Supplementary Data for

RNA thermoswitches modulate *Staphylococcus aureus* adaptation to ambient temperatures

Arancha Catalan-Moreno¹, Marta Cela¹, Pilar Menendez-Gil¹, Naiara Irurzun¹,

Carlos J. Caballero¹, Isabelle Caldelari² and Alejandro Toledo-Arana^{1*}

¹Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain. ²Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000-Strasbourg, France

*Corresponding author: Laboratory of Bacterial Gene Regulation, Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Avda. de Pamplona 123, 31192-Mutilva, Navarra, Spain E-mail: a.toledo.arana@csic.es Phone: +34 948 16 9752

This PDF file includes:

Supplementary Tables S1 to S5

Supplementary Figures S1 to S8

Supplementary References

SUPPLEMENTARY TABLES

Strains	Relevant characteristic(s)	BGR	Source or
Staphylococcus aureus			Telefelice
15981	Wild type (WT) strain. MSSA clinical isolate; biofilm positive; PNAG-dependent biofilm matrix	8	(3)
cspA ^{3xF}	15981 strain expressing the chromosomic 3xFLAG- tagged CspA protein	239	(4)
cspB ^{3xF}	15981 strain expressing the chromosomic 3xFLAG- tagged CspB protein	346	This study
cspC ^{3xF}	15981 strain expressing the chromosomic 3xFLAG- tagged CspC protein	240	This study
WT p5'UTR ^{cspB} - <i>gfp</i>	15981 carrying the p5'UTR ^{cspB} - <i>gfp</i> plasmid	1570	This study
WT p5'UTR ^{cspC} - <i>gfp</i>	15981 carrying the p5'UTR ^{cspC} - <i>gfp</i> plasmid	1398	This study
WT p5'UTR ^{сspB} ∆24- <i>gfp</i>	15981 carrying the p5'UTR ^{cspB} ∆24- <i>gfp</i> plasmid	1555	This study
WT p5'UTR ^{cspC} ∆24- <i>gfp</i>	15981 carrying the p5'UTR ^{cspC} ∆24- <i>gfp</i> plasmid	1429	This study
WT p5'UTR ^{cspB} UAU47AA- <i>gfp</i>	15981 carrying the p5'UTR ^{cspB} UAU47AA- <i>gfp</i> plasmid	1623	This study
WT p5'UTR ^{cspB} C50G- <i>gfp</i>	15981 carrying the p5'UTR ^{cspB} C50G- <i>gfp</i> plasmid	1579	This study
WT p5'UTR ^{cspB} UU55AA- <i>gfp</i>	15981 carrying the p5'UTR ^{cspB} UU55AA- <i>gfp</i> plasmid	1517	This study
WT p5'UTR ^{cspC} UU48A- <i>gfp</i>	15981 carrying the p5'UTR ^{cspC} UU48A- <i>gfp</i> plasmid	1415	This study
WT p5'UTR ^{сspB} UU55AA+UU26AA- <i>gfp</i>	15981 carrying the p5'UTR ^{cspB} UU55AA+UU26AA- <i>gfp</i> plasmid	1902	This study
