Supplementary information

A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes

In the format provided by the authors and unedited

1 Supplementary Note

2

Generation of BioNano optical molecules. For generating BioNano optical 3 molecules, Weining rye high-molecular-weight DNA was treated with the nicking 4 endonuclease *BspQI* and labeled by fluorescent-dUTP using the IrysPrep Reagent Kit 5 according to manufacturer's instructions. The labeled molecules were imaged and 6 7 analyzed using the BioNano Irys system. A total of fifteen flow cells were run, the molecules, with a minimum length of 100 kb and a SNR (signal-to-noise ratio) value 8 9 higher than 3.5, were retained. The final set of cleaned data were 779.55 Gb including 3,571,570 molecules, with the N50 being 239.8 kb. 10

Evaluation of genome assembly using BioNano reads. In the evaluation using 11 BioNano reads, the optical molecules were mapped to the seven pseudomolecules 12 using the RefAligner software in the IrysView package with the parameter '-nosplit 2 13 -BestRef 1 -biaswt 0 -Mfast 0 -FP 1.5 -sf 0.2 -sd 0.0 -A 5 -outlier 1e-4 -endoutlier 14 1e-3 -S -1000 -sr 0.04 -resbias 5 64 -maxmem 36 -M 3 -minlen 150 -minsites 12 15 -sort-sizedec -subset 1 2000000 -T 1e-8 -maxthreads 12 -hashgen 5 3 2.4 1.5 0.05 5.0 16 17 1 1 2 -hash -hashdelta 10 -hashmaxmem 36 -insertThreads 8 -stdout -stderr'. 18 Approximately 96.02% of the seven pseudomolecules were covered by BioNano molecules. 19

20 Assessment of genome assembly. A high-density genetic map, developed using a cross between two European winter rye cultivars (Lo7 and Lo225)¹, was used to 21 22 assess the accuracy of the Weining rye genome assembly. The 87,820 marker sequences in the genetic map were searched against Weining genome assembly by 23 24 BLASTN using an identity cutoff of 85%, with 79,073 markers anchored onto the 25 seven Weining rye chromosomes and 6,417 markers mapped to the unanchored scaffolds. A total of 25,286 markers, which exhibited unique hit in Weining genome 26 assembly with identity values over 99%, were used to plot the genetic map distance 27 28 versus the physical position of Weining rye chromosome assemblies (Supplementary Fig. 5). The Spearman's rank correlation coefficient between the two maps, calculated 29 using R, was 0.99 ($P < 2.2 \times 10^{-16}$). Moreover, 194,804 Roche/454 reads of Lo7 with 30 an average length 400 bp were downloaded from a previous study¹. Among them, 31 169,717 had no Ns in their sequences, and used to BLASTN against the Weining 32 genome assembly. A total of 165,392 (97.45%) reads could be aligned to Weining 33

assembly with an average sequence identity of 97.71% and a mean sequence coverageof 97.27%.

To check the nucleotide accuracy of Weining genome assembly, the 13 Illumina 36 pair-end library reads (Supplementary Table 3) were aligned to the Weining assembly 37 using BWA. Alignments were sorted using SAMtools, and the variants were called by 38 39 GATK HaplotypeCaller module with the parameter "--minimum-mapping-quality 40 --min-base-quality-score 20 --native-pair-hmm-threads 50". The identified SNPs and 40 indels were filtered using VCFtools with the command "--remove-filtered-all 41 --min-alleles 2 --max-alleles 2 --min-meanDP 5 --max-meanDP 300 --minQ 40". The 42 homozygous SNPs and indels identified were used to calculate nucleotide base 43 accuracy rate of the assembly. 44

LTR_retriever² was used to calculate the LAI score of Weining rye genome assembly with 3 Mb window size and 300 kb sliding step. For comparison, the same protocol was applied to calculate the LAI values of the genomes of rice, *T. urartu, Ae. tauschii, H. vulgare* and the three subgenomes of common wheat (Supplementary Fig. 6). To evaluate the completeness of gene annotations, the 1,440 conserved protein models in the BUSCO embryophyta_odb9 dataset³ were searched against Weining genome assembly.

52 Detection and analysis of intact LTR-RTs. Intact LTR-RTs were identified using LTR_retriver. LTRharvest and LTR_FINDER_parallel (https://github.com/oushujun/ 53 LTR_FINDER_parallel) were used to identify full length LTR-RT candidates. 54 LTRharvest was run with the following setting: "-seed 20 -minlenltr 100 -maxlenltr 55 7000 -similar 85 -mintsd 4 -maxtsd 6 -motif TGCA -motifmis 1 -vic 10 -seqids yes"; 56 LTR_FINDER_parallel was executed with default parameters. The results were 57 merged together in LTRharvest standard output format, followed by analysis in the 58 LTR_retriver pipline with default parameters. A nucleotide substitution rate of 1.3 \times 59 10^{-8} mutations per site per year was used to estimate the insertion time of intact 60 LTR-RTs with the formula of $T = K/2\mu$ as described previously^{4,5}, where K is the 61 62 divergence rate of 5'-LTR and 3'-LTR estimated by the Jukes-Cantor model.

63 **Identification of centromeric regions.** Previous genome analysis of common wheat 64 showed that the *Cereba* and *Quinta* families of Gypsy LTRs are concentrated in the 65 centromeric regions, and can be used to identify centromeres⁶. Thus to identify the 66 centromeric regions of Weining rye chromosomes, the proportion of *Cereba* LTR-TRs 67 along each chromosome was calculated using a sliding window of 1 Mb size with a 68 step of 100 kb (i.e., total length of *Cereba* / the window size), which resulted in a total 69 of 23,903 *Cereba* containing windows for the seven chromosomes. The 70 99th-percentile value 0.215 of the null distribution of these windows was used as a 67 cutoff for estimating the centromeric region of each Weining rye chromosome.

Identification of non-coding RNA genes. The tRNA genes were identified using tRNAscan-SE v2.0 (http://lowelab.ucsc.edu/tRNAscan-SE/). The miRNAs were found by homology searching (one mismatch allowed) against miRBase (Release 22). The secondary structures of putative miRNA sequences were predicted by miRDeep2, with the miRNAs having typical hairpin structures considered to be reliable candidates. Other non-coding RNAs were predicted with the software Infernal v1.1.2 (http://eddylab.org/infernal/) using default parameters.

Identification of transcription factor genes. The iTAK program⁷ was applied to identify the TF genes of Weining rye based on homology search against the known plant transcription factor database integrated in the program, with the search results classified into different TF families. To compare the TF families among different grass species, iTAK was also applied to compute the TF genes in TaA, TaB, TaD, DUWA, DUWB, WEWA, WEWB, Tu, Aet, Bd, Hv and Os.

Annotation of disease resistance associated genes. RGAugury pipeline was used to 85 screen the HC genes of Weining rye and other grasses in order to identify the DRA 86 genes⁴. The pipeline first identified the conserved domains or motifs commonly 87 present in the DRA proteins, including nucleotide binding site (NB-ARC), leucine 88 rich repeat (LRR), trans-membrane (TM), serine/threonine and tyrosine kinase 89 (STTK), lysine motif (LysM), coiled-coil (CC), and Toll/ Interleukin-1 receptor (TIR). 90 Then the candidates were identified and classified into one of the four known major 91 families: NBS-encoding, trans-membrane and coiled-coil (TM-CC), receptor like 92 kinase (RLK), and receptor like protein (RLP). The distribution of DRA genes along 93 94 Weining rye chromosomes was calculated using a 10 Mb non-overlap sliding window.

QTL mapping. The heading date was scored for the 295 F2 plants derived from the
Weining × Jingzhou cross. The resultant phenotypic data, together with the genetic
map (Extended Data Fig. 3), were used for QTL mapping with the composite interval

98 mapping method implemented in R/qtl⁸, with a 10 cM scan window and the covariates 99 of 3 markers. LOD threshold was set by the top 5% quantile based on 1000 100 permutation tests, and a 1.5 LOD-drop support interval was used for each QTL. The 101 addictive effect and the variation explained by each QTL were determined using the R 102 function lm. The most significant SNPs were used to estimate QTL effect size.

103 Analysis of ScID1. Comparison of syntenic genomic regions carrying ID1 genes in Sc, Tu, Aet, and Ta was conducted using the module jcvi.compara.synteny of MCscan 104 (Python version) with "--iter=1"setting. The expression of ScID1 at 3 DAS time 105 points was assayed by qRT-PCR, with a primer set recognizing both ScID1.1 and 106 107 ScID1.2 (Supplementary Table 23). ScID1 genotyping of individual F2 plants of Weining × Jingzhou cross was accomplished using a SLAF sequencing generated 108 SNP marker that was located nearest to the ScID1 locus. With this marker, three 109 ScID1 genotypes, homozygous Weining or Jingzhou ScID1 (designated as WN/WN 110 and JZ/JZ, respectively) and heterozygous ScID1 (WN/JZ), were distinguished, and 111 the number of F2 plants for the three genotypes was 66, 64, and 161, respectively. 112 Statistical analysis of heading date data of the three genotypes was executed in R 113 114 using two-tailed t-test. Multiple amino acid sequence comparison of the ID1 proteins from Os, Zm, Sc, Hv, Tu, Aet, and Ta was carried out with Clustal Omega 115 (https://www.ebi.ac.uk/Tools/msa/clustalo/). Phylogenetic analysis of ID1 proteins 116 was performed using MEGA X (www.megasoftware.net/), with the phylogenetic tree 117 constructed using the Maximum Likelihood method and a JTT matrix-based model. 118

Analysis of ScFT2 phosphorylation in tobacco. Potential serine, threonine or 119 tyrosine phosphorylation sites in ScFT2 were predicted using NetPhos 3.1 Server 120 (http://www.cbs.dtu.dk/services/NetPhos/). The residues with a phosphorylation 121 potential score of above 0.5 (S38, S76, S110, and T132, Supplementary Fig. 4) were 122 considered for further investigations. For identifying potential phosphorylation sites 123 conserved among monocot and dicot plants, the FT1 and FT2 proteins from Sc, Bd, 124 Os, TaA, TaB, TaD, Aet, and Hv, together with the FT1 protein of Arabidopsis 125 thaliana, were subjected to multiple amino acid sequence comparison using the 126 127 Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), which showed that S76 and T132 were strictly conserved among the 17 compared FT proteins 128

