
Supplementary Data

BARTweb: a web server for transcriptional regulator association
analysis

Supplementary Data includes 2 Supplementary Figures, 1 Supplementary
Algorithm, Supplementary Methods, and 4 Supplementary Tables.

Supplementary Figure S1. BARTweb improvements over BART1.1.

Supplementary Figure S2. BARTweb user input interface.

Supplementary Algorithm 1. Logistic adaptive lasso algorithm.

Supplementary Methods. Scripts and command lines used for running each tool.

Supplementary Table S1. Lists of TRs in human and mouse covered by BARTweb

Supplementary Table S2. Existing tools for TR prediction from input gene set

Supplementary Table S3. List of knockTF datasets used for benchmarking

Supplementary Table S4. Benchmarking results of each tool on TF prediction using
knockTF data

2

Supplementary Figure S1

A B

Supplementary Figure S1. BARTweb improvements over BART1.1. (A,B) Bar plots

showing the number of collected ChIP-seq datasets (A) and the number of uniquely

covered TRs (B) in BARTweb and BART1.1 data libraries.

Download the sample files

Click to get your result

Required steps
1. Choose the species;
2. Choose the data type;
3. Upload your data.

Click to submit your job

Optional information
If you leave your email
address, we will notify you
with the job status and the
job key.

You could either choose to
upload a file or paste your
inputs here.

Supplementary Figure S2

Supplementary Figure S2. BARTweb user input interface. Instructions on how to submit

a job are illustrated.

4

Supplementary Algorithm 1

Algorithm 1: Logistic adaptive lasso

Input: 𝒚, 𝑷
Initialize: 𝒘 = 𝟏
repeat
𝑷∗ = 𝑷/𝒘
(𝜷 = arg min

𝜷
∑#$%
& (−𝑦# 𝒑#∗'𝜷 + log(1 + 𝑒𝒑!

∗#𝜷)) + 𝜆 ∑)$%
* 𝛽)

(𝜷∗ = (𝜷/𝒘

𝒘 = 1/2 |(𝜷∗|

until converged;

5

Supplementary Methods

Scripts and command lines used for running each tool

BART (version 2.0)
/*shell script*/
bart2 geneset -i ${geneset} -s hg38

HOMER (version 4.11)
/*shell script*/
findMotifs.pl ${geneset} human ${output} -p 4

Pscan (version 1.5)
/*shell script*/
fai_file=Homo _sapiens_1000up_0down.fasta.fai
fasta_file=Homo_sapiens_1000up_0down.fasta
matrix_file=Homo_sapiens_1000_0.short_matrix
cat ${fai_file} |cut -f1 |sort -u > ${fai_file}.uniq
convertIDs.pl ${geneset} human refseq > ${geneset}.refseq
cat ${geneset}.refseq |awk '{print "hg38_refGene_"$0}' > ${geneset}.refseq.txt
cat ${fai_file}.uniq ${geneset}.refseq.txt |sort|uniq -d > ${geneset}.refseq.txt.fai
xargs samtools faidx ${fasta_file} < ${geneset}.refseq.txt.fai > ${geneset}.fa
pscan -q ${geneset}.fa -m ${matrix_file}

ChEA3 (version 3)
/*R script*/
library(httr)
library(jsonlite)
genes <-read.table(${geneset}),stringsAsFactors=FALSE)
url = "https://amp.pharm.mssm.edu/chea3/api/enrich/"
encode = "json"
payload = list(query_name = "myQuery", gene_set = genes[,1])
response = POST(url = url, body = payload, encode = encode)
json = content(response, "text")
results = fromJSON(json)
write_json(results,file.path(outdir,paste(allfiles[i],".json",sep="")))
results_csv <- data.frame(TF = results$"Integrated--meanRank"$"TF", Score =
results$"Integrated--meanRank"$"Score")
write.csv(results_csv,file = ${output},row.names=TRUE)

TFEA.ChIP (version 1.10)
/*R script*/
library(TFEA.ChIP)
genes <-read.table((${geneset}),stringsAsFactors=FALSE)
cont_genes <-contingency_matrix(genes[,1])
results <- getCMstats(cont_genes)
write.csv(results,file = ${output},row.names=TRUE)