WT p5'UTR ^{cspB} U38C+U41C- <i>gfp</i>	15981 carrying the p5'UTR ^{cspB} p5'UTR ^{cspB} U38C+U41C- gfp - <i>gfp</i> plasmid	2092	This study
<i>∆cspA</i> p5'UTR ^{cspB} - <i>gfp</i>	15981 $\Delta cspA$ strain carrying the p5'UTR ^{cspB} - <i>gfp</i> plasmid	1571	This study
<i>∆cspA</i> p5'UTR ^{cspC} - <i>gfp</i>	15981 $\Delta cspA$ strain carrying the p5'UTR ^{cspC} - <i>gfp</i> plasmid	1408	This study
<i>∆cspB</i> p5'UTR ^{cspB} - <i>gfp</i>	15981 $\Delta cspB$ strain carrying the p5'UTR ^{cspB} - <i>gfp</i> plasmid	1572	This study
<i>∆cspC</i> p5'UTR ^{cspC} - <i>gfp</i>	15981 $\Delta cspC$ strain carrying the p5'UTR ^{cspC} -gfp plasmid	1561	This study
cspB ^{³xF} ∆cspA	15981 $\Delta cspA$ strain expressing the chromosomic 3xFLAG-tagged CspB protein	1324	This study
cspC ^{3xF} ∆cspA	15981 $\Delta cspA$ strain expressing the chromosomic 3xFLAG-tagged CspC protein	725	This study
<i>∆cspA</i> p5'UTR ^{cspB} ∆24- <i>gfp</i>	15981 Δ <i>cspA</i> strain carrying the p5'UTR ^{cspB} ∆24- <i>gfp</i> plasmid	1566	This study
<i>∆cspA</i> p5'UTR ^{cspB} UAU47AA- <i>gfp</i>	15981 $\Delta cspA$ strain carrying thep5'UTR ^{cspB} UAU47AA- gfp plasmid	2028	This study
<i>∆cspA</i> p5'UTR ^{cspB} C50G- <i>gfp</i>	15981 $\Delta cspA$ strain carrying the p5'UTR ^{cspB} C50G- <i>gfp</i> plasmid	1928	This study
<i>∆cspA</i> p5'UTR ^{cspB} UU55AA- <i>gfp</i>	15981 $\Delta cspA$ strain carrying the p5'UTR ^{cspB} C50G- <i>gfp</i> plasmid	1928	This study
<i>∆cspA</i> p5'UTR ^{cspC} ∆24- <i>gfp</i>	15981 $\Delta cspA$ strain carrying the p5'UTR ^{cspC} Δ 24- <i>gfp</i> plasmid	1516	This study
<i>∆cspA</i> p5'UTR ^{cspC} UU48A- <i>gfp</i>	15981 $\Delta cspA$ strain carrying the p5'UTR ^{cspC} UU48A- <i>gfp</i> plasmid	1416	This study
<i>∆cspA</i> p5'UTR ^{cspB} UU55AA+UU26AA- <i>gfp</i>	15981 Δ <i>cspA</i> strain carrying the p5'UTR ^{cspB} UU55AA+UU26AA- <i>gfp</i> plasmid	1749	This study
<i>∆cspA</i> p5'UTR ^{cspB} U38C+U41C- <i>gfp</i>	15981 ∆ <i>cspA</i> strain carrying the p5'UTR ^{cspB} U38C+U41C- <i>gfp</i> plasmid	2093	This study
∆cspB	15981 strain with deletion of the <i>cspB</i> gene	1150	(5)
∆cspC	15981 strain with deletion of the cspC gene	195	(5)
∆cspBC	15981 strain with deletion of the <i>cspB</i> and <i>cspC</i> genes	1251	This study