(Supplementary Fig. 4). These two residues were thus mutated to create a series of 129 de-phosphomimic (S76A, T132A, and S76A/T132A) and phosphomimic (S76D, 130 T132D, and S76D/T132D) mutants, followed by expression in tobacco (N. 131 benthamiana) using a PVX vector as described previously⁹. Briefly, the nucleotide 132 sequences, designed to express MYC-tagged wild type (WT) ScFT2 and six 133 derivative mutants, were synthesized commercially (Beijing SYKM Gene 134 Biotechnology Co., Ltd., Beijing, China), and then cloned into the PVX vector 135 through infusion cloning (http://bioinfo.clontech.com/infusion/) with the primers 136 137 containing Cla I and Sal I restriction enzyme digestion sites (Supplementary Table 23). The resultant recombinant PVXs were each introduced into the leaves of N. 138 benthamiana seedlings via agroinfiltration. PVX:GFP, expressing free GFP, was used 139 as a control. The infiltrated plants were cultured in a growth room set at 23 °C and 140 with a 16 h light/ 8 h dark photoperiod. They were checked for successful viral 141 infection at 10 days post infiltration (dpi) by detecting PVX genomic RNAs using 142 RT-PCR⁹. The number of flowering plants was counted at 25 dpi, with representative 143 images taken at the same time. The accumulation of WT and mutant ScFT2 proteins 144 in the tobacco plants was also analyzed at this time by immunoblotting with an 145 anti-MYC primary antibody (Sigma-Aldrich, C3956). We noted that the MYC-tagged 146 ScFT2 accumulated in tobacco had a molecular mass of ~23 kDa (Fig. 6g), which was 147 smaller than the ScFT protein (~29 kDa, Fig. 6d) detected in rye. This difference 148 149 indicated that the phosphomodifications of ScFT protein in tobacco and rye differed to some extent, which requires further study to be understood. Three independent 150 151 experiments were performed, with 3 to 8 plants infiltrated per PVX construct per experiment. The percentages of flowering plants determined for the different PVX 152 constructs were presented as means \pm SE, which were statistically compared to the 153 control PVX:GFP by a two-tailed Student's *t*-test using *t*.test in R. 154

155

156 **References**

- Bauer, E. et al. Towards a whole-genome sequence for rye (*Secale cereale* L.). *Plant J.* 89, 853-869 (2017).
- Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index
 (LAI). *Nucleic Acids Res.* 46, e126 (2018).

- Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. BUSCO:
 assessing genome assembly and annotation completeness with single-copy orthologs.
 Bioinformatics 31, 3210-3212 (2015).
- 4. Luo, M.C. et al. Genome sequence of the progenitor of the wheat D genome *Aegilops tauschii*. *Nature* 551, 498-502 (2017).
- 166 5. Avni, R. et al. Wild emmer wheat genome architecture and diversity elucidate wheat evolution
 167 and domestication. *Science* 357, 93-97 (2017).
- 168 6. International Wheat Genome Sequencing Consortium (IWGSC). et al. Shifting the limits in wheat
 169 research and breeding using a fully annotated reference genome. *Science* 361, pii:eaar7191
 170 (2018).
- 171 7. Zheng, Y. et al. iTAK: A program for genome-wide prediction and classification of plant
 172 transcription factors, transcriptional regulators, and protein kinases. *Mol. Plant* 9, 1667-1670
 173 (2016).
- 174 8. Arends, D., Prins, P., Jansen, R.C. & Broman, K.W. R/qtl: high-throughput multiple QTL
 175 mapping. *Bioinformatics* 26, 2990-2 (2010).
- 9. Qin, C. et al. A virus-induced assay for functional dissection and analysis of monocot and dicot
 flowering time genes. *Plant Physiol.* **174**, 875-885 (2017).

178 Supplementary Figures

1R	
2R	
3R	
4R	
5R	
6R	
7R	
Supj	blementary Fig. 1. Alignment between BioNano reads (top) and the seven assembled
chro	mosomes (1R-7R) of Weining rye (below). Approximately 96.02% of the physical map was
cove	red with BioNano molecules.

Supplementary Fig. 2. Alignment between the seven assembled chromosomes of Weining rye and the seven rye linkage groups developed using Lo7 x Lo255 RIL population. The DNA markers used for constructing the plot were 25,286, which exhibited unique hit in Weining genome assembly with identity values over 99%.

192

Supplementary Fig. 3. Gene annotation pipeline for Weining rye genome assembly. Three different approaches, including Genscan, Augustus (version 2.4) and GlimmerHMM (version 3.0.4), were employed for *de novo* prediction with default parameters. In the homology-based approach, the HC gene models of previously sequenced Triticeae species, including Tu (*T. urartu*), Aet (*Ae. tauschii*), Hv (*H. vulgare*), and Ta (*T. aestivum*), were used to annotate Weining rye genes with the programs GeneWise and GeMoMa. Expression evidence was obtained through analysis of transcriptome sequencing data (Methods).

С

FT2 (177 amino acids; Score > 0.5) Netphos-3.1b prediction results					
Sequence	Residue	Context	Score	Kinase	Answer
ScFT2	76 S	PDAPSPSDP	0.996	unsp	YES
	76 S	PDAPSPSDP	0.542	cdk5	YES
	76 S	PDAPSPSDP	0.522	GSK3	YES
	132 T	LGRQTVYAP	0.940	unsp	YES
	132 T	LGRQTVYAP	0.662	РКС	YES

201

202 Supplementary Fig. 4. Prediction of potential phosphorylation sites in ScFT2. (a, b) The deduced protein sequence of ScFT2 was subjected to prediction using the software NetPhos 3.1 Server 203 204 (http://www.cbs.dtu.dk/services/NetPhos/) (a). The residues with a phosphorylation potential score 205 of above 0.5 (S38, S76, S110, and T132) are listed (b). (c) Multiple alignment of the amino acid 206 sequences of the FT1 and FT2 proteins from rye, barley (Hordeum vulgare), Aegilops tauschii, the 207 A, B and D subgenomes of common wheat (Triticum aestivum), rice (Oryza sativa), Brachypodium distachyon, and Arabidopsis thaliana. The alignment was generated using the 208 209 Clustal Omega software (https://www.ebi.ac.uk/Tools/msa/clustalo/), which showed that S76 and 210 T132 were strictly conserved among the 17 compared FT proteins. Only the relevant portion of the 211 alignment is shown. The amino acid sequences of the 17 FT proteins are provided in 212 Supplementary Table 24.

Supplementary Fig. 5. The seven pairs of chromosomes (1R to 7R) of Weining rye. Metaphase chromosomes in the mitotic root tip cells were hybridized with two fluorescently labeled probes, pSC119.2 (green) and (AAC)₅ (red), which allowed identification of the seven pairs of rye chromosomes. The data shown were reproducible in three independent experiments.

219 220

221 **SNPs** called Supplementary Fig. 6. Distribution patterns of the using the 222 genotyping-by-sequencing data of domesticated rye (81 accessions) and three wild Secale species 223 including S. vavilovii (5), S. strictum (11), and S. sylvestre (4) with Weining genome assembly as 224 reference. (a) Distribution patterns of 124,472 chromosomally assigned SNPs on the 1R to 7R 225 chromosomes of Weining rye. (b) Distribution of 127,826 SNPs in the intergenic or different genic 226 regions of Weining rye as annotated using the SnpEff software (http://snpeff.sourceforge.net/ 227 features.html). (c) Distribution pattern of the 5 Mb sliding windows containing different numbers 228 of SNPs.

230 Supplementary Tables

231

Supplementary Table 1. Summary of sequencing platforms used and the data generated in constructing Weining rye genome sequence

Platform	Libraries sequenced	Data size	Depth
Illumina	13	430 Gb	54 ×
PacBio	120	497 Gb	62 ×
Hi-C	6	560 Gb	$70 \times$
BioNano	15	779 Gb	97 ×

234

Length (bp)	Number	Total length (bp)	Average length (bp)
0 - 2000	9,186,702	11,237,416,294	1,223
2000 - 4000	10,913,437	32,294,858,639	2,959
4000 - 6000	8,762,119	43,565,621,971	4,972
6000 - 8000	8,393,934	58,673,408,931	6,990
8000 - 10000	6,640,491	59,442,959,031	8,952
10000 - 12000	5,325,504	58,431,134,186	10,972
12000 - 14000	4,201,538	54,392,496,752	12,946
14000 - 16000	2,946,672	44,015,688,923	14,937
16000 - 18000	2,018,402	34,181,945,704	16,935
> 18000	4,353,731	100,781,681,018	23,148
Total	62,742,530	497,017,211,449	7,922
Reads N50 (bp)	11,484	-	-
Max length (bp)	180575	-	-

Supplementary Table 2. Summary of PacBio reads generated in this study

Library	Data (Gb)	Depth (×)	Q20 (%)	Q30 (%)	
270bp_1	32.67	4.08	95.03	88.56	
270bp_2	34.52	4.32	95.14	88.75	
270bp_3	35.79	4.47	95.13	88.73	
270bp_4	33.24	4.16	95.02	88.52	
270bp_5	31.38	3.92	95.18	88.53	
270bp_6	36.36	4.55	95.36	88.93	
270bp_7	37.64	4.71	94.93	88.12	
270bp_8	32.60	4.08	95.06	88.34	
270bp_9	35.16	4.40	96.50	91.43	
270bp_10	37.76	4.72	96.52	91.43	
270bp_11	35.39	4.42	96.51	91.45	
270bp_12	31.00	3.88	96.54	91.50	
270bp_13	16.44	2.06	96.57	91.61	
Total	429.95	53.74	-	-	

Supplementary Table 3. Summary of Illumina Hiseq X Ten data

Library ¹		Total read pairs	Mapped reads	Unique mapped read pairs	Valid interaction pairs	Dangling end pairs	Re-ligation pairs	Self-cycle pairs	Dumped pairs
U01	Size (bp)	268,366,265	485,799,666	68,204,581	44,632,071	17,367,681	950,051	543,665	4,711,113
101	Ratio (%)	100	90.51	25.41	65.44	25.46	1.39	0.8	6.91
H02	Size (bp)	314,244,148	572,100,640	82,794,586	54,169,599	20,781,274	1,141,282	718,454	5,983,977
H02	Ratio (%)	100	91.03	26.35	65.43	25.1	1.38	0.87	7.23
U02	Size (bp)	341,464,950	622,771,703	90,309,721	60,171,383	21,614,830	1,234,076	746,632	6,542,800
103	Ratio (%)	100	91.19	26.45	66.63	23.93	1.37	0.83	7.24
U 04	Size (bp)	318,374,313	578,562,280	81,816,807	51,481,494	23,067,405	1,160,328	756,034	5,351,546
П04	Ratio (%)	100	90.86	25.7	62.92	28.19	1.42	0.92	6.54
U05	Size (bp)	277,499,548	499,896,565	69,843,529	43,739,691	19,814,454	1,008,909	592,303	4,688,172
П03	Ratio (%)	100	90.07	25.17	62.63	28.37	1.44	0.85	6.71
H06	Size (bp)	349,117,671	608,189,002	84,050,346	74,262,643	7,900,708	695,877	118,145	1,072,973
HUO	Ratio (%)	100	87.1	24.08	88.35	9.4	0.83	0.14	1.28

241 Supplementary Table 4. Summary of Hi-C data and mapping

¹Five parallel Hi-C libraries (H01-H05) were constructed with the restriction enzyme DpnI (5'-GA^{m6} \downarrow TC3'), with the H06 library developed using the restriction enzyme *Hind*III (5'-A \downarrow AGCTT-3').

Supplementary Table 5. Seven largest chromosome scale super scaffolds
 ordered and orientated using Hi-C data

Super scaffold	Number of contigs ordered and orientated			
Super Scariora	Contig number	Total length (bp)		
Lachesis Group0 (Chr4)	9,328	1,075,009,153		
Lachesis Group1 (Chr7)	8,181	1,036,064,969		
Lachesis Group2 (Chr2)	11,345	1,172,237,068		
Lachesis Group3 (Chr3)	8,673	1,121,865,493		
Lachesis Group4 (Chr6)	10,013	1,055,758,236		
Lachesis Group5 (Chr1)	9,035	964,780,726		
Lachesis Group6 (Chr5)	9,344	1,027,035,830		
Total clustered	65,919	745,2751,475		
Ratio (%)	68.40	94.38		
Total ordered and oriented	47,477	725,0197,380		
Ratio (%)	72.02	97.28		

248 **Supplementary Table 6.** Summary of BioNano data

BioNano high-quality data		—
Filtered	100 kb	_
Enzyme	BspQI	
N mols	3,571,570	
Total length (> 100 kb, ~ 97×)	779 Gb	
Average length ($> 100 \text{ kb}$)	218 kb	
Total length (> 150 kb, ~75.8×)	607 Gb	
Average length ($> 150 \text{ kb}$)	280 kb	
Mol N50 (kb)	239.8	
Lab (/100kb)	11.0	

249 The data were generated using the enzyme BspQI on the BioNano Irys system. The filtered high quality data 250 represent an average coverage of $97 \times of$ the estimated Weining genome size (7.86 Gb).

	Sc	Tu	Aet	Hv	WEWA	WEWB	ТаА	TaB	TaD
Chromosome 1	$0.94097 (1R)^2$	0.58	0.50	0.56	0.59	0.69	0.59	0.69	0.50
Chromosome 2	1.15054 (2R)	0.75	0.65	0.77	0.78	0.80	0.78	0.80	0.65
Chromosome 3	1.09484 (3R)	0.75	0.63	0.70	0.75	0.84	0.75	0.83	0.62
Chromosome 4	1.04378 (4R)	0.62	0.53	0.65	0.73	0.67	0.74	0.67	0.51
Chromosome 5	0.99891 (5R)	0.66	0.58	0.67	0.70	0.71	0.71	0.71	0.57
Chromosome 6	1.03447 (6R)	0.58	0.50	0.58	0.62	0.70	0.62	0.72	0.47
Chromosome 7	1.00967 (7R)	0.72	0.64	0.66	0.73	0.76	0.74	0.75	0.64

252 **Supplementary Table 7.** Comparison of the sizes of assembled chromosomes of Weining rye and five other Triticeae species¹

¹Sc, Secale cereale (Weining); Tu, *T. urartu* (G1812); Aet, *Ae. tauschii* (AL8/78); Hv, *Hordeum vulgare* (Morex); WEWA and WEWB, the A and B subgenomes of wild emmer wheat (*T. turgidum* ssp. *dicoccoides*, Zavitan); TaA, TaB and TaD, the A, B and D subgenomes of common wheat (*T. aestivum*, Chinese Spring).

²For simplicity, only the chromosome sizes of Sc (1R to 7R) are shown with five digits after decimal.

Item	Statistics	
Total reads	2,775,853,179	
Mapped reads	2,769,537,530 (99.77%)	
Paired in sequencing	2,759,875,804	
Properly paired	2,671,730,270 (96.81%)	

Supplementary Table 8. Assessing genome assembly using WGS Hiseq X Ten reads

Supplementary Table 9. Estimation of nucleotide accuracy in Weining genome
 assembly and the heterozygosity rate of Weining rye

Nucleotide accuracy of Weining genome assembly	
Number of homozygous SNPs	242,455
Number of homozygous InDels	218,570
Estimated accuracy (versus the assembled genome size 7,737,590,180 bp)	99.99404%
Heterozygosity of Weining rye	
Number of heterozygous SNPs	19,215,912
Number of heterozygous InDels	1,530,913
Estimated heterozygosity (versus the assembled genome size 7,737,590,180 bp)	0.26%

Supplementary Table 10. Assessment of completeness of the HC gene models of
Weining genome assembly using BUSCO dataset (1,440 genes)

Item	Number
Number of full length BUSCO genes found	1,370 (1,024 single copy plus 346 duplicated copy)
Number of fragmented BUSCO gene found	23
Total number of BUSCO genes found	1,393
Percentage of BUSCO genes identified	96.74%

Target gene	Genotype	Tissue	Treatment/stage	Biological repeat	Sample ID	Clean read ¹	Mapping ratio (%) ¹
Genes acting in	Weining	Root	Normal condition	4	R3-root	22241342	72.35
vegetative and		Stem	Normal condition	4	R3-stem	23786069	82.93
reproductive organs		Leaf	Normal condition	4	R3-leaf	23171266	77.40
8		Spike	Normal condition	4	R3-spiko	23124603	84.30
		Seed	10 days after anthesis	4	10d	29351768	86.35
		Seed	20 days after anthesis	4	20d	29335815	81.61
		Seed	30 days after anthesis	4	30d	27728075	81.28
		Seed	40 days after anthesis	4	40d	22052264	84.00
Genes acting in	Weining	Root	No freezing (CK)	1	R3-0h-G	26102733	84.72
cold response		Root	1 h after freezing (at -10 °C)	1	R3-1h-G	24864187	84.49
		Root	4 h after freezing (at -10 °C)	1	R3-4h-G	21813051	81.95
		Root	8 h after freezing (at -10 °C)	1	R3-8h-G	22765797	82.15
		Leaf	No freezing (CK)	1	R3-0h-Y	26518627	84.67
		Leaf	1 hours after freezing (at -10 °C)	1	R3-1h-Y	23684601	83.72
		Leaf	4 hours after freezing (at -10 °C)	1	R3-4h-Y	26221665	83.95
		Leaf	8 hours after freezing (at -10 °C)	1	R3-8h-Y	26490091	83.69
Genes acting in	Weining	Root	3 hours after drought	1	R3-3h-G	23386435	81.92
drought response		Root	6 hours after drought	1	R3-6h-G	25290369	80.84
		Root	12 hours after drought	1	R3-12h-G	31347004	80.78
		Leaf	3 hours after drought	1	R3-3h-Y	23737660	83.33
		Leaf	6 hours after drought	1	R3-6h-Y	21501245	81.76
		Leaf	12 hours after drought	1	R3-12h-Y	27472050	84.09
Genes related to	Weining	Leaf	4 days after sowing	3	WN4	28925265	87.45
heading date		Leaf	7 days after sowing	3	WN7	27322030	87.63
determination		Leaf	10 days after sowing	3	WN10	28834831	87.47
	Jingzhou	Leaf	4 days after sowing	3	JZ4	27895940	83.69
		Leaf	7 days after sowing	3	JZ7	28516674	83.53
		Leaf	10 days after sowing	3	JZ10	30556639	83.61

266 **Supplementary Table 11.** Characteristics of the Hiseq transcriptomes sequenced in this study

²⁶⁷ ¹Each of the values shaded in green or brown is the mean of four or three biological repeats.

Target gene	Genotype	Tissue	Treatment/stage	Biological repeat	Sample ID	Bam file size (Gb)	Number of circular consensus reads
Genes acting in	Weining	Root	Normal condition	4	Mixed organs	29.0	573,461
vegetative and		Stem	Normal condition	4			
reproductive		Leaf	Normal condition	4			
organs		Spike	Normal condition	4			
		Grain	10 days after anthesis	4	Mixed grains	31.0	296,749
		Grain	20 days after anthesis	4			
		Grain	30 days after anthesis	4			
		Grain	40 days after anthesis	4			

Supplementary Table 12. Features of the PacBio transcriptomes sequenced in this study

	Sc	Tu	Aet	Hv	ТаА	TaB	TaD	Bd	Os	Sb	Zm
HC gene Number	45,596	41,493	39,635	39,731	35,345	35,643	34,212	34,310	39,054	34,118	39,591
Gene length Mean	4,908.01	3,331.61	4,975.37	6,011.01	3,473.55	3,604.24	3,482.85	3,373.19	2,854.37	3,713.95	4,162.53
Gene length Median	2,774	2,346	2,734	2,259	2,374	2,436	2,428	2,617	2,188	2,824	2,556
Transcript Number	84,179	61,776	258,917	219,060	43,698	44,260	42,828	52,972	48,894	47,110	131,585
Transcript length Mean	1,670.71	1,554.37	1,812.13	1,845.88	1,218.55	1,259.28	1,259.99	2,185.49	1,552.74	2,211.95	2,614.84
Transcript length Median	1,466	1,348	1,522	1,552	1,041	1,083	1,083	1,793	1,413	1,766	2,151
CDS length Mean	1,221.99	1,012.26	1,020.68	1,058.34	1,218.55	1,259.28	1,259.99	1,260.06	1,079.99	1,228.18	1,446.86
CDS length Median	1,053	774	798	840	1,041	1,083	1,083	1,035	888	1,014	1,041
Exon number Mean	4.89	5.64	6.28	6.58	4.47	4.45	4.50	5.42	4.89	5.12	9.20
Exon number Median	3	4	5	5	3	3	3	3	3	3	7
Exon length Mean	341.78	275.78	288.57	280.46	272.43	283.09	280.12	403.58	317.23	431.66	284.09
Exon length Median	167	152	140	137	142	145	144	156	159	161	141
Intron length Mean	812.35	459.39	573.54	647.69	503.10	527.89	484.38	401.11	396.08	468.87	581.85
Intron length Median	134	136	127	132	135	135	134	141	160	143	131

271 **Supplementary Table 13.** Statistics of gene features of 10 grass genomes/subgenomes¹

¹Sc, Secale cereale (Weining); Tu, *T. urartu* (G1812); Aet, *Ae. tauschii* (AL8/78); Hv, *Hordeum vulgare* (Morex); TaA, TaB and TaD, the A, B and D subgenomes of common wheat (*T. aestivum*, Cluber 1, C

273 Chinese Spring); Bd, B. distachyon (Bd21); Os, O. sativa ssp. japonica (Nipponbare); Sb, Sorghum bicolor (BTx623); Zm, Zea mays (B73).

			Perc	centage (%)	Ν	umber	Family	Total length
Class	Superfamily	Abbr.	TEs	Assembled genome ^a	Intact	Truncated	number	(Mb)
Class I	LTR							
	Gypsy	RLG	60.79	54.90	177,152	1,027,641	63	4,249.9
	Copia	RLC	16.95	15.30	72,941	237,069	40	1,184.6
	Unclassified	RLX	6.75	6.09	23,401	139,723	27	471.6
	Non-LTR							
	LINE	RIX	1.28	1.16	11,502	84,044	57	89.6
	SINE	RSX	0.005	0.0039	945	1,307	3	0.3
Class II	DNA TE							
	CACTA	DTC	11.68	10.55	19,072	405,085	50	816.5
	Mutator	DTM	0.43	0.39	15,320	46,189	43	29.9
	Unclassified TIRs	DTX	0.27	0.25	34,031	29,209	67	19.1
	PIF/Harbinger	DTH	0.24	0.22	14,012	22,391	17	17.1
	Tc1/Mariner	DTT	0.20	0.18	70,803	24,854	40	13.9
	Unclassified	DXX	0.03	0.03	1,218	3,940	6	2.2
	hAT	DTA	0.19	0.17	113	4,757	3	13.4
	Helitron	DHH	0.01	0.0078	25	875	1	0.6
Others		XXX	1.17	1.06	69,806	134,516	120	81.9
Total			100.00	90.31	510,341	2,161,600	537	6,990.6

275 **Supplementary Table 14.** Statistics of TE annotation in Weining genome assembly

^aCalculated based on the assembled genome size (7.74 Gb).

Rye (Weining)		Rice (Ni	pponbare)		Syntenic gene pairs
Chr.	Start (Mb)	End (Mb)	Chr.	Start (Mb)	End (Mb)	
1R	69.60	210.19	Chr5	1.46	5.30	216
1R	211.19	599.90	Chr10	15.61	23.20	498
1R	600.23	940.97	Chr5	17.63	29.79	595
2R	11.40	25.03	Chr4	8.31	8.95	18
2R	25.03	600.32	Chr7	28.08	0.11	748
2R	600.32	1150.54	Chr4	18.17	34.83	780
3R	44.00	1094.84	Chr1	0.02	40.65	1852
4R	0.17	91.15	Chr3	23.54	29.29	401
4R	91.15	514.00	Chr11	0.58	9.20	239
4R	514.00	534.05	Chr3	11.98	12.50	38
4R	536.08	616.15	Chr8	24.40	26.55	114
4R	616.15	931.18	Chr6	0.25	11.88	483
4R	931.18	1043.78	Chr2	0.01	0.18	18
5R	8.43	390.29	Chr12	0.00	26.69	463
5R	391.56	743.67	Chr9	0.29	22.52	830
5R	745.39	998.91	Chr3	0.17	25.25	496
6R	3.45	781.95	Chr2	1.21	35.42	1310
6R	781.95	911.06	Chr1	41.25	43.13	99
6R	911.06	1034.47	Chr6	26.39	31.02	65
7R	7.00	346.31	Chr3	2.39	11.96	958
7R	346.31	644.30	Chr8	0.10	28.13	321
7R	644.30	976.50	Chr6	13.11	29.34	368
7R	976.50	1009.67	Chr4	0.12	5.73	39

Supplementary Table 15. Syntenic chromosomal segments between Weining rye and rice

Rye (V	e (Weining) Ch			Chinese Spring A subgenome			Chines	e Spring B s	subgenome	;	Chines	Chinese Spring D subgenome			
Chr.	Start	End	Chr.	Start	End	Syntenic	Chr.	Start	End	Syntenic	Chr.	Start	End	Syntenic	
	(Mb)	(Mb)		(Mb)	(Mb)	gene pairs		(Mb)	(Mb)	gene pairs		(Mb)	(Mb)	gene pairs	
1R	9.99	939.73	1A	4	589.63	3140	1B	4.97	686.85	3021	1D	3.12	491.63	3066	
2R	10.65	1136.49	2A	24.28	780.78	3450	2B	36.85	801.22	3341	2D	22.45	650.78	3503	
3R	6.35	1087.62	3A	0.02	683.36	3025	3B	3.31	750.86	3182	3D	0.7	560.36	3351	
4R	0.17	534.05	4A	599.9	174.16	1695	4B	0.23	380.65	1478	4D	0.41	304.69	1431	
4R	536.08	962.62	7A	0	258.37	1445	7B	2.1	337.64	1333	7D	1.02	241.1	1315	
4R	967.31	1041.84	6A	0.63	35.26	299	6B	1.41	64.45	313	6D	1.59	31.85	385	
5R	2.69	912.63	5A	7.51	650.83	3400	5B	9.29	646.48	3205	5D	9.28	528.73	3154	
5R	918.92	985.14	5A	663.19	709.53	452	4B	617.28	673.53	413	4D	480.8	509.48	514	
6R	6.64	786.21	6A	37.42	613.63	1924	6B	69.71	712.35	2039	6D	36.58	467.2	2107	
6R	787.26	912.32	3A	698.35	749.85	432	3B	751.75	820.06	466	3D	564.14	613.6	458	
6R	914.25	1022.81	7A	686.94	733.51	399	7B	672.76	735.31	327	7D	594.15	631.43	325	
7R	5.85	64.22	4A	603.67	640	313	5B	670.93	710.24	255	5D	533.2	561.93	352	
7R	68.19	346.31	4A	4	173.93	1013	4B	380.72	607.44	1006	4D	305.06	479.97	1134	
7R	347.14	962.48	7A	254.88	676.07	1439	7B	216.82	654.92	1581	7D	241.18	585.56	1405	
7R	970.35	1008.4	2A	2.37	20.86	222	2B	1.71	49.91	252	2D	2.22	18.75	330	

Supplementary Table 16. Syntenic chromosomal segments between Weining rye and the three subgenomes of Chinese Spring wheat

Category	Sc	Tu	Aet	Hv	TaA	TaB	TaD	Bd	Os
Singleton	4,217	9,555	4,514	4,502	4,266	3,759	3,816	8,835	10,609
Dispersed duplicated	23,753	20,007	23,871	23,178	18,376	18,603	17,926	15,518	15,190
Proximal duplicated	6,659	3,402	3,223	4,172	2,752	3,508	2,886	2,064	2,934
Tandem duplicated	7,077	4,581	4,132	3,767	5,858	6,553	6,165	3,097	3,982
Segmental duplicated	1,866	505	3,035	1,945	4,023	3,138	3,368	4,795	6,137
Total	43,572	38,050	38,775	37,564	35,275	35,561	34,161	34,302	38,852

282 Supplementary Table 17. Classification by MCScanX program of the HC genes in Weining rye and six other grass species¹

¹Sc, *Secale cereale* (Weining); Tu, *T. urartu* (G1812); Aet, *Ae. tauschii* (AL8/78); Hv, *Hordeum vulgare* (Morex); TaA, TaB and TaD, the A, B and D subgenomes of common wheat (*T. aestivum*,
 Chinese Spring); Bd, *B. distachyon* (Bd21); Os, *O. sativa* ssp. *japonica* (Nipponbare).

Supplementary Table 18. Comparison of starch biosynthesis related genes in Weining rye and Chinese Spring wheat

Gene ¹	Protein	Gene ID in Weining rye	Chromosomal location in Weining rye	Type of duplication	Chromosome location in common wheat
ScAGP_12_P	ADP glucose pyrophosphorylase I 2 plastidic	ScWN5R01G581600	5RI 5RI	Provimally duplicated	5AL SBL 5DI
Stadi -L2-I	ADI giucose pyrophosphorylase-L2-plasticie	ScWN5R01G582200	JRL, JRL	Troximany duplicated	JAL JDL JDL
ScAGP-S2-P	ADP glucose pyrophosphorylase-S2-plastidic	ScWN5R01G184700	5RL		5BL 5DL ²
ScAGP-L1-C	ADP glucose pyrophosphorylase-L1-cytoplasmic	ScWN1R01G556700	1RL		1AS 1BS 1DS
ScAGP-S1-C	ADP glucose pyrophosphorylase-S1-cytoplasmic	ScWN7R01G268800	7RS		7AS 7BS 7DS
ScGBSSI	Granule bound starch synthase I	ScWN4R01G463600	4RL		7AS 4AL 7DS
ScGBSSII	Granule bound starch synthase II	ScWN2R01G422600	2RL		2AL 2BL 2DL
ScSSI	Starch synthase I	ScWN4R01G394300	4RL		7AS 7BS 7DS
ScSSIIa	Starch synthase IIa	ScWN4R01G311700	4RL		7AS 7BS 7DS
ScSSIIb	Starch synthase IIb	ScWN6R01G257000	6RL		6AL 6BL 6DL
ScSSIIc	Starch synthase IIc	ScWN1R01G185100	1RS		1AL 1BL 1DL
		ScWN1R01G330400			
ScSSIIIa	Starch synthase IIIa	ScWN1R01G500200	1RL, 1RL, 4RL	Dispersed duplicated	1AS 1BS 1DS
		ScWN4R01G199100			
ScSSIIIb	Starch synthase IIIb	ScWN2R01G517800	2RL		2AL 2BL 2DL
C-CCH/	Stand and D	ScWN1R01G467000	101	Turner and dealling to d	
5C551V	Starch synthase IV	ScWN1R01G486700	IKL	Transposed duplicated	IAL IBL IDL
g gdfi		ScWN6R01G583300			
SCSBEI	Starch branching enzyme I	ScWN6R01G584400	6KL	Proximally duplicated	/AL /BL /DL
ScSBEIIa	Starch branching enzyme IIa	ScWN2R01G323200	2RL		2AL 2BL 2DL
ScSBEIIb	Starch branching enzyme IIb	ScWN2R01G342700	2RL		2AL 2BL 2DL
ScSBEIII	Starch branching enzyme III	ScWN7R01G337200	7RL		7AL 7BL 7DL
ScISA1	Isoamylase I	ScWN4R01G237900	4RL		7AS 7BS 7DS
ScISA2	Isoamylase II	ScWN1R01G341700	1RL		1AL 1BL 1DL
ScISA3	Isoamylase III	ScWN5R01G272000	5RL		5AL 5BL 5DL
ScPUL	Pullulanase	ScWN4R01G378700	4RL		7AS 7BS 7DS
ScPHO1	Plastid alpha-1,4-glucan phosphorylase I	ScWN5R01G446600	5RL		5AL 5BL 5DL

ScPHO2	Plastid alpha-1 4-glucan phosphorylase II	ScWN3R01G454000	301	Tandemly duplicated	3AL 3BL 3DI	
5011102	r lastid alpha-1,4-gidean phosphorylase fi	ScWN3R01G454100	JKL	randenny dupicated	JAL JDL JDL	
	Disproportionating anguma	ScWN2R01G161500	20.6	Transpood duplicated	246 206 206	
SCDPEI	Disproportionating enzyme	ScWN2R01G159200	285	Transposed duplicated	2AS 2BS 2DS	
ScGPT1	Glucose-6-phosphate translocator	ScWN7R01G269800	7RS		7AS 7BS 7DS	
		ScWN5R01G436200				
SCSUSYI	Sucrose synthase 1	ScWN4R01G349100	4KL, 5KL	Transposed duplicated	/AS /BS /DS	
		ScWN2R01G169900				
ScSuSy2	Sucrose synthase 2	ScWN2R01G524700	2RS, 2RL, 4RL	Transposed duplicated	2AS 2BS 2DS	
		ScWN4R01G484200				
S-UCD 1		ScWN5R01G327700		Transa d deglicated		
ScuGPasel	ODP-glucose pyrophosphorylase	ScWN5R01G396700	JKL, JKL	Transposed duplicated	SAL SBL SDL	
ScUGPase2	UDP-glucose pyrophosphorylase	ScWN4R01G563300	4RL		$6AS^2$	
ScSPSI	Sucrose-phosphate synthase	ScWN4R01G096500	4RS		4AL 4BS 4DS	
ScSPSII	Sucrose-phosphate synthase	ScWN3R01G021900	3RS		3AS 3DS ²	
ScSPSIII	Sucrose-phosphate synthase	ScWN6R01G072300	6RS		6AS 6BS 6DS	
ScSPSIV	Sucrose-phosphate synthase	ScWN6R01G544800	6RL		7AL 7BL 7DL	
ScSPSV	Sucrose-phosphate synthase	ScWN3R01G512400	3RL		3AL 3BL 3DL	
ScSUT1	Sucrose transporter	ScWN7R01G119300	7RS		4AS 4BL 4DL	
ScSUT2	Sucrose transporter	ScWN5R01G020700	5RS		5BS 5DS ²	

²⁸⁷ ¹The genes highlighted in red was duplicated once or twice in Weining rye genome relative to the three subgenomes of Chinese Spring.

288 ²Some of the starch biosynthesis related genes in Chinese Spring lacked one or two homoeologs. These missing homoeologs had been annotated as low confidence genes in the genome assembly of Chinese Spring (v1.0).

Locus	Gene name	Gene ID	Open reading frame	Predicted molecular mass (kDa) ¹	Chromosome location	Start	End	Strand	Supporting PacBio transcriptome reads
	40k gamma-secalin 1	-	Disrupted	-	1R	10191653	10192549	+	-
	40k gamma-secalin 2	-	Disrupted	-	1R	10224852	10225763	+	-
	40k gamma-secalin 3	-	Disrupted	-	1R	10243802	10244703	+	-
	40k gamma-secalin 4	-	Disrupted	-	1R	10246636	10247541	+	-
	40k gamma-secalin 5	ScWN1R01G011410	Intact	34.15	1R	10268543	10269448	+	49
C 1	40k gamma-secalin 6	ScWN1R01G011420	Intact	34.19	1R	10287264	10288169	+	51
Sec-1	40k gamma-secalin 7	-	Disrupted	-	1R	10292504	10293400	+	-
	40k gamma-secalin 8	ScWN1R01G011810	Intact	34.16	1R	10297739	10298644	+	43
	40k gamma-secalin 9	ScWN1R01G011820	Intact	34.12	1R	10302986	10303891	+	31
	Omega secalin 1	-	Disrupted	-	1R	22150165	22151237	+	-
	Omega secalin 2	ScWN1R01G031890	Intact	41.19	1R	22173362	22174435	+	9
	Omega secalin 3	ScWN1R01G031900	Intact	41.55	1R	22164116	22165188	+	42
	75k gamma-secalin 1	ScWN2R01G004010	Intact	52.70	2R	2510282	2511677	-	84
Sec-2	75k gamma-secalin 2	ScWN2R01G004020	Intact	54.29	2R	2519784	2521218	-	98
	75k gamma-secalin 3	ScWN2R01G004030	Intact	53.64	2R	2542224	2543640	-	81
C 2	Glu-1Ry	ScWN1R01G430800	Intact	80.77	1R	793164916	793167542	+	68
Sec-S	Glu-1Rx	ScWN1R01G431000	Intact	81.48	1R	793201484	793203161	+	147
S 4	40k gamma-secalin 10	ScWN1R01G083810	Intact	34.22	1R	83209223	83210128	+	176
Sec-4	Omega secalin 4	ScWN1R01G085210	Intact	55.39	1R	83801733	83803163	-	5

Supplementary Table 19. Summary of secalin genes annotated in Weining genome assembly 291

292 ¹The deduced amino acid sequences of the 13 active secalin genes are listed below.

293 >40k gamma-secalin 5

294 295 296 ASTVAGIGGQ

297 >40k gamma-secalin 6

299 300 QQPQQSIPQQQPLiQSSLQQQMNPCKNFLLQQCNPVSLVSSLVSLILPRSDCQVMQQQCCQQLAQIPQHLQCDAIHSVAHSIIMQQQQQQGIQILRPLFQIVQGQSIIQQQPAQLEVIRSLVLKTLPTMCNVYVRPDCSNIRTPFASTVAGIGGQ 301 >40k gamma-secalin 8 302 303 304 QQPQQSIPQQQPLiQSSLQQQVNPCKNFLLQQCNPVSLVSSLVSLILPRSDCQVMQQCCQQLAQITQHLQCAAIHSVAHSIIMQQQQQQGIQILRPLFQIVQGQSIIQQQPAQLEVIRSFVLKTLPTMCNVYVRPDCSNIRTPFASTVAGIGGQ 305 >40k gamma-secalin 9 306 307 308 QQPQQSIPQQQPLiQSSLQQQVNPCKNFLLQQCNPVSLVSSLVSLILPRSDCQVMQQQCCQQLaQIPQHLQCAAIHSVAHSIIMQQQQQQGIQILRPLFQIVQGQSIIQQQPAQLEVIRSLVLKTLPTMCNVYVRPDCSNIRTPFASTVAGIGGQ 309 >40k gamma-secalin 10 310 311 312 MKTFLILTILAMATTIATANMQVGPSGQVEWPQQQPLPQPQQPVYQQPQQIFPQPQQTFPLEPQQTFPLPQQQTFPLQPQQFPQAQQPPQQFPQAQQPPQQTFPQQQQPPQQPFPQTQQQFPQ FSSTIAGIGGQ 313 >Omega-secalin 2 314 315 316 MKTFLIFVLAMTMSIVTTARQLNPSEQKLQSPQQPVPKEQSYLQQPYPSHQPFPTPQQYSPYQPHQPFPQPQQPFPQPQQPFPQPQQQFPQQQLPLQPQQLPLQPQQLPQQPFPQPQQLPQQPFPQPQQLPQQPFPQPQQLPQQPFPQPQQLPQQPFPQPQQLPQQPFPQPQQLPQQPFPQPQQLPQQPFPQPQQPFPQPQQFPQPQQFPQPQQFPQPQQPFPQPQQPFPQPQQFPQPQQFPQPQQFPQPQQFPQPQQFPQPQQFPQPQQFPQQQFPQQPFPQPQQFPQPQQFPQPQQFPQPQQFPQQPFPQPQQFPQQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQPQQFPQQQFPQQPFPQPQQFPQQPFPQPQQFPQPQQFFPQPQQFPQPQQFPQQPFPQPQQFPQPQQFPQQPFPQPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQPQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQFPQQPFPQPQQFPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQPFPQPQQFPQQFPQQPFPQPQQFPQQFPQQPFPQPQQFPQQPFPQPQQFPQQFPQQFPQQPFPQPQQFPQQQFPQQFPQQQFPQQFPQQQFPQQFPQQFPQQQFPQQQFPQQFPQQQFPQQFPQQQFPQQFPQQQFPQQFPQQQFPQQFPQQQFPQQQFPQQQFPQQFPQQQFPQQFPQQQFPQQFPQQQFPQQFPQQFPQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQFPQQQFPQQQFPQQFPQQQFPQQQFPQQFPQQQFPQQQFPQQQFPQQFPQQQFPQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQFPQQFPQQFPQQFPQQFPQQQFPQQFPQQFPQQQFPQQFPQQFPQQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQQFPQQFPQQFPQQQFPQQQFPQQFPQQFPQQFPQQFPQQFPQQFPQQQFPQQFPQQFPQQFPQQFPQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQFPQQQQFPQQQFPQQ SFPLQPQQPFPQQPQRPFAQQPEQIISQQPFPLQPQQPFSQPQRPFPQQPGKIILQQPQQPSPLQPQQPFSQQPQRPQQTFPQQPQQIIPQQPQQPFPLQPQQPFPQQPQQPFPLQPQQPFPLQPQQSFSQPQEPFPQQPG QIIPQPPQQPFPLQPQQPFLQQTEQIISQQPQQPSPLQPQQPSPQQPQLPFPSPSNHLY 317 >Omega-secalin 3 318 319 320 FPLQPQQPFPQQPQRPFAQQPEQIISQQPFPLQPQQPFSQQQPFPQQPGQIIPQQPQQPFSQQPQRPQQPFPQQPQQPFPQQPQQPFPLQPQQPFPQQPQQPFPQQPQQPFPQQPGQ IIPQQPQQPFPLQPQQPFPQQPEQIISQQPQQPFPLQPQQPSPQQPQLPFPQPQQPFVVVV 321 >Omega-secalin 4 322 323 324 325 QPQQPLPQQPHQPQQPYPQQQPSRSSVTSIGGQ 326 >75k gamma-secalin 1 327 328 329 330 FPQYQEPFPQVHQPQQPSPQQQPSIQLSLQQQLNPCKNVLLQQCSPVALVSSLRSKIFPQSECQVMQQQCCQQLAQIPQQLQCAAIHSVVHAIIMQQEQREGVQILLPQSHKQHVGQGALAQVQGIIQPQQLSQLEVVRSLVL QNLPTMCNVYVPRQCSTIQAPFASIVTGIVGH 331 >75k gamma-secalin 2 332 333 334 335 MKTLLMLAILAMATTIATANMQVNPSGQVQCPQQPFPQPQQSSPQPQQPFPQQSQQPFPQQPQQPSPQQPQPPPQQPQQPYPQQPQQPYPQQPQQPFPQQPQQPYPQQPQQPVPQQPQQPVPQQPQQPVPQQPQQPVPQQPLQ QFPQQPQQSFPQQPVPQQPVPQQPLQQFPQQPQQPFPQQQQPVPQQSQQPFPQTQQPQQLFPQTQQSSPQQPQQVTSQPQQPFPQAQPPQQSSPQSQQPYPQEPQQLFPQSQQPQQPFPQPQQQPFPQPQQQPFPQPQQQ SIPQPQQPFPQSQEPFPQVHQPQQPSPQQQQPSIQLSLQQQLNPCKNVLLQQCSPVALVSSVRSKIFPQSECQVMQQQCCQQLAQIPQQLQCAAIHSVVHAIIMQQEQREGVQILLPQSHQQHVGQGALAQVQGIIQP QQLSQLEVVRSLVLQNLPTMCNVYVPRQCSTIQAPFASIETGIVGH

336 >75k gamma-secalin 3

341 >Glu-1Ry

348 > Glu-1Rx

Туре	SSP	NCBI accession number or gene id	Species
	Ta HMW-GS Ax1	X61009.1	Triticum aestivum
	Ta HMW-GS Ax2	M22208.2	Triticum aestivum
	Ta HMW-GS Bx7	BK006773.1	Triticum aestivum
	Ta HMW-GS Bx14	AY367771.1	Triticum aestivum
	Ta HMW-GS By8	JF736014.1	Triticum aestivum
HMW	Ta HMW-GS By9	X61026.1	Triticum aestivum
glutenins/HMW-secalins/	Ta HMW-GS Dx2	X03346.1	Triticum aestivum
D-hordein	Ta HMW-GS Dy12	BK006459.1	Triticum aestivum
	Aet HMW-GS-y	AET1Gv20756900	Aegilops tauschii
	Aet HMW-GS-x	AET1Gv20757200	Aegilops tauschii
	Sc HMW-SS 1Ry	ScWN1R01G430800	Secale cereale
	Sc HMW-SS 1Rx	ScWN1R01G431000	Secale cereale
	Hv D-hordein	HORVU1Hr1G066650	Hordeum vulgare
	Ta LMW-GS A2	MH347495.1	Triticum aestivum
	Ta LMW-GS B2	MH347496.1	Triticum aestivum
	Ta LMW-GS B3	MH347497.1	Triticum aestivum
	Ta LMW-GS B4	MH347498.1	Triticum aestivum
	Ta LMW-GS D1	MH347499.1	Triticum aestivum
	Ta LMW-GS D2	MH347500.1	Triticum aestivum
	Ta LMW-GS D3	MH347501.1	Triticum aestivum
	Ta LMW-GS D6	MH347502.1	Triticum aestivum
LMW	Ta LMW-GS D7	MH347503.1	Triticum aestivum
glutenins/B-hordeins	Ta LMW-GS D8	MH347504.1	Triticum aestivum
	Aet LMW-GS 1	AET1Gv20018600	Aegilops tauschii
	Aet LMW-GS 2	AET1Gv20026700	Aegilops tauschii
	Aet LMW-GS 3	AET1Gv20027600	Aegilops tauschii
	Aet LMW-GS 4	AET1Gv20028600	Aegilops tauschii
	Hv B-hordein-5	HORVU1Hr1G001120	Hordeum vulgare
	Hv B-hordein-6	HORVU1Hr1G001140	Hordeum vulgare
	Hv B-hordein-7	HORVU1Hr1G001350	Hordeum vulgare
	Hv B-hordein-8	HORVU1Hr1G001420	Hordeum vulgare
	Ta γ-gliadin A1	MH347507.1	Triticum aestivum
	Ta γ-gliadin A3	MH347517.1	Triticum aestivum
	Ta γ-gliadin A4	MH347508.1	Triticum aestivum
	Ta γ-gliadin B1	MH347509.1	Triticum aestivum
	Ta γ-gliadin B2	MH347510.1	Triticum aestivum
	Ta γ-gliadin B4	MH347511.1	Triticum aestivum
	Ta γ-gliadin B6	MH347512.1	Triticum aestivum
	Ta γ-gliadin D1	MH347513.1	Triticum aestivum
1. 1. / 1. / 1	Ta γ-gliadin D2	MH347514.1	Triticum aestivum
γ -gliadins/ γ -secalins/ γ -hor	Ta γ-gliadin D3	MH347515.1	Triticum aestivum
aeins	Ta γ-gliadin D4	MH347516.1	Triticum aestivum
	Aet γ-gliadin 1	AET1Gv20016500	Aegilops tauschii
	Aet γ-gliadin 2	AET1Gv20016600	Aegilops tauschii
	Sc 40k γ-secalin 5	ScWN1R01G011410	Secale cereale
	Sc 40k γ-secalin 6	ScWN1R01G011420	Secale cereale
	Sc 40k v-secalin 8	ScWN1R01G011810	Secale cereale

Sc 40k γ-secalin 9

Sc 40k γ-secalin 10

Sc 75k γ-secalin 1

ScWN1R01G011820

ScWN1R01G083810

ScWN2R01G004010

Secale cereale

Secale cereale

Secale cereale

Supplementary Table 20. Summary of GenBank accession numbers for the SSPs compared in Extended Data Fig. 6

	Sc 75k γ-secalin 2	ScWN2R01G004020	Secale cereale
	Sc 75k γ-secalin 3	ScWN2R01G004030	Secale cereale
	Hv γ-hordein 2	HORVU1Hr1G000640	Hordeum vulgare
	Hv γ-hordein 3	HORVU1Hr1G000680	Hordeum vulgare
	Ta δ-gliadin B1	MH347505.1	Triticum aestivum
	Ta δ-gliadin D1	MH347506.1	Triticum aestivum
	Aet δ-gliadin 1	AET1Gv20016100	Aegilops tauschii
	Ta ω-gliadin B3	MH347522.1	Triticum aestivum
	Ta ω-gliadin B6	MH347518.1	Triticum aestivum
	Ta ω-gliadin D1	MH347519.1	Triticum aestivum
	Ta ω-gliadin D2	MH347520.1	Triticum aestivum
ω -gliadins/ ω -secalins	Ta ω-gliadin D3	MH347521.1	Triticum aestivum
	Aet ω-gliadin 1	AET1Gv20013100	Aegilops tauschii
	Sc ω-secalin 2	ScWN1R01G031890	Secale cereale
	Sc ω-secalin 3	ScWN1R01G031900	Secale cereale
	Sc ω-secalin 4	ScWN1R01G085210	Secale cereale
	Ta α-gliadin A1	MH338193.1	Triticum aestivum
	Ta α-gliadin A2	MH338194.1	Triticum aestivum
	Ta α-gliadin A4	MH338195.1	Triticum aestivum
	Ta α-gliadin A5	MH338196.1	Triticum aestivum
	Ta α-gliadin A6	MH338197.1	Triticum aestivum
	Ta α-gliadin A8	MH338198.1	Triticum aestivum
	Ta α-gliadin A9	MH338199.1	Triticum aestivum
	Ta α-gliadin A10	MH338200.1	Triticum aestivum
	Ta α-gliadin B3	MH338182.1	Triticum aestivum
	Ta α-gliadin B7	MH338183.1	Triticum aestivum
	Ta α-gliadin B8	MH338184.1	Triticum aestivum
	Ta α-gliadin B9	MH338185.1	Triticum aestivum
	Ta α-gliadin B11	MH338186.1	Triticum aestivum
α-gliadins	Ta α-gliadin B14	MH338187.1	Triticum aestivum
	Ta α-gliadin B15	MH338188.1	Triticum aestivum
	Ta α-gliadin B16	MH338189.1	Triticum aestivum
	Ta α-gliadin B17	MH338190.1	Triticum aestivum
	Ta α-gliadin B18	MH338191.1	Triticum aestivum
	Ta α-gliadin B25	MH338192.1	Triticum aestivum
	Ta α-gliadin D1	MH338176.1	Triticum aestivum
	Ta α-gliadin D4	MH338177.1	Triticum aestivum
	Ta α-gliadin D5	MH338178.1	Triticum aestivum
	Ta α-gliadin D6	MH338179.1	Triticum aestivum
	Ta α-gliadin D8	MH338180.1	Triticum aestivum
	Ta α-gliadin D12	MH338181.1	Triticum aestivum
	Aet α-gliadin 1	AET6Gv20127000	Aegilops tauschii
	Aet α-gliadin 2	AET6Gv20125400	Aegilops tauschii

TF family	Sc	TaA	TaB	TaD	DUWA	DUWB	WEWA	WEWB	AA	DD	Bd	Hv	Os	Fold of increase in rye ²
HB-other	32	20	22	21	32	16	20	15	32	20	12	20	14	
MADS-M-type	44	48	58	48	35	42	26	27	19	33	46	34	37	
C2H2	191	148	148	151	121	134	62	70	113	146	115	125	121	1.26 - 3.08
		(1.29)	(1.29)	(1.26)	(1.58)	(1.43)	(3.08)	(2.73)	(1.69)	(1.31)	(1.66)	(1.53)	(1.58)	
MYB	173	144	138	145	129	117	120	119	125	131	122	117	117	1.19-1.48
		(1.20)	(1.25)	(1.19)	(1.34)	(1.48)	(1.44)	(1.45)	(1.38)	(1.32)	(1.42)	(1.48)	(1.48)	
GRAS	67	62	55	63	58	52	55	57	43	55	63	62	60	1.06-1.56
2.0	100	(1.08)	(1.22)	(1.06)	(1.16)	(1.29)	(1.22)	(1.12)	(1.56)	(1.22)	(1.06)	(1.08)	(1.12)	
B3	120	141	147	141	102	100	73	74	117	92	51	85	54	
C2C2-Dof	44	36	33	31	29	28	23	25	29	29	29	25	30	1.22-1.91
	47	(1.22)	(1.33)	(1.42)	(1.52)	(1.57)	(1.91)	(1.76)	(1.52)	(1.52)	(1.52)	(1.76)	(1.47)	1.07.1.69
MADS-MIKC	47	40	41 (1.15)	44 (1.07)	41 (1.15)	38 (1.24)	(1.52)	28	(1.20)	30 (1.31)	(1.42)	(1.42)	35 (1.34)	1.07-1.68
HR WOY	15	(1.10)	(1.13)	(1.07)	14	(1.24)	(1.52)	0	0	14	(1.42)	(1.42)	(1.54)	
	15	15	15	14	14	10	12	7	7	14	15	13	14	1 17 1 00
AP2/ERF-AP2	27	20	20	21	$\frac{1}{(1.50)}$	18	(1.42)	(1.42)	10	23	23	14	14	1.17-1.93
LOD	40	(1.55)	(1.55)	(1.29)	(1.59)	(1.5)	(1.42)	(1.42)	(1.09)	(1.17)	(1.17)	(1.95)	(1.95)	1 17 1 60
LOB	42	31	29	29	26	28	26 (1.62)	26	27	29	28	32	36	1.17-1.62
	10	(1.55)	(1.45)	(1.45)	(1.62)	(1.5)	(1.02)	(1.02)	(1.50)	(1.45)	(1.5)	(1.51)	(1.17)	
PLAIZ	13	16	14	16	15	13	10	12	14	13	14	9	15	1 1 2 1 70
MYB-related	102	/6 (1.24)	/5	/8 (1.21)	(1.55)	64 (1.50)	/0	/3	/9 (1.20)	(1.22)	5/ (1.70)	90 (1.12)	64 (1.50)	1.13-1.79
C2H	72	(1.54)	(1.50)	(1.51)	(1.55)	(1.39)	(1.40)	(1.40)	(1.29)	(1.52)	(1.79)	(1.15)	(1.39)	1 26 1 92
Сэп	13	(1.40)	(1.46)	(1.49)	(1.62)	43 (1.70)	(1.78)	(1.59)	(1.43)	(1.49)	(1.26)	(1.83)	(1.28)	1.20-1.85
WRKY	115	100	86	109	90	83	79	73	92	96	89	102	94	1 06-1 58
,, itili	110	(1.15)	(1.34)	(1.06)	(1.28)	(1.39)	(1.46)	(1.58)	(1.25)	(1.20)	(1.29)	(1.13)	(1.22)	1.00 1.50
bZIP	104	90	84	85	78	78	76	72	71	80	83	90	90	1.16-1.46
		(1.16)	(1.24)	(1.22)	(1.33)	(1.33)	(1.37)	(1.44)	(1.46)	(1.30)	(1.25)	(1.16)	(1.16)	
HB-KNOX	9	11	11	10	9	5	8	8	9	9	10	9	9	
DBP	8	4	4	3	4	4	4	4	6	4	5	4	4	1.33-2.67
		(2.00)	(2.00)	(2.67)	(2.00)	(2.00)	(2.00)	(2.00)	(1.33)	(2.00)	(1.60)	(2.00)	(2.00)	
bHLH	187	153	166	146	133	144	119	123	128	133	130	136	134	1.13-1.57
		(1.22)	(1.13)	(1.28)	(1.41)	(1.30)	(1.57)	(1.52)	(1.46)	(1.41)	(1.44)	(1.38)	(1.40)	
zf-HD	22	14	12	10	10	10	12	11	7	11	21	12	14	1.05-3.14

Supplementary Table 21. Comparison of transcription factor genes annotated in Weining rye and other grass genomes¹

		(1.57)	(1.83)	(2.20)	(2.20)	(2.20)	(1.83)	(2.00)	(3.14)	(2.00)	(1.05)	(1.83)	(1.57)	
C2C2-GATA	28	29	25	25	23	26	24	25	28	26	29	21	25	
Alfin-like	9	5	6	6	6	6	6	6	6	6	9	8	9	
E2F-DP	11	9	9	9	9	9	8	9	8	9	11	9	7	
AP2/ERF-ERF	198	153	159	166	116	112	130	119	90	155	135	127	139	1.19-2.2
D2 ADE	26	(1.29)	(1.25)	(1.19)	(1.71)	(1.77)	(1.52)	(1.66)	(2.20)	(1.28)	(1.47)	(1.56)	(1.42)	
B3-AKF	26	23	21	23	20	22	22	23	20	24	26	22	27	1 15 1 50
HB-HD-ZIP	46	38 (1.21)	35 (1.31)	$\frac{37}{(1.24)}$	38 (1.21)	(1.48)	30 (1.28)	29 (1.59)	32 (1.44)	34 (1.35)	37 (1.24)	34 (1.35)	40	1.15-1.59
LIM	6	5	6	6	5	6	4	4	5	4	6	2	6	
C2C2-YABBY	6	7	7	7	6	6	7	7	7	7	8	9	8	
Trihelix	33	28	30	27	23	27	24	25	20	26	26	25	26	1.1-1.65
		(1.18)	(1.10)	(1.22)	(1.43)	(1.22)	(1.38)	(1.32)	(1.65)	(1.27)	(1.27)	(1.32)	(1.27)	
HB-BELL	14	13	11	12	11	11	12	11	10	11	14	10	13	
OFP	44	33	32	33	31	30	28	29	19	34	32	28	31	1.29-2.32
		(1.33)	(1.38)	(1.33)	(1.42)	(1.47)	(1.57)	(1.52)	(2.32)	(1.29)	(1.38)	(1.57)	(1.42)	
NAC	165	158	147	143	130	112	115	112	111	139	128	137	135	1.04-1.49
CAPD C2 like	59	(1.04)	(1.12)	(1.15)	(1.27)	(1.47)	(1.45)	(1.47)	(1.49)	(1.19)	(1.29)	(1.20)	(1.22)	1 12 1 29
UARF-02-like	38	(1.21)	(1.21)	(1.21)	(1.38)	(1.16)	(1.14)	(1.23)	(1.12)	(1.32)	(1.16)	(1.21)	(1.26)	1.12-1.30
STAT	1	1	1	1	1	1	1	1	1	1	1	1	1	
SRS	5	5	5	5	5	4	5	5	3	5	6	5	5	
SBP	24	19	18	19	19	18	17	16	16	18	17	17	19	1.26-1.5
		(1.26)	(1.33)	(1.26)	(1.26)	(1.33)	(1.41)	(1.50)	(1.50)	(1.33)	(1.41)	(1.41)	(1.26)	
CSD	4	5	5	5	3	4	5	7	1	3	4	6	2	
TUB	15	12	12	12	12	12	12	12	15	12	12	24	15	
C2C2-LSD	5	4	4	5	4	5	5	5	4	5	5	6	4	
NF-YB	17	17	14	13	15	14	16	15	15	14	17	19	13	
NF-YC	16	13	15	14	12	14	11	10	11	16	15	11	16	
CPP	14	11	14	13	9	11	8	14	10	12	9	8	11	
TCP	27	20	21	20	15	15	22	18	16	23	21	20	20	1.17-1.80
NOZ	2	(1.35)	(1.29)	(1.35)	(1.80)	(1.80)	(1.23)	(1.50)	(1.69)	(1.17)	(1.29)	(1.35)	(1.35)	
	5	2	2	2	2	2	2	5	2	2	2	2	2	
	2	с С	с С	с С	2	з 20	<u>э</u>	<u>э</u>	3 25	с С	3	э Эл	1	1 02 1 41
HSF	31	27	27	22	24	30	22	22	25	21	24	24	25	1.03-1.41

		(1.15)	(1.15)	(1.41)	(1.29)	(1.03)	(1.41)	(1.41)	(1.24)	(1.15)	(1.29)	(1.29)	(1.24)	
AP2/ERF-RAV	14	7	8	9	6	7	9	9	7	9	4	8	4	1.56-3.5
		(2.00)	(1.75)	(1.56)	(2.33)	(2.00)	(1.56)	(1.56)	(2.00)	(1.56)	(3.50)	(1.75)	(3.50)	
EIL	7	6	7	7	6	7	7	7	5	7	6	7	9	
GeBP	13	10	13	13	7	9	10	10	10	13	15	15	17	
CAMTA	6	6	5	5	6	4	5	5	5	5	7	5	6	
Tify	24	18	19	16	11	16	14	11	12	18	15	10	17	1.26-2.4
		(1.33)	(1.26)	(1.50)	(2.18)	(1.50)	(1.71)	(2.18)	(2.00)	(1.33)	(1.60)	(2.40)	(1.41)	
NF-YA	12	6	6	7	7	5	7	7	7	7	7	7	11	1.09-2.4
		(2.00)	(2.00)	(1.71)	(1.71)	(2.40)	(1.71)	(1.71)	(1.71)	(1.71)	(1.71)	(1.71)	(1.09)	
BES1	8	6	7	6	6	6	9	8	8	5	8	9	6	
HRT	1	1	0	1	1	1	1	1	1	1	1	1	1	
GRF	14	12	8	10	11	9	9	8	6	10	12	13	12	1.08-2.33
		(1.17)	(1.75)	(1.40)	(1.27)	(1.56)	(1.56)	(1.75)	(2.33)	(1.40)	(1.17)	(1.08)	(1.17)	
S1Fa-like	2	1	1	1	1	1	1	1	1	0	1	0	2	
DBB	5	5	5	5	6	5	4	2	4	2	4	3	8	
RWP-RK	14	14	11	11	12	10	9	9	11	10	16	10	12	
C2C2-CO-like	12	11	10	11	9	10	9	9	9	10	10	5	11	
LFY	1	1	1	1	1	1	1	1	2	1	1	1	1	
NF-X1	5	2	3	2	3	3	3	3	2	3	2	2	2	1.67-2.5
		(2.50)	(1.67)	(2.50)	(1.67)	(1.67)	(1.67)	(1.67)	(2.50)	(1.67)	(2.50)	(2.50)	(2.50)	
ULT	1	1	1	1	1	1	1	1	0	1	1	2	2	
GARP-ARR-B	8	11	10	9	7	14	7	6	8	8	7	9	6	
BBR-BPC	2	3	1	2	3	1	3	1	2	2	3	2	4	
Whirly	2	3	1	2	3	1	3	1	2	2	2	2	2	

¹Sc, Secale cereale (Weining); Tu, *T. urartu* (G1812); Aet, *Ae. tauschii* (AL8/78); Hv, *Hordeum vulgare* (Morex); DUWA and DUWB, the A and B subgenomes of durum wheat (*T. turgidum* ssp. 360
 durum, Svevo); WEWA and WEWB, the A and B subgenomes of wild emmer wheat (*T. turgidum* ssp. *dicoccoides*, Zavitan); TaA, TaB and TaD, the A, B and D subgenomes of common wheat

361 (*T. aestivum*, Chinese Spring); Bd, *B. distachyon* (Bd21); Os, *O. sativa* ssp. *japonica* (Nipponbare).

²The families marked in brown had increased members in Weining rye. For example, 1.56-3.50 fold increase for AP2/ERF-RAV, 1.17-1.93 fold increase for AP2/ERF-AP2, and 1.19-2.20 fold increase for AP2/ERF-ERF.

		1	NBS			TM CC	DID	DI K ²	Total
CN	CNL	NBS	NL	TN	ТХ	_1111-CC	KLI	KLK	10181
45	245	45	238	4	3	142	129	1138	1,989 ³
88	218	96	263	3	2	117	133	916	1,836
175	247	53	267	3	2	97	124	760	1,728
78	226	83	244	3	2	115	154	983	1,888
74	160	156	235	3	2	101	116	774	1,621
45	196	72	242	3	1	130	145	924	1,758
30	149	33	128	1	4	106	57	670	1,178
37	136	59	176	2	2	154	113	829	1,508
45	199	57	169	2	3	134	112	854	1,575
	CN 45 88 175 78 74 45 30 37 45	CN CNL 45 245 88 218 175 247 78 226 74 160 45 196 30 149 37 136 45 199	CN CNL NBS 45 245 45 88 218 96 175 247 53 78 226 83 74 160 156 45 196 72 30 149 33 37 136 59 45 199 57	NBSCNCNLNBS45245452388821896263175247532677822683244741601562354519672242301493312837136591764519957169	NBSCNCNLNBSNLTN45245452384882189626331752475326737822683244374160156235345196722423301493312813713659176245199571692	NBSCNCNLNBSNLTNTX45245452384388218962633217524753267327822683244327416015623532451967224231301493312814371365917622451995716923	NBSTM-CCCNCNLNBSNLTNTX4524545238431428821896263321171752475326732977822683244321157416015623532101451967224231130301493312814106371365917622154451995716923134	NBSTM-CCRLPCNCNLNBSNLTNTX452454523843142129882189626332117133175247532673297124782268324432115154741601562353210111645196722423113014530149331281410657371365917622154113451995716923134112	NBSTM-CCRLPRLK2CNCNLNBSNLTNTX4524545238431421291138882189626332117133916175247532673297124760782268324432115154983741601562353210111677445196722423113014592430149331281410657670371365917622154113829451995716923134112854

Supplementary Table 22. Summary of disease resistance associated genes annotated
 in Weining rye and other grass genomes (subgenomes)¹

¹Sc, Secale cereale (Weining); Tu, *T. urartu* (G1812); Aet, *Ae. tauschii* (AL8/78); Hv, *Hordeum vulgare* (Morex);
DUWA and DUWB, the A and B subgenomes of durum wheat (*T. turgidum* ssp. *durum*, Svevo); WEWA and
WEWB, the A and B subgenomes of wild emmer wheat (*T. turgidum* ssp. *dicoccoides*, Zavitan); TaA, TaB and TaD,
the A, B and D subgenomes of common wheat (*T. aestivum*, Chinese Spring); Bd, *B. distachyon* (Bd21); Os, *O. sativa* ssp. *japonica* (Nipponbare).

²Receptor-like kinase genes were substantially increased in Weining rye compared to other species.

³Detailed information on the 1,989 disease resistance associated genes of Weining rye is provided in
 Supplementary Data 3.

	T			
Primer set	Target gene	Sequence (5' -3')	Use	
DS SoFT1	ScFT1	CAGGAGCTGATGTGCTACGA	Analyzing ScFT1 expression	
F3-3CF11	(ScWN4R01G446100)	GGGCGGGCCGAGGTTGTAGA	by qRT-PCR	
	ScFT2	ACAGGAGTATCTTTCGGGAC	Analyzing ScFT2 expression	
PS-SCF12	(ScWN3R01G192500)	CAGGCCGAGGTTGTAGAGCT	by qRT-PCR	
PS-ScPpd1	ScPpd1	GGAGGATCATGAACCACGA	Analyzing <i>ScPpd1</i> expression by qRT-PCR	
	(ScWN2R01G043000)	CTCCAGCTGTGAGAGCGTCT		
PS-ScID1	ScID1.1 (ScWN6R01G057200) ScID1.2	cID1.1 SeWN6R01G057200) GGCATCCTCTTCTCCAGGAA cID1.2		
	(ScWN6R01G057300)	TTGTTGATGTCGTTGCTGCT		
PS-ScFT2-PVX	<i>ScFT2</i> (ScWN3R01G192500)	AGGTCAGCACCAGCTAGC ATCGATATGGCCGGGAGGGACAGGGAC CTTAACCGTTCATCGGCG GTCGACTCATTCATTCAAGTCCTCTTC	Cloning ScFT2 and its derived mutants into the PVX viral vector	
DC CoAstin	ScActin	CAACGAGCTCCGTGTCGCA	As an internal control of	
PS-ScActin	(ScWN1R01G374800)	GAGGAAGCGTGTATCCCTGTAG	qRT-PCR	

Supplementary Table 23. List of gene specific primers used in this study

Supplementary Table 24. Amino acid sequences of the 17 FT proteins from grasses and *Arabidopsis thaliana* used in the alignment shown in Supplementary Fig. 4c

Gene	NCBI accession number	~ ·	
Name	or gene id	Species	Amino acid sequence
			MVGSGMQRGDPLVVGRVIGDVVDPF
			ARRVALRVGYASRDVANGCELRPSAIA
ScFT1	ScWN4R01G446100	Secale cereale	DPPRVEVGGPDMRTFYTLVMVDPDAP
Serri	50 0104010440100	Secure cereure	SPSDPSLKEYLHWLVIDIPGIIGVSFG
			RUIVIAPOWRUNFSIRDFAELINLOL PVA AVVENCORETGTGGRRM
			MAGRDRDPI VVGRVVGDVI DPFVRT
			TNLRVTFGNRAVSNGCELKPSMVAOO
			PRVEVGGNEMRTFYTLVMVDPDAPSP
ScFT2	ScWN3R01G192500	Secale cereale	SDPNLREYLHWLVIDIPGTTGASFGQE
			LMCYESPRPTMGIHRFVLVLFQQLGR
			QTVYAPGWRQHFNTREFAELYNLGPP
			VAAVYFNCQREAGSGGRRMYN
			MAGRDRDPLVVGRVVGDVLDPFVRT
			TNLRVTFGNRAVSNGCELKPSMVAQQ
$H_{\rm W}FT1$	A A 738709 1	Hordeum vulgare	PRVEVGGNEMRTFYTLVMVDPDAPSP
11/1 1 1	AAL50709.1	noraeam vargare	SDPNLREYLHWLVIDIPGIIGASFGQ
			EVMCTESPRETMGIHRFVLVLFQQLG
			AVVENCOREAGