
Supplementary Information

1.1 Calculation of scaling parameter and cell size

At 37◦C in LB media, an estimated cell length (including end-caps) would be 2.482 µm
while the diameter would be 0.933 µm [1].
Let the order of the HiC contact frequency matrix be N, length of the cell (including end
caps) be L, diameter be d and size of each polymer bead be σ (see Figure S1).
Therefore, the number of beads in the polymer = N
Let l = L - d, r = d

2

Therefore, volume of the cell = 4
3
πr3 + πr2l = πr2(4

3
r + l)

Assuming a volume fraction fr,

the volume occupied by the DNA = fr x Volume of the cell = πr2fr(
4

3
r + l) (S1)

But the volume occupied by the DNA =
4

3
π(
σ

2
)3 =

πσ3

6
(S1)

On comparing equations (S1) and (S1), we get

σ =
3

√
6frr2

N
(
4

3
r + l) (S1)

Using fr = 0.1[2] and the cell dimensions stated above for a resolution of 5 kbp (N=928),
σ = 0.067348 µm.
Upon setting σ = 1 and scaling the cell dimensions provided above, we get the cell
length (including end-caps) equals to 36.884 and the diameter equals to 13.864 in reduced
(simulation) units.

1.2 Calculation of the number of beads present in replication
forks

Since we know from the G value how much DNA one cell has, and that the replication
proceeds almost with equal speeds bidirectionally from oriC[3], we defined and calculated
a parameter f which shall provide us the fraction of DNA replicated. The usefulness and
calculation of f will become clear in the forthcoming details. Let there be a two forked
system as depicted by Figure S2.

Therefore, the amount of DNA present is (1− f) + f + f + 2f 2 which is equal to G×
the amount of DNA contained by one chromosome.
For our system with a resolution of 5 kbp, there are 928 (4.64Mbp/5kbp) beads that
represents the amount of DNA contained by one chromosome.
Therefore,
Unreplicated DNA = (1− f)
DNA per primary fork = f(1− f)
DNA per secondary fork = f 2

Therefore, 2f 2 + 2f + 1 = G
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or, 2f 2 + 2f + (1−G) = 0
Upon solving the above equation and using the condition that f>0, we get

f =
−1 +

√
8G− 7

4
(S1)

For two chromosomes with a total G=3.6, we assume that each chromosome will have a
G=1.8. Thus, for G=1.8, we have f = 0.43. Using this value of f , we get 529 unreplicated
beads, 456 beads in primary forks and 687 beads in secondary forks. Thus a total of
1672 beads per chromosome and a 3344 beads per cell.

1.3 Interaction potenitals

1.3.1 The cell boundary

The cell boundary has been implemented by using a restraining potential of the form

Vres(r;R0) =
1

2
kres|~r − ~R0|2 H(|~r − ~R0|) (S1)

H is a step function and activates if a particle goes out of the confinement, which, here
is a spherocylinder. R0 is the center of the spherocylinder. kres determines how rigid is
the cell wall. For simulations we have used 310 kJ mol−1σ2, slightly higher than kadj,
making it the highest in magnitude among all the force constants present.

1.3.2 Non-bonded interactions

Since no information is known about the attractive interactions between DNA beads at
5 kbp resolution, we assume that all the attractive interactions bringing regions of the
DNA close to each other have been captured by HiC. Therefore the non-bonded interac-
tions are purely repulsive and are given by

Vnb(r) =
A

r12
(S1)

where A = 4εσ12. Equation (6) is simply the repulsive part of the Lennard-Jones poten-
tial. This also ensures that polymer beads do not overlap significantly when equilibration
is performed. For the simulations, A=1.0 has been used.

1.3.3 Finding a good transfer function

The main purpose of the current work is to develop a quantitative model that can explore
the higher order organisation of the 4.64 Mbp long, E. coli chromosome. Towards the
end, following the protocol outlined in Figure 1 and explained in Methods, we integrate
recently reported Hi-C interaction matrix of E. coli chromosome [4] within a polymer
based beads-on-a-spring model. The chromosome, thereby modelled, is subsequently
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subjected to a langevin dynamics simulation at a friction coefficient of 1
√

mε
σ

and tem-
perature of 303K. The simulation observables are statistically averaged over the last 2000
frames from the 200 trajectories.