Table S1. Strains used in this study

Continued in the following page

Table S1. Continued

Strains	Relevant characteristic(s)	BGR ID ^ª	Source or reference ^b
∆24cspB	15981 strain harbouring a chromosomic deletion of the first 24 nucleotides of the <i>cspB</i> mRNA	1975	This study
∆24cspC	15981 strain harbouring a chromosomic deletion of the first 24 nucleotides of the <i>cspC</i> mRNA	1987	This study
∆24cspB ^{3xF}	15981 $cspB^{3xF}$ strain harbouring a deletion of the first 24 nucleotides of the $cspB$ mRNA	1991	This study
$\Delta 24 cspC^{3xF}$	15981 $cspC^{3xF}$ strain harbouring a deletion of the first 24 nucleotides of the $cspC$ mRNA	1992	This study
∆24cspBC	15981 strain harbouring a deletion of the first 24 nucleotides of the <i>cspB</i> and <i>cspC</i> mRNAs	1917	This study
Escherichia coli			
XL1-Blue	Strain used for cloning experiments	1	Stratagene
IMO1B	Strain used for cloning experiments	1837	(6)

^a Identification number of the strains stored at the Laboratory of Bacterial Gene Regulation.

Table S2. Plasmids used in this study

Plasmids	Relevant characteristic(s)	Source or reference
pMAD_ <i>cspB</i> ^{3x+}	pMAD plasmid containing the allele for insertion of the 3xFLAG at the C-terminus of the CspB protein	This study
pMAD_ <i>cspC</i> ^{3xF}	pMAD plasmid containing the allele for insertion of the 3xFLAG at the C-terminus of the CspB protein	This study
pCN57	<i>E. coli-S. aureus</i> shuttle vector carrying the promoter-less <i>gfp</i> mut2 reporter gene. Amp ^R -Erm ^R	(7)
pCN47	<i>E. coli-S. aureus</i> shuttle vector for cloning. Amp ^R -Erm ^R	(7)
pHRG	pCN47 plasmid containing the P <i>hyper</i> constitutive promoter, <i>icaR</i> RBS and <i>gfp</i> reporter gene	This study
p5'UTR ^{cspB} - <i>gfp</i>	pHRG translation-reporter plasmid carrying the <i>cspB</i> 5'UTR fused to the <i>gfp</i> reporter gene	This study
p5'UTR ^{cspC} - <i>gfp</i>	pHRG translation-reporter plasmid carrying the <i>cspC</i> 5'UTR fused to the <i>gfp</i> reporter gene	This study
p5'UTR ^{cspB} ∆24- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspB</i> 5'UTR that lacks the first 24 nt	This study
p5'UTR ^{cspC} ∆24- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspC</i> 5'UTR that lacks the first 24 nt	This study
p5'UTR ^{cspB} UAU47AA- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspB</i> 5'UTR in which nucleotides 47-UAU-49 were replaced by AA	This study
p5'UTR ^{cspB} C50G- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspB</i> 5'UTR in which nucleotide 50C was substituted by G	This study
p5'UTR ^{cspB} UU55AA- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspB</i> 5'UTR in which nucleotides 55-UU-56 were substituted by AA	This study
p5'UTR ^{cspC} UU48A- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspC</i> 5'UTR in which nucleotides 48-UU-49 were substituted by A	This study
p5'UTR ^{cspB} UU55AA+UU26 AA- <i>gfp</i>	p5'UTR ^{cspB} UU55AA- <i>gfp</i> plasmid carrying an additional mutation in which nucleotides 26-UU-27 were substituted by AA	This study
p5'UTR ^{cspB} UU26AA- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspB</i> 5'UTR in which nucleotides 26-UU-27 were substituted by AA	This study
p5'UTR ^{cspB} U38C+U41C- <i>gfp</i>	pHRG translation reporter plasmid carrying the <i>cspC</i> 5'UTR in which 38U and 41U were substituted by C	This study
рМАД	<i>E. coli-S. aureus</i> shuttle vector with a thermosensitive origin of replication for Gram-positive bacteria. It contains the <i>bgaB</i> gene that encodes β -galactosidase under the control of a constitutive promoter. Amp ^R -Erm ^R	(8)
pMAD_ <i>AcspA</i>	pMAD plasmid containing the allele for the deletion of the <i>cspA</i> gene	(4)
pMAD_ <i>AcspB</i>	pMAD plasmid containing the allele for the deletion of the <i>cspB</i> gene	(5)
pMAD_ <i>∆cspC</i>	pMAD plasmid containing the allele for the deletion of the <i>cspC</i> gene	(5)
pMAD_ <i>∆24cspB</i>	pMAD plasmid containing the allele for the deletion of the first 24 nucleotides of the <i>cspB</i> gene	This study
pMAD_ <i>∆24cspC</i>	pMAD plasmid containing the allele for the deletion of the first 24 nucleotides of the $cspC$ gene	This study
pMAD_ <i>∆24cspB</i> ^{3xF}	pMAD plasmid containing the allele for the deletion of the first 24 nucleotides of the $cspB^{3xF}$ gene	This study
pMAD_ <i>∆24cspC^{3xF}</i>	pMAD plasmid containing the allele for the deletion of the first 24 nucleotides of the $cspC^{3xF}$ gene	This study

