ifs will be beneficial when compared to
modeling the prototype t ime courses.

4) In relat ion to the previous comment, the authors should better highlight  the novelt ies and
advantages of their approach compared to exist ing methods.

5) In Fig. 2C, the authors provide combinat ions of lumped Akt and Erk signaling features (rat io and
correlat ion) which best discriminate between the ligands. They should better explain what they
mean when writ ing they were "bringing together the results from the three components of CODEX"
to derive this. Is this a customized analysis for their specific dataset or can this approach be
generalized to other biological systems?

Reviewer #3: 

This short  manuscript  presents a software tool for analyzing patterns found in dynamic t ime course
data. The tool uses a convolut ional neural network machine learning algorithm to classify kinet ic
features within a many-sample dataset, and is part icularly geared to deal with data from live-cell
reporter experiments. The main analysis presented focuses on a dataset with two reporters (for
ERK and Akt), in cells responding to a panel of growth factors that act ivate both pathways. The
data for analysis were generated anew in this study, although they mirror a previously published
study (Sampattavanich). I think this choice is a good one, as they are able to show that their
analysis recapitulates much of what was found in the earlier paper, in some cases with even greater
clarity, as well as some new features, all of which demonstrates the robustness and insight
achievable with their tool. The authors also analyze addit ional published datasets, for SMAD
signaling, p53, and drosophila sleep/wake patterns, with similarly clear results. 

Overall, this work is presented in an extraordinarily clear way, and the software tool meets an
important and growing need in the live-cell field. The authors describe a number of carefully
considered choices that appear to make their tool both versat ile and relat ively easy to use. I think
quite a few people working with live-cell data will find this tool extremely useful. 

We were able to run the software without a problem, and we found it  to be well documented. 

Given the clear and quite thorough presentat ion, we could not find any serious issues to be
addressed. The one area that could perhaps be improved would be some guidance for potent ial
users in select ing the number of features in their CNN, which as they note is the only parameter
that was adjusted between the different datasets; it  would be useful to have a sense of what
criteria are used when deciding how to set  this value.



Point-by-point answers 

Reviewer #1: 

Understanding how the dynamics of signaling proteins underpins different fate 
decisions at the cell, tissue, and organism level is a central question in cell biology. 
Over the last two decades a number of reporter systems have been developed to 
image these dynamics in single cells. By imaging these reporters over time, it is 
possible to generate signaling trajectories, which describe the dynamics of a particular 
reporter, and thus of a particular signaling event such as phosphorylation or nuclear 
translocation, in large populations of cells. However, due to the highly heterogeneous 
nature of these trajectories both within cells and between cells, quantifying and 
classifying these complex dynamics is challenging. Specifically, it is not always clear 
as to which aspect of a signaling trajectory is meaningful statistically or biologically. 

Here Pertz and colleagues present CODEX, a data-driven approach that learns 
specific distinguishing features from different signaling trajectories. By then classifying 
different trajectories in an unbiased fashion (ie by projecting into t-SNE spaces), this 
starting point for understanding how these dynamic behaviours dictate fate decisions. 

4th Feb 20211st Authors' Response to Reviewers



Packages like this are desperately required, and regardless of CODEX's particular 
efficacy, I think this work has impact. I wouldn't say anything here is particularly novel 
in terms of dynamic imaging analysis - much more sophisticated work has been done 
- but this methodology is very intuitive and user friendly. I can easily imagine cell
biologists whose image cells expressing these reporters, to analyse their datasets. I
have already started exploring its capabilities.

Instead of basing their analysis around user-defined features and their statistical 
significance, their approach learns features and uses them to highlight informative 
pieces of data. I like the intuition of using CNN's feature extraction capabilities here, it 
makes perfect sense. Moreover, CODEX provides a universal approach to quickly 
build hypotheses and identify phenotypes in dynamic signals from a wide variety of 
biological systems. 

CODEX demonstrates how modern machine learning models, often criticized for their 
opacity, can reduce the workload of mining large datasets and suggest targeted, 
interpretable analysis. 

Perhaps most importantly, they provide very well documented code and very easy to 
re-implement. 

The authors provide a number of test cases for CODEX which I think demonstrate its 
utility. These are (but not limited to) the following: 

1) On the synthetic dataset, the t-SNE projection of the CNN features learnt for this
task shows well-separated trajectory clusters, which are grouping together trajectories
with a common number of full peaks rather than a common class label. This is
interesting as even though the model is only optimised to minimize the classification
loss between the two classes (full and half peaks), clusters containing 0 or 1 full peak
and the clusters containing 3 and 4 full peaks could identified without affecting the
classification performance. That the model learns specifications within each class
show that that CNNs can naturally evolve to capture shapes in the data even without
hard constraints.

2) When projected into t-SNE space, growth factor (GF) induced trajectories populated
well-defined but also slightly overlapping areas in the projection space. This suggests
that each GF induces a specific continuum of heterogeneous signaling dynamics,
whose characteristics correlate with their cognate GF receptor. I find this section very
interesting - to me it does show the potential of CODEX to classify different complex
responses.

3) Used DTW shape-based clustering to evaluate their distribution in different GF
classes, the authors were able to provide additional insight about GF-specific



signalling dynamics. Specifically, the ErbB1 ligands BTC, EGF, EPR all led to a mix of 
synchronous ERK/AKT pulses in which AKT amplitude was lower than ERK amplitude, 
or wider ERK/AKT pulses with a very low AKT amplitude. HRG led to a peculiar pattern 
consisting of multiple sharp ERK pulses under larger AKT pulses. IGF led to sustained 
AKT, and baseline ERK activity with occasional pulses. Taken together CODEX 
results suggested that the synchrony between ERK and AKT as well as their amplitude 
ratio were highly discriminative across GF stimulations. 

4) In a study of SMAD signaling dyanmics, visual inspection of representative
trajectories suggests that the CNN features performed slightly better
in separating flat from weak responders in comparison with the DTW clusters.

5) CODEX allowed rapid identification of discrete p53 signalling profiles and evaluation
of their distribution across conditions. CODEX could recapitulate important findings in
a large time-series dataset with very little human input and in about one hour for
training the model.

I really only have one major technical issue. The performance of the CNNs on actual 
dataset of ERK dynamics after stimulation is not impressive. The classifier separated 
the different classes with about 65% accuracy. While the authors claim that this 
"suggests input trajectories carry distinctive features that depend on GF identity many 
hours after exposure"; this accuracy isn't really compared to anything. Furthermore, 
when looking at the other metrics in the table, the precision, recall and f1-score of 
some treatments is not good at all. Whether this is inherent to the data itself, or whether 
the training could be improved, is slightly unclear at this point. This performance I think 
is something to consider on when judging the overall utility of this methods. I would 
like to hear from the authors on this. 

With regard to the last issue, we agree that this classification performance could 
appear rather low in comparison to the very high performance that made the fame of 
CNNs. We believe there are multiple sources behind this. First, we intentionally limit 
our analysis to the “difficult” part of the data such that we are avoiding the early, strong 
and synchronized responses after GF addition. This is because we wanted to 
demonstrate how CODEX can help in a complex scenario where dynamics are hard 
to analyze but biologically-relevant. Second, we have chosen a CNN architecture that 
has a good interpretability and that is easy to train, but that is not geared for state-of-
the-art classification performance. Classification performance might be improved with 
a more complex architecture, but it was not our main aim. Last, we also believe that 
the single-cell responses are highly heterogeneous, with features that are partially 
overlapping between the growth factors. These heterogeneity and overlap are such 
that the optimal classification accuracy is probably rather low. However, this 
heterogeneity results from noise in the biochemical networks, is biologically-relevant, 
and is an aspect of signaling networks that we wanted to capture. 