In previous attempts to model the chromosome using Hi-C data[4, 5], a variant of
the inverse function has been used to convert contact probabilities to distances(S1).

D ∝ P−s (S1)

where D is the distance matrix and P is the contact probability matrix. The operation
is elementwise inverse of matrix elements of P raised to a power s. s can be obtained
by comparing the distances obtained by varying s to an experimentally obtained set of
distances[4]. We have used s = 1.0 for our studies[5] with a proportionality constant
of σ which is the bead size. Thus when the contact probability is 1, the distance of
a Hi-C bond is σ. An earlier approach to model the bacterial chromosome using Hi-C
data involved a low, but constant, force constants for all the contacts that are put into
the model[6]. Here we scaled the force constants with respect to the distances, which
in turn makes the force constants scale with contact probabilities. We hypothesize that
if a pair of chromosome regions have a high contact probability between them, then
they have been actively brought together and appear as a ‘contact’ in most cells when
Hi-C is performed. Whereas regions with low contact probabilities are a result of the
random collisions between different regions of the chromosome. To mimic this stochastic
behaviour, we used a function, which we call the “transfer function”, that would scale in
such a way so that the lower the contact probability, lower is the force constant between
two such regions. Thus for regions with no contact, there would not be any restraint
or a restraint with a relatively very weak force constant, thereby introducing random
fluctuations in their equlibrium distances.

First we tried a simple inverse transfer function as shown in Eq. (S1). k0 is a
parameter and does not effect the chromosome organization in anyway. It controls the
maximum strength of the “Hi-C” bonds between two beads, thus can be chosen to
arbitrarily low with respect to the adjacent beads’ bond strength. For all simulations,
k0 = 10 was used.

kij =
k0

Dij

(S1)

Though the distances we obtained correlated well with existing experimental data (Fig-
ure S5), but the chromosome was found to be very condensed inside the cell (Figure
S4a), which is not in agreement with the linear density profiles of the chromosome from
experiments and theoretical studies[7, 8]. Not to mention that it is difficult to deal with
very low probabilities which get converted to very large distances. We had to define a
distance cutoff (diameter of the cell), beyond which we did not consider them as contacts
anymore. But the choice was arbitrary.

After using a simple inverse function, we tried a gaussian function to get the force
constants (Eq. (S1)). The gaussian ensured that the at infinites and large distances,
the force constant scaled down to such a low value that it can be safely ignored. Also,
only a small fraction of the total number of contacts were actually used when we used
Eq. (S1) for simulations as can be seen from Figure S4b and Figure S6. We see that
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when we use the gaussian, the important regions of contacts are mainly located along
the diagonal and the small patch on the ends of the off-diagonal due to circularity of
the chromosome. We see that such a small number of contacts is able to predict the
whole contact parobbaility matrix with a high accuracy (Figure S4c). We also see that
predictions are better when we used Eq. (S1). The gaussian also lets the chromosme
spread out into the cell volume much more than the inverse transfer function (Figure
S4d). This is a more realistic image as seen from previous theoretical and experimantal
studies[7, 8]. Thus we believe that Eq. (S1) is a much better transfer function to generate
more plausible 3D conformations.

1.3.4 Bonded interactions

Adjacent beads of the polymer are connected by strong (300 kJ mol−1σ2) harmonic
springs with σ as the equilibrium bond length. This has been implemented by introduc-
ing harmonic force fields between adjacent beads. HiC contacts have also been modelled
as harmonic springs but with variable strengths and variable bond lengths.
Let the HiC contact probability matrix be P and a distance matrix, D, has been defined
such that

Dij =
σ

Pij
(S1)

where ij suggests the element in the ith row and jth column of the matrices. It should
be noted that the matrix P is a sparse matrix. Therefore a lot of the elements in D
would be ∞. They would be taken care by the model itself as discussed below. The
force constants for the bonds incorporating the HiC contacts into the model is given by

kij = k0e
−

(Dij−σ)
2

w (S1)

As per Hooke’s law,

VHiC(Dij) =
1

2
kij(Dij − rij)2

=⇒ VHiC(Dij) =
1

2
k0e

−
(Dij−σ)

2

w (Dij − rij)2

For Dij =∞, VHiC(Dij) = 0.

In equation (5), k0 and w are parameters that need to be optimised but k0 is just
a amplitude term that determines the upper limit to the force constants of the “HiC
bonds”. Since a high force constant makes bonds rigid, a very high value of k0 will only
effect the net dynamics of the polymer. k0 does not in any form effect the equilibrium
distances of the HiC bonds, thus has negligible effect on the overall polymer configuration.
For all our simulations we used k0 = 10. This choice is somewhat arbitrary, but the value
of k0 is low when compared to the force constant of the backbone bonds. This is not
arbitrary. The reason for such a choice is that we have used contact probability to
model these bonds. Therefore, a non-zero number of times it should be seen that there
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exists no HiC-contact between beads i andj if we sample from a large set of time series
distances at equilibrium between i and j. A low force constant would lead to larger
deviations in the distance between the two beads during simulations and should mimic
the sampling, i.e. if we look at the probability distribution of the time series distance
data of the HiC bond length between two beads i and j, we shall see that the equilibrium
would have a probability almost equal to Pij.
w needs to be optimized for each unique HiC contact probability matrix. It determines
the width of the Gaussian in equation (5), therefore behaves as a filtering parameter. For
example, from Figure S7 it can be seen that for a higher value of w, more number of kij
have magnitudes greater than 0. This incorporates more HiC bonds into the system. To
speed up simulations, we did not consider bonds whose force constants were lower than
10−7. Such bonds are very weak and do not effect the conformation(s) of the chromosome
significantly.

1.4 Optimization of w

The metric used to optimize w is a Pearson correlation between the experimental and
the filtered simulated contact probability matrices. Many elements in the contact prob-
ability matrix are zero due experimental limitations and experimental protocol. But in
the simulated HiC matrix, we do not have any zero, but a base value of contact proba-
bility(since no two bead can go beyond L). Thus to make them comparable we set those
values to zero the simulated matrix which are also zero in the experimental matrix. This
is what we refer to when we mention filtered/filtering. Then the matrices are “flattened”
in the sense that the 2D sparse matrix is converted to a 1D array with no non-zero ele-
ments. The zeros are removed so as to get the Pearson correlation between the non-zero
elements only. Considering the zeros after filtering would have contributed to a higher
value of the correlation coefficient, thereby reducing its sensitivity to w. In this way we
are able to perform an element wise comparison between the matrices. Table S1 provides
the optimization table.

1.5 Generation of simulated contact probability matrix

Using the last 2000 frames of k -th simulation, we generate a distance matrix Dk whose
distances have been averaged over the number of frames. To generate a matrix with
similar dimensions as that of the Hi-C contact probability matrix, for each frame we use
the average distances for bead pairs that have been replicated. We also made sure not to
consider distances between beads from different forks. We generate the final simulated
distance matrix Dsim by averaging over those matrices.

Dsim =
1

n

n∑
k=1

Dk (S1)

Similarly, we also generate P k which is the simulated contact probability matrix for the
k -th simulation.

P k
ij =

σ

Dk
ij

(S1)
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The simulated probability matrix Psim is an average over P k.

Psim =
1

n

n∑
k=1

P k (S1)

We have used n=200, i.e. we have used 200 simulations for the averaging.
It should be noted that Psim 6= σ

Dsim
, and it is evident from the definitions of P k, Dk, Psim, Dsim

given by equations (7) - (9).
Each frame corresponds to a microstate of the ensemble of chromatin conformations
whose average is the experimental HiC matrix. Since a set of 2000 frames belong to
a particular initial conformation, instead of generating 200 x 2000 = 4 x 105 matrices
and performing an average over them, we average over 200 matrices, which have been
averaged frame-wise. We also generate a distance matrix averaged over frames and sim-
ulations. This matrix is used for all distance related calculations or analysis.

1.6 Filtering of simulated contact probability matrices

A lot of rows and columns in the experimental contact probability matrix are zero. This
can be due to two reasons: i) there is no contact between those two regions. ii) the region
is too compact for Hi-C to detect any contact. Since they are zero, after incorporating
into the model, “collisions” between such regions are purely random, even though they
might be highly dense. This can lead to wrong interpretation of the data. To avoid this,
we filter the simulated contact probability matrix by replacing elements in the matrix
with zeros which are also zero in the experimental matrix. Thus we cannot get more
information than what the experimental holds, but misinterpretations can be avoided.
Solely for the purpose of having a better contrast within a matrix, we have raised each
element to a power of 0.55 , only during plotting, so as to enhance the smaller values.
For all numerical analysis we have used non-enhanced matrices.

1.7 Comparison between matrices

To compare matrices, we first flatten the matrices. Flattening simply means we convert
the matrix into an 1D array, where each consecutive row adds to the array after the
previous row. This array would thus be n x n long for a contact probability matrix of
order n. Since the values which are zero in the experimental matrix are already zero, we
recreate an array without any zeros. Two such arrays, without any zeros are compared
for correlation or linear fitting. For absolute difference analysis also, we do not consider
the zeros.

1.8 Generation of initial structures

Our initial conformations for the different G values we simulated are given in Figure
S3. For each G, their respective initial configuration was first energy minimized with
the confinement and the Hi-C interactions to make the conformations overlap-free and
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to confine them properly. With the energy minimized conformation, MD simulations
for 2×106 steps were performed. The final conformation obtained from MD was then
subjected to stochastic dynamics at 310.15 K for 2×106 steps. 200 conformations from
the last 1000 steps were extracted at equal intervals which served as initial conformations
for the production runs.

1.9 Units

We have used a conversion similar to what Liu et al have used [9]. Below, reduced units
and their conversion to real units have been summarized.

Quantity Symbol Reduced Units Real Units

Length σ 1 50.286 nm

Mass m0 1 325×104 amu

Time tred 1 1 ms

Temperature T 1 1K

1.10 Rendering 3D conformations

We have used the open-source package Visual Molecular Dynamics (VMD)[10] to render
the representative 3D conformations of the chromosome model.
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2 Supplementary Tables

Table S1: Optimization table

w R

0.10 0.852

0.15 0.859

0.20 0.865

0.25 0.867

0.30 0.868

0.35 0.867

0.40 0.866

Table S2: Average radius of gyration (Rg) of all macrodomains, non-structured regions in µm.

MD G=3.6 G=1.8 G=1.0

Ori 0.267± 0.015 0.259±0.012 0.239± 0.022

NSR 0.179± 0.014 0.171±0.010 0.176± 0.014

Right 0.200± 0.021 0.192±0.017 0.225± 0.021

Ter 0.234± 0.029 0.243±0.028 0.336± 0.025

Left 0.192± 0.012 0.180±0.009 0.187± 0.011

NSL 0.197± 0.014 0.194±0.010 0.202± 0.016
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Table S3: Macrodomain overlap scores

MD1 MD2 G=3.6 G=1.8 G=1.0 control(G=3.6)

NS-R Right 0.251±0.048 0.157±0.030 0.134±0.024 0.428±0.052

NS-R Ter 0.210±0.0.42 0.119±0.026 0.206±0.045 0.359±0.054

NS-R Left 0.075±0.0.42 0.100±0.017 0.216±0.031 0.349±0.069

NS-R NS-L 0.075±0.036 0.120±0.023 0.166±0.042 0.447±0.061

NS-R Ori 0.304±0.029 0.124±0.009 0.343±0.080 0.504±0.045

Right Ter 0.435±0.055 0.468±0.063 0.337±0.035 0.587±0.055

Right Left 0.130±0.059 0.081±0.036 0.001±0.002 0.461±0.064

Right NS-L 0.154±0.051 0.084±0.028 0.025±0.015 0.413±0.057

Right Ori 0.216±0.040 0.119±0.017 0.218±0.049 0.494±0.044

Ter Left 0.337±0.056 0.229±0.033 0.162±0.036 0.511±0.058

Ter NS-L 0.163±0.046 0.081±0.025 0.199±0.037 0.371±0.056

Ter Ori 0.223±0.039 0.296±0.034 0.253±0.049 0.459±0.045

Left NS-L 0.331±0.046 0.296±0.034 0.320±0.047 0.478±0.072

Left Ori 0.149±0.030 0.078 ±0.011 0.095±0.038 0.518±0.058

NS-L Ori 0.233±0.030 0.123±0.010 0.233±0.033 0.638±0.035
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3 Supplementary Figures

d

L

l = L-d

Figure S1: Cell dimensions

Chr1

Primary

Forks

Secondary

Forks

Unreplicated

Figure S2: Schematic of a replication fork

a) b) c)

G=3.6 G=1.8 G=1.0

Figure S3: a) Starting conformation for G=3.6. b) Starting conformation for G=1.8. c) Starting conformation for
G=1.0. OriCs have been coloured in magenta while difs have been coloured in black.
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Figure S4: a) A snapshot of the 3D conformation for simulations using Eq. (S1). b) Comparison between the force
constant matrices for Eqs. (1) and (S1). The lower half of the plot is for Eq. (S1) while the upper half is for Eq. (1). c)
Compairson of the Hi-C simulated matrices using Eqs. (1) and (S1). d) Linear density along the long axis of the cell for
simulations using Eqs. (1) and (S1).
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Figure S5: a) Comparison of distances measured via fluoroscence microscopy with distances obtained with simulations
using inverse transfer function. b) Comparison of radii of gyration among domains with respect to Hacker et. al ’s reported
values for oriC@midcell in their plectonemic model[12]. c) Comparison between the recombination frequencies provided
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Figure S6: Comparison between the force constant matrices for Eqs. (1) and (S1) in the main text. The lower half of
the plot is for Eq. (S1) while the upper half is for Eq. (1) in the main text.
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Figure S10: Probability histogram of orientation of the COG of the MDs for G=3.6
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Figure S12: Simulated HiC matrices averaged over the conformations of each of their respective clusters have been
plotted on the first and third rows. On the second and the fourth rows, the difference heatmap between the simulated
matrices from the experimental matrix has been shown.
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Figure S13: Predicted recombination frequency based on the exponential curve fitted in the figure ?? for 6 other loci
(attl7, attr17, attl29, attr53, attl70, and attl87). Orange line indicates the fitted data and blue is experimentally observed
data from Valens et. al. (2004)[13].

14



a)

x

z

b)

x

z

c)

x

z

G=3.6 G=1.8

G=1.0

Figure S14: For each subfigure, the mean position of the beads of the particles present in a slice after z-slicing have been
represented in green. The polymer has been represent as a transparent volume around it.
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Figure S15: Distribution of writhe obtained by fitting each z-sliced frame to a polygon for G=3.6, 1.8 and 1.0.
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Figure S16: a) fractal globule plot for experimental and simulated contact probability matrix (orange: experimental,
blue: simulated), b) mean of rms end-to-end distance of the genomic segments (in increasing length of 5000bp) vs. genomic
distance (bp).

15



0.0 580.0 1160.0 1740.0 2320.0 2900.0 3480.0 4060.0 4640.0
2

1

0

1

2

E
x

p
e

ri
m

e
n

ta
l 

D
I

(1
0

0
 K

b
p

)

Genomic Coordinates (Kbp)

Figure S17: CID boundaries calculated using DI on the experimental contact probability matrix.
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Figure S18: Correlation between CID boundaries detected by Rg map and DI
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Figure S19: a) Comparison of linear densities of individual chromosomes between G=3.6 and its corresponding control
scenario. b) Comparison of linear densities of chromosome for G=1.8 and its corresponding control scenario. c) Compar-
ison of linear densities of chromosome for G=1.0 and its corresponding control scenario.
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Figure S20: Comparison between matrices obtained from control simulations and experiments zoomed to a region near
the diagonal. a) Contact probability matrix obtained from control simulations. b) Contact probability matrix obtained
from experiments. c) Difference heatmap between matrices obtained from control simulations and experiments of the full
matrix (without zoom).
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