Table S3. Oligonucleotides used in this study

Oligonucleotide name	Sequence ^a					
Construction of pMAD plasmid for 24 deletion of <i>cspB</i> gene						
CspB_A EcoRI	<i>GAATTC</i> AACTTGGTATAACGTCATTG					
CspB_D24_Izq	AAGACCAACTATACGCTCAT					
CspB_D24_Drcha	ATGAGCGTATAGTTGGTCTTATTGTAGTGTATTTGTTTAGAATATCCT					
CspB_D BamHI	GGATCCTTAGTTGTTTATTGGAATTG					
Construction of pMAD plasm	nid for 24 deletion of <i>cspC</i> gene					
CspC_A BgIII	AGATCTTTAGTTCGTCAAGGCTTGG					
CspC_D24_lzq	AACTTTCATTATACACTTTT					
CspC_D24_Drcha	AAAAGTGTATAATGAAAGTTATGTGAGTTATTTATATAGAATATTCTC					
CspC_D BamHI	GGATCC CTCAATAATTAATCAGTCTTAA					
Construction of pMAD plasm	nid for chromosomic 3xFLAG-labelling of the <i>cspB</i> gene					
cspB_A EcoRI	<i>GAATTC</i> AACTTGGTATAACGTCATTG					
3xFcspB_B	TTATAATCACCGTCATGGTCTTTGTAGTCAACAGTTTGTACGTTAACTGC					
3xFcspB_C	GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTACA AAGATGACGACGATAAATAATCTTACAACATAAAACGACTCATTA					
CspB_D BamHI	<i>GGATCC</i> TTAGTTGTTTATTGGAATTG					
Construction of pMAD plasm	nid for chromosomic 3xFLAG-labelling of the <i>cspC</i> gene					
CspC_A BgIII	AGATCTTTAGTTCGTCAAGGCTTGG					
3xFcspC_B	ACCGTCATGGTCTTTGTAGTCCATTTTAACTACGTTTGCAGCTT					
3xFcspC_C	GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTACA AAGATGACGACGATAAATAATTTTAACTTATTCAAACAGT					
CspC_D BamHI	GGATCC CTCAATAATTAATCAGTCTTAA					
Construction of pHRG plase	nid					
pHyper-RBSicaR-GFP	<i>GCATGC</i> AATTTTGCAAAAAGTTGTTGACTTTATCTACAAGGTGTGGCATA ATGAATTCAGTAGGGGGGTTATAAAAATTGACTAGTAAAGGAGAAGAACT TTTCACT					
GFPend-Ascl	GGCGCGCCTTATTTGTATAGTTCATCCATGCCAT					
Construction of plasmids ex	pressing 5'UTR cspB and cspC mRNA and its mutants					
5UTR_cspB_FW_EcoRI	GAATTCACGTAATAAAAGCTCGTGAAT					
5UTR_cspB_RV_Spel	ACTAGTTGTACCGTTATTCATATAGAAAACC					
5'UTR_cspC_FW_EcoRI	<i>GAATT</i> CAAGTAATAAAGAGCGTGAAGAAA					
5'UTR_cspC_RV_Spel	ACTAGTTGTACCGTTATTCATATTGAATACC					
M5B_D24_EcoRI	GAATTCATTGTAGTGTATTTGTTTAGAATATCC					
M5C_D24_EcoRI	GAATTCATGTGAGTTATTTATATAGAATATTCTCCT					
M5B_C50G_EcoRI	<i>GAATTC</i> ACGTAATAAAAGCTCGTGAATTAAATTGTAGTGTATTTGTTTAG AATATGCTCTTTTTTAGTTATGAAT					
M5B_UU55AA_EcoRI	<i>GAATTC</i> ACGTAATAAAAGCTCGTGAATTAAATTGTAGTGTATTTGTTTAG AATATCCTCTAATTTAGTTATGAAT					
M5B_UAU47AA_EcoRI	<i>GAATTCACGTAATAAAAGCTCGTGAAT</i> TAAATTGTAGTGTATTTGTTTAG AAAACCTCTTTTT					
M5C_UU48A_EcoRI	<i>GAATTC</i> AAGTAATAAAGAGCGTGAAGAAAAATGTGAGTTATTTATATAGA ATAACTCCTTTTCATT					
M5B_2U_26_2_EcoRI	GAATTCACGTAATAAAAGCTCGTGAATTAAAAAGTAGTGTATTTG					
M5B_U38C-U41C_EcoRI	<i>GAATTC</i> ACGTAATAAAAGCTCGTGAATTAAATTGTAGTGTATTCGTCTAG AATATCCT					
Probe for Northen blot assays						
anti-GFP probe	TTATTTGTATAGTTCATCCATGCCATGTGTAATCCCAGCAGCTGTTACAA ACTCAAGAAGGACCATGTGG					
anti_3xFLAG_probe	TTTATCGTCGTCATCTTTGTAGTCGATATCATGATCTTTATAATCACCGT CATGGTCTTTGTAGTC					