Further, we specifically addressed this concern with 2 complementary approaches. 
First, we took a complete orthogonal approach by extracting hundreds of classic time-
series features from ERK and Akt traces. We then used these features to train a 
random forest to recognize the GFs (Figure 3 and pages 9). The resulting model is 
performing significantly worse than its CNN counterpart (Tables EV2, EV3). This is to 
us, an indication that the low classification performance is inherent to the data and not 
to our analysis. Second, we show that a different CNN architecture (ResNet) is also 
struggling to separate GFs (Figure EV3 and page 8, 2nd paragraph). In fact, its 
classification accuracy is even slightly lower than the ones of the plain CNN (Tables 
EV2, EV3). Altogether this suggests that there is not much room for improvement of 
classification performance. 

Minor issues: 

As far as I understand it they claim that all CNNs are fully-convolutional, but in code 
they have fully-connected layers for the classifiers. Maybe, what they mean is that the 
feature extractors used remove these fully-connected layers in and only use the fully-
convolutional part of the CNN? 

By fully-convolutional we meant an architecture without intermediate pooling layers. 
The term was indeed misleading, hence we removed it. 

The authors state that "only the number of filters in the last convolutional layer, i.e. the 
number of CNN features used for classification and projection, varied based on the 
dataset used", but don't give information on why specific feature sizes were chosen. 
Might be interesting to see what lead them to decision. Maybe just trial and error? 

It was indeed a trial-and-error process guided by overfitting reduction and preservation 
of predictive power. For each model we tried to change a variety of parameters but 
found the number of CNN features to be the fastest and easiest to tune since it has a 
large and predictable effect (i.e. less features reduce overfitting). We sought to offer a 
solution in which as little time as possible is spent on model tuning and found that this 
a good trade-off to propose to new users. We do not exclude that users should try to 
tune other parameters, such as the L2 penalty, and make it easy to do so in our 
implementation. However, the changes are more subtle and we fear that the growing 
number of parameters to adjust could discourage potential users, while default options 
appeared robust in our testing. We have discussed this point more precisely in the 
main text (page 4, Results section), the method section (page 13, 1st paragraph of the 
corresponding section) and the appendix notes (appendix Note 1, last paragraph).  



I am not sure I find the study of Drosophila behaviour particularly useful here. 

This dataset was introduced to demonstrate the applicability of CODEX to time-series 
beyond cell signaling. We believe it was important to show a concrete application on 
data that were not generated by biosensors. In addition, we wanted to show that the 
same CNN architecture can work for trajectories with distinct profiles: biosensor data 
all vary rather smoothly whereas Drosophila trajectories are bursty. This last point 
supports the idea that CODEX can be quickly adapted to a range of datasets without 
heavy parameter tuning. 

Reviewer #2: 

In their manuscript, Jaques et al. present a machine learning approach to extract 
human interpretable prototype time courses and characteristic motifs from cell 
signaling time course data. They apply their method to a novel dataset comprising 
thousands of bivariate Akt and Erk single-cell trajectories in response to stimulation 
with various growth factors. Specifically, they train a convolutional neural network 
(CNN) to classify time courses according to the nature of the applied extracellular 
ligand. From the trained model, they extract Class-Activation Maps (CAMs) to 
reconstruct and visualize recurrent time course characteristics (which they call motifs). 
Thereby, they assign characteristic bivariate Akt and Erk dynamics to each growth 
factor which may hint towards underlying ligand-specific signaling mechanisms and/or 
network motifs. This approach generally demonstrates how the "black box" of NN can 
be opened up to gain interpretable biological insights and is of general interest in the 
analysis of single-cell time courses. However, in its present form, the manuscript has 
several weaknesses, as the description of the framework remains vague, the 
superiority of their approach as well as its applicability to gain concrete biological 
insights remain unclear. 

Specific comments 

1) In the second paragraph of the paper, the authors describe their CODEX approach
and its application to a synthetic benchmark dataset. For a methods article, this
description is very short, so that the main ideas underlying the framework and the
benchmark are hard to follow. Despite space limitations, the authors should spend
more efforts to describe the methodological concepts.

We fully agree with this comment. We were initially intending to release a very 
condensed manuscript using the growth factor dataset as a guiding example. 
However, under the light of the reviewers’ comments, it appeared that some sections 
had to be largely expanded for intelligibility. In the present revision, the synthetic data 



generation and the interpretation of the corresponding results were detailed at greater 
length in the main text (page 5, 1st paragraph). 

2) Then, the authors apply their method to a comprehensive live-cell imaging dataset
comprising thousands of single-cell measurements of Akt and Erk dynamics in
response to five different growth factors. Gaining interpretable insights into the
temporal signaling dynamics in such a big dataset is a challenge, but could lead to
highly relevant insights into growth factor specificity. The authors address this problem
by training a neural network (NN), and extract of prototype time courses for each ligand
by clustering of the NN features (Fig. 1B/C). The authors propose the one particular
CNN architecture, but do not clearly motivate the chosen architecture or compare their
approach against alternative models. For instance, they may compare their model
against standard architecture, such as ResNet. As an alternative to the CAM method,
the latent space representation of an autoencoder might be applied (for instance,
https://arxiv.org/abs/1610.04794).

We thank the reviewer for pointing out the lack of clarity on this point. We respectfully 
disagree with our absence of justification about the architecture choice because the 
appendix note 1 is covering this exact point. We do however agree that further 
explanations were needed in the main text. We have added such explanations (page 
4, first paragraph of the Results and Discussion section), which should make the 
rationale clearer and guide new users aiming to apply the method. 

We also agree that the absence of comparison to alternative models was problematic. 
To address this issue, we have redone the CODEX analysis for ERK and Akt activity 
with a different architecture. As was suggested, we used a standard ResNet 
architecture (He et al, 2016). Interestingly, we found the results to be very similar to 
the ones obtained with a plain CNN: the dataset projection, class prototypes and class-
specific motifs are comparable (Figure EV3 and corresponding text on page 8, 2nd 
paragraph; Tables EV2, EV3). We believe that this experiment consolidates our 
previous findings about ERK and Akt dynamics and emphasizes the robustness of the 
analysis. 

With regards to the Deep Clustering Network, we did not fully understand what was 
meant by an “alternative to the CAM method”. We agree that creating “clustering-
friendly” features with an autoencoder can definitely be of interest to obtain a low-
dimensional embedding of the dataset. However, this would come at the cost of 
dropping the prototype extraction and motifs extraction without further training of a 
classifier with the encoder features. 

3) Based on the CNN model, recurrent time course characteristics (motifs) are
extracted using CAMs. Thereby, bivariate Akt and Erk dynamics of variable length are



assigned to each growth factor (Fig. 2A/B). To us, this derivation of human 
interpretable time course characteristics for each ligand seemed to be the main novelty 
of the CODEX approach, but this is not clearly stated in the manuscript (see also 
comment 4). Furthermore, it is not directly apparent how such motifs will lead to 
biological insight. The authors write that they may be used for modeling of signaling 
networks. They should be more concrete about this statement, provide a specific 
example for such a modeling approach and discuss how modeling the motifs will be 
beneficial when compared to modeling the prototype time courses. 

Following this suggestion, we have emphasized the novelty of CAM-based mining and 
its integration with the other results of CODEX (page 9, last paragraph). We agree with 
the reviewer that our very short claim was misleading, and not well documented. In no 
case did we mean that understanding signaling motifs can lead to a generalizable 
modelling framework to understand the network structure that generates these 
signaling dynamics. Rather than being a modelling objective, motifs help to pinpoint 
behaviors of interest which might not be immediately clear, even in prototype 
trajectories. We have now provided a concrete example on how the motif information 
could be used for modelling (page 8, 1st paragraph). 

4) In relation to the previous comment, the authors should better highlight the novelties
and advantages of their approach compared to existing methods.