Continued in the following page

Table S3. Continued

Oligonucleotide name	Sequence ^a				
Molecular beacons					
5UTR_B_FAM_IQ	FAM_CGTAATAAAAGCTCGTGAATTAAATTGTAGTGTATTTGTTTAGAAT ATCCTCTTTTTTAGTTATGAATTTGTTACA_IQ				
5UTR_C_FAM_IQ	FAM_AGTAATAAAGAGCGTGAAGAAAAATGTGAGTTATTTATATAGAATA TTCTCCTTTTCATTTATGAATTTGTTACA_IQ				
Synthesis of <i>cspB</i> 5'UTR m	RNA				
T7_5UTRcspB_Fw	TAATACGACTCACTATAGGGACGTAATAAAAGCTCGTGAA				
5UTR_cspB_RV_Spel	ACTAGTTGTACCGTTATTCATATAGAAAACC				
Synthesis of <i>cspC</i> 5'UTR mRNA					
T7_5UTRcspC_fw	TAATACGACTCACTATAGGGAAGTAATAAAGAGCGTGAAG				
5'UTR_cspC_RV_Spel	ACTAGTTGTACCGTTATTCATATTGAATACC				
^a Doctriction on tumos citos on	d 2xELAC acquirences are indirated in italia and underlined fant, respectively				

^a Restriction enzymes sites and 3xFLAG sequences are indicated in italic and underlined font, respectively

Table S4. Blastn comparative analysis showing the conservation of the S. aureus CspB thermoswitch	among
different Staphylococcus species.	

Staphylococcus species	Strain	Accession ID	Total CSPs	Thermo switch	Locus tag ID	csp genes including a thermoswitch / Sequence identity to cspB 5'UTR (%)			
S. aureus	NCTC 8325	NC_007795.1	3	2		cspB	100	cspC	85
S. argenteus	MSHR1132	NC_016941.1	3	2	SAMSHR1132_	RS13405	100	RS03890	85
S. schweitzeri	NCTC13712	NZ_LR134304.1	3	2	EL116_	RS13645	98	RS04340	87
S. simiae	NCTC13838	NZ_LT906460.1	3	2	CKV88	RS12300	96	RS03665	85
S. succinus	14BME20	NZ_CP018199.1	3	2	BK815	RS09355	94	RS08380	75
S. devriesei	NCTC13828	UHCZ01000002	3	2	DYD94_	RS10710	89	RS10715	87
S. pasteuri	SP1	NC_022737.1	3	2	STP1_	RS07870	88	RS09745	83
S. warneri	NCTC11044	NZ_LR134269.1	3	2	EL082_	RS11195	88	RS09370	83
S. cornubiensis	NW1	FXUZ01000007	3	2	CCE82_	RS08550	88	RS08575	87
S. felis	ATCC 49168	NZ_CP027770.1	3	2	C7J90_	RS03590	87	RS00805	77
S. massiliensis	CCUG 55927	NZ_JH815593.1	3	2	A33S_	RS0106390	93	RS0107335	89
S. edaphicus	CCM 8730	MRZN01000034	3	1	BTJ66_	RS13275	94		
S. saprophyticus	ATCC 15305	NC_007352.1	3	1	SSP_	RS12515	93		
S. stepanovicii	NCTC13839	NZ_LT906462.1	3	1	CKV64_	RS00450	93		
S. petrasii	NCTC13835	UHDU01000001	2	1	DYD86_	RS11030	91		
S. haemolyticus	JCSC1435	NC_007168.1	2	1	SH_	RS11570	91		
S. lutrae	ATCC 700373	NZ_CP020773.1	2	1	B5P37_	RS08760	89		
S. pseudintermedius	HKU10-03	NC_014925.1	2	1	SPSINT_	RS03305	88		
S. delphini	NCTC12225	NZ_LR134263.1	2	1	EL101_	RS10200	88		
S. intermedius	NCTC 11048	UHDP01000003	2	1	DYA52_	RS11680	88		
S. lugdunensis	HKU09-01	NC_013893.1	2	1	SLGD_	RS00875	87		
S. hominis	C80	NZ_GL545254.1	2	1	HMPREF0798_	RS00715	87		
S. schleiferi	2317-03	NZ_CP010309.1	2	1	RN70_	RS09475	88		
S. fleurettii	FDAARGOS_682	NZ_CP046351.1	2	1	FOB90_	RS10505	88		
S. caprae	26D	NZ_CP031271.1	2	1	DWB96_	RS10220	84		
S. saccharolyticus	NCTC11807	UHDZ01000001	2	1	DYE57_	RS09170	83		
S. auricularis	NCTC12101	NZ_LS483491.1	2	1	DQL57_	RS02425	83		
S. epidermidis	ATCC 14990	NZ_CP035288.1	2	1	EQW00_	RS09740	83		
S. capitis	AYP1020	NZ_CP007601.1	2	1	ayp1020_	RS00755	83		
S. chromogenes	20B	NZ_CP031471.1	2	1	DWB92_	RS09990	81		
S. hyicus	ATCC 11249	NZ_CP008747.1	2	1	SHYC_	RS09620	80		
S. agnetis	908	NZ_CP009623.1	2	1	EP23_	RS00105	80		
S. rostri	DSM 21968	PPRF01000144	2	1	CD122_	RS11505	80		
S. muscae	ATCC 49910	NZ_CP027848.1	2	1	C7J88_	RS09350	80		
S. microti	DSM 22147	JXWY01000057	2	1	TP70_	RS08325	80		
S. equorum	KS1039	NZ_CP013114.1	2	1	SE1039_	RS00970	77		
S. nepalensis	JS11	NZ_CP017466.1	2	1	BJG89_	RS13175	78		
S. carnosus	TM300	NC_012121.1	2	1	SCA_	RS02225	76		
S. piscifermentans	NCTC13836	NZ_LT906447.1	2	1	CKV71_	RS10125	76		
S. condimenti	DSM 11674	NZ_CP015114.1	2	1	A4G25_	RS05475	76		
S. gallinarum	DSM 20610	JXCF01000001	2	1	SH09_	RS00140	75		
S. cohnii	532	LATV01000001	2	1	XA21_	RS00240	76		
S. xylosus	SMQ-121	NZ_CP008724.1	2	1	SXYLSMQ121_	RS11945	74		
S. pettenkoferi	VCU012	AGUA01000053	1	0					
S. kloosii	NCTC12415	UHDQ01000002	1	0					

Bacterial species	<i>csp</i> gene	5'UTR length (nt) ^ª	Alternative structures
Enterococcus faecalis V583	(NC_004668)		
	EF0781	116	
	EF1367	134	\checkmark
	EF1726	32	
	EF1991	117	\checkmark
	EF2925	109	
	EF2939	ND	
Bacillus subtilis 168	(NC_000964)		
	cspC	115	
	сspВ	119	\checkmark
	cspD	85	
Clostridium perfringens str. 13	(NC_003366)		
	cspL		\checkmark
Pseudomonas aeruginosa PA14	(NC_008463)		
	PA14_05960 (cspB)	151	\checkmark
	PA14_21760 (capB)	151	\checkmark
	PA14_30200 (cspD)	109	
	PA14_39180	ND	
	PA14_49410	ND	
	PA14_51840	ND	
Salmonella Typhimurium str. SL1344	(NC_016810)		
	cspA	164	\checkmark
	сspВ	145	\checkmark
	cspC	ND	
	cspD	87	
	cspE	43	
	cspH	23	

Table S5. Prediction of putative mutually exclusive alternative structures in the 5'UTRs of *csp* genes.

^a 5'UTR length annotated using previous transcriptomic data (1, 2). ND: not determined.

SUPPLEMENTARY FIGURES

Figure S1. Enzymatic probing at different temperatures of the alternative structures found in the *cspB*. (A) Electrophoretic migration of the radiolabelled *cspB* 5'UTR after RNase T1 (T1) and RNAse S1 (S1) cleavage at 22 and 37°C. Samples were subjected to denaturation at 90°C and renaturation at 22 or 37°C for 15 min. Lane C: incubation control in the absence of RNase T1/S1. Cleavage reactions were performed in the presence of increasing concentrations of T1: $1x10^{-3}$ U/µl, $2x10^{-2}$ U/µl and $5x10^{-2}$ U/µl and $5x10^{-2}$ U/µl or S1: $5x10^{-5}$ U/µl, $2x10^{-5}$ U/µl and $1x10^{-5}$ U/µl. Lanes RNA: RNA control; HA: alkaline hydrolysis ladder and T1: RNAse T1 control. (B) Model of *cspB* 5'UTR secondary structure at 37°C (conformation L) and 22°C (conformation O) derived from the probing data shown in A. The RBS sequence and start codon are indicated.

Figure S2. Enzymatic probing at different temperatures of the alternative structures found in the *cspC* 5'UTRs. (A) Electrophoretic migration of the radiolabelled cspC 5'UTR after RNase T1 (T1) and RNAse S1 (S1) cleavage at 22 and 37°C. Samples were treated as previously described in Figure S1. (B) Model of *cspC* 5'UTR secondary structure at 37°C (conformation L) and 22°C (conformation O) derived from the probing data shown in A. The RBS sequence and start codon are indicated.

Figure S3. Schematic representation of the *cspB* and *cspC* 5'UTR mutations. The wild type (WT) and mutated (MUT) structures are represented for the O and L conformations. Mutated nucleotides are depicted in black. The expected mutated 5'UTR structure O or L (translation ON/OFF) is also showed.

Figure S4. The CspB and CspC protein expression is not auto-regulated in *S. aureus*. Western blot analyses of GFP levels expressed from the *S. aureus* WT, $\Delta cspB$ and $\Delta cspC$ strains carrying the cspB and cspC 5'UTR-GFP reporters, which were grown in MH at 22, 28 and 37°C. The GFP production was developed as described in Figure 2. Bar plots show the mean and standard deviation of the GFP levels from three independent biological replicates, which were determined by densitometry of protein bands using ImageJ (https://imagej.nih.gov/ij/). Asterisk represent statistical significance (p<0.05, Mann-Whitney U test); ns, not significant. Representative images from the triplicates are shown.

Figure S5. Different effects on the mRNAs levels when deleting the first 24 nucleotides in *cspB* and *cspC* 5'UTRs. (A) Northern blot showing the chromosomal expression of *cspB*^{3xF} and *cspC*^{3xF} mRNAs from the WT and $\Delta 24$ strains grown in MH at 22, 28 and 37°C. (B) Northern blot results of the chimeric 5'UTR-gfp mRNA levels expressed from the *S. aureus* carrying the *cspB* and *cspC* WT and $\Delta 24$ 5'UTR-GFP translational-reporter plasmids after growth in MH at 22, 28 and 37°C. rRNAs stain gel portions are included as loading controls. Bar plots represent the mean and standard deviation of mRNAs levels from three independent biological replicates, which were determined by densitometry of protein bands using ImageJ (https://imagej.nih.gov/ij/). Asterisk represents statistical significance (*p*<0.05, Mann-Whitney U test); ns, not significant. Representative images from the triplicates are shown.

Figure S6. Multiple sequence alignments of csp 5'UTRs from different Staphylococcus species. The consensus sequence and sequence logo are shown. Blue and red arrows represent the nucleotides that form conformation O or L, respectively. Nucleotides were coloured in function of their degree of identity as follows: dark green 100%, light green 80-99%, yellow 60-89% and white less that 60%. Saure, S. aureus; Ssimi, S. simiae; Sschw, S. schweitzeri; Sarge, S. argenteus; Spast, S. pasteuri; Swarn, S. warneri; Scapi, S. capitis; Sepid, S. epidermidis; Ssacc, S. saccharolyticus; Scapra, S. caprae; Sagne, S. agnetis; Shyic, S. hycus; Schro, S. chromogenes; Smusc, S. muscae; Sfeli, S. felis; Sedap, S. edaphicus; Ssucc, S. succinus ; Sstep, S. stepanovicii; Smass, S. massiliensis; Scorn, S. cornubiensis; Sdelp, S. delphini; Sinte, S. intermedius; Spseu, S. pseudointermedius; Slutr, S. lutrae; Sfleu, S. fleurettii; Shomi, S. hominis; Smass, S. massiliensis; Sdevr, S. devriesei; Shaem, S. haemolyticus; Spetr, S. petrasii, Slugd, S. lugdunensis; Spast, S. pasteuri; Sauri, S. auricularis; Scarn, S. carnosus; Spsci, S. pscifermentans; Scond, S. condimenti; Scohn, S. cohnii; Snepa, S. nepalensis; Sgall, S. gallinarum; Ssapr, S. saprophyticus; Ssucc, S. succinus; Sequo, S. equorum; Sxylo, S. xylosus.

Figure S7. The nucleotides required for adopting the alternative conformations are highly conserved. RNA structures were predicted by the mfold web server (9) and visualized and drawn with the VARNA software (10). Nucleotides were coloured according to the identity percentage. The RBS sequence, the start codon and the anti-RBS region are grey shaded.

Figure S8. Putative alternative RNA structures in the longer *cidA***5'UTR.** RNA structures were predicted by the mfold web server (9) and visualized and drawn with the VARNA software (10). Structures were coloured according to the nucleotide positions as indicated in the colour scale. The arrows below the 5'UTR sequences indicate the interacting nucleotide regions. Blue arrows, conformation O; Red arrows, conformation L. The ribosome binding site (RBS), the start codon and the anti-RBS region are grey shaded.

SUPPLEMENTARY REFERENCES.

- Lasa,I., Toledo-Arana,A., Dobin,A., Villanueva,M., de los Mozos,I.R., Vergara-Irigaray,M., Segura,V., Fagegaltier,D., Penadés,J.R., Valle,J., *et al.* (2011) Genome-wide antisense transcription drives mRNA processing in bacteria. *Proc Natl Acad Sci USA*, **108**, 20172–20177.
- Dötsch,A., Eckweiler,D., Schniederjans,M., Zimmermann,A., Jensen,V., Scharfe,M., Geffers,R. and Häussler,S. (2012) The *Pseudomonas aeruginosa* transcriptome in planktonic cultures and static biofilms using RNA sequencing. *PLoS ONE*, 7, e31092.
- 3. Valle, J., Toledo-Arana, A., Berasain, C., Ghigo, J.-M., Amorena, B., Penadés, J.R. and Lasa, I. (2003) SarA and not sigma B is essential for biofilm development by *Staphylococcus aureus*. *Mol Microbiol*, **48**, 1075–1087.
- 4. Caballero,C.J., Menendez-Gil,P., Catalan-Moreno,A., Vergara-Irigaray,M., García,B., Segura,V., Irurzun,N., Villanueva,M., Ruiz de Los Mozos,I., Solano,C., *et al.* (2018) The regulon of the RNA chaperone CspA and its auto-regulation in *Staphylococcus aureus*. *Nucleic Acids Res*, **46**, 1345–1361.
- 5. Catalan-Moreno,A., Caballero,C.J., Irurzun,N., Cuesta,S., López Sagaseta,J. and Toledo-Arana,A. (2020) One evolutionarily selected amino acid variation is sufficient to provide functional specificity in the cold shock protein paralogs of *Staphylococcus aureus*. *Mol Microbiol*, **113**, 826–840.
- 6. Monk,I.R., Shah,I.M., Xu,M., Tan,M.-W. and Foster,T.J. (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. *mBio*, **3**.
- 7. Charpentier, E., Anton, A.I., Barry, P., Alfonso, B., Fang, Y. and Novick, R.P. (2004) Novel cassette-based shuttle vector system for gram-positive bacteria. *Appl Environ Microbiol*, **70**, 6076–6085.
- 8. Arnaud,M., Chastanet,A. and Debarbouille,M. (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. *Appl Environ Microbiol*, **70**, 6887–6891.
- 9. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res*, **31**, 3406–3415.
- 10. Darty,K., Denise,A. and Ponty,Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. *Bioinformatics*, **25**, 1974–1975.