We have addressed this issue with various edits that emphasize CODEX’s “all-under-
one-roof” nature, its focus on dynamical patterns, the ability to switch and combine the 
different analysis (e.g. visualizing patterns on prototype trajectories) and its ability to 
deal with data where one has no prior knowledge (standfirst text; introduction, last 
sentence; page 9 last paragraph). 
In order to provide concrete material for such comparison, we have added an 
experiment where we analyzed the ERK/Akt dataset with classic machine-learning 
approaches (Figure 3 and page 9). To do so, we extracted hundreds of features from 
the trajectories and used them to explore the trends in the data by: 1. training a random 
forest classifier and inspect feature importance; 2. projecting the features with PCA. 
We found converging results between the classic approaches and CODEX but also 
advantages for the latter. Namely, although the time-series features are explicit, the 
variable importance of the classifier and the interpretation of the PCA components 
gives a very coarse-grained overview of the dataset. This classic “feature-first” 
paradigm lacks the resolution and the intuition that CODEX provides by highlighting 
selective pieces of data. 

5) In Fig. 2C, the authors provide combinations of lumped Akt and Erk signaling
features (ratio and correlation) which best discriminate between the ligands. They
should better explain what they mean when writing they were "bringing together the



results from the three components of CODEX" to derive this. Is this a customized 
analysis for their specific dataset or can this approach be generalized to other 
biological systems? 

This combination of features is an attempt to concisely summarize most insights that 
were acquired on this particular dataset thanks to a CODEX-based exploration. In that 
sense, this is indeed an analysis which is specific to this dataset. But the rationale of 
deriving targeted, quantitative measures following CODEX exploration is general. We 
have modified the text to clarify what is specific to this dataset and what is 
generalizable (page 8, last paragraph). 

Reviewer #3: 

This short manuscript presents a software tool for analyzing patterns found in dynamic 
time course data. The tool uses a convolutional neural network machine learning 
algorithm to classify kinetic features within a many-sample dataset, and is particularly 
geared to deal with data from live-cell reporter experiments. The main analysis 
presented focuses on a dataset with two reporters (for ERK and Akt), in cells 
responding to a panel of growth factors that activate both pathways. The data for 
analysis were generated anew in this study, although they mirror a previously 
published study (Sampattavanich). I think this choice is a good one, as they are able 
to show that their analysis recapitulates much of what was found in the earlier paper, 
in some cases with even greater clarity, as well as some new features, all of which 
demonstrates the robustness and insight achievable with their tool. The authors also 
analyze additional published datasets, for SMAD signaling, p53, and drosophila 
sleep/wake patterns, with similarly clear results. 

Overall, this work is presented in an extraordinarily clear way, and the software tool 
meets an important and growing need in the live-cell field. The authors describe a 
number of carefully considered choices that appear to make their tool both versatile 
and relatively easy to use. I think quite a few people working with live-cell data will find 
this tool extremely useful. 

We were able to run the software without a problem, and we found it to be well 
documented. 

Given the clear and quite thorough presentation, we could not find any serious issues 
to be addressed. The one area that could perhaps be improved would be some 
guidance for potential users in selecting the number of features in their CNN, which as 
they note is the only parameter that was adjusted between the different datasets; it 
would be useful to have a sense of what criteria are used when deciding how to set 
this value.  



The concern about explaining how to choose the number of CNN features is a very 
good point and will help for a wider adoption of the method. This parameter is 
essentially tuned with successive trials, with the objective to balance overfitting and 
predictive power. We added additional indications in the main text (page 4, Results 
section), the method section (page 13, 1st paragraph of the corresponding section) 
and the supplementary notes (appendix Note 1, last paragraph) to clarify this and 
guide new users. 



19th Feb 20211st Revision - Editorial Decision

Thank you again for sending us your revised manuscript . We have now heard back from reviewer #2 
who was asked to evaluate your revised study. As you will see below, the reviewer is sat isfied with 
the modificat ions made and thinks that the study is now suitable for publicat ion. 

Before we can formally accept the manuscript for publicat ion, we would ask you to address a few 
remaining editorial issues listed below.

REFEREE REPORTS
 ---------------------------------------------------------------------------- 

Reviewer #2: 

The authors comprehensively addressed all our comments. We congratulate them for their great 
work!



1st Mar 20212nd Authors' Response to Reviewers

The authors have made all requested editorial  changes. 

3rd Mar 20212nd Revision - Editorial Decision

Thank you again for sending us your revised manuscript and for performing the requested minor 
changes. I am pleased to inform you that your paper has been accepted for publicat ion. 
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14. Report any restrictions on the availability (and/or on the use) of human data or samples.

15. Report the clinical trial registration number (at ClinicalTrials.gov or equivalent), where applicable.

16. For phase II and III randomized controlled trials, please refer to the CONSORT flow diagram (see link list at top right) and submit the 
CONSORT checklist (see link list at top right) with your submission. See author guidelines, under ‘Reporting Guidelines’. Please confirm you 
have submitted this list.

17. For tumor marker prognostic studies, we recommend that you follow the REMARK reporting guidelines (see link list at top right). See 
author guidelines, under ‘Reporting Guidelines’. Please confirm you have followed these guidelines.

18: Provide a “Data Availability” section at the end of the Materials & Methods, listing the accession codes for data generated in this study and 
19. Deposition is strongly recommended for any datasets that are central and integral to the study; please consider the journal’s data policy. If 
20. Access to human clinical and genomic datasets should be provided with as few restrictions as possible while respecting ethical obligations 
21. Computational models that are central and integral to a study should be shared without restrictions and provided in a machine-readable 

22. Could your study fall under dual use research restrictions? Please check biosecurity documents (see link list at top right) and list of select 
agents and toxins (APHIS/CDC) (see link list at top right). According to our biosecurity guidelines, provide a statement only if it could.

C- Reagents

Yes.

NA

MCF10A cells were provided by the Brugge Lab (Brugge et al. 2003). Cells were tested for mycoplasma 
contamination.

NA

NA

NA

Statistical tests and their level of significance are indicated in the figures legends.

Yes, we used only a non-parametric test to compare medians between 2 unpaired groups (Wilcoxon).

Variation estimations are provided by the means of standard deviations or interquantile ranges when appropriate.

Please fill out these boxes ê (Do not worry if you cannot see all your text once you press return)

NA

NA

No samples were excluded.

NA

definitions of statistical methods and measures:

Any descriptions too long for the figure legend should be included in the methods section and/or with the source data.

 

In the pink boxes below, please ensure that the answers to the following questions are reported in the manuscript itself. Every question should 
be answered. If the question is not relevant to your research, please write NA (non applicable).  
We encourage you to include a specific subsection in the methods section for statistics, reagents, animal models and human subjects.  

B- Statistics and general methods

an explicit mention of the biological and chemical entity(ies) that are being measured.
an explicit mention of the biological and chemical entity(ies) that are altered/varied/perturbed in a controlled manner.

the exact sample size (n) for each experimental group/condition, given as a number, not a range;
a description of the sample collection allowing the reader to understand whether the samples represent technical or biological replicates 
(including how many animals, litters, cultures, etc.).
a statement of how many times the experiment shown was independently replicated in the laboratory.

Source Data should be included to report the data underlying graphs. Please follow the guidelines set out in the author ship guidelines on Data 
Presentation.

2. Captions

Each figure caption should contain the following information, for each panel where they are relevant:

a specification of the experimental system investigated (eg cell line, species name).
the assay(s) and method(s) used to carry out the reported observations and measurements 

The data shown in figures should satisfy the following conditions:
the data were obtained and processed according to the field’s best practice and are presented to reflect the results of the experiments in an 
accurate and unbiased manner.
figure panels include only data points, measurements or observations that can be compared to each other in a scientifically meaningful way.

graphs include clearly labeled error bars for independent experiments and sample sizes. Unless justified, error bars should not be shown for 
technical replicates.
if n< 5, the individual data points from each experiment should be plotted and any statistical test employed should be justified
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G- Dual use research of concern

NA

NA

NA

NA

NA

NA

F- Data Accessibility

Such section was created.

NA

NA

Data and source code are available on Mendeley (https://data.mendeley.com/datasets/4vnndy59fp/1) and Github 
NA
The trained convolutional neural networks are made available along with the datasets and the source code (Pytorch 

D- Animal Models

NA

NA

NA

E- Human Subjects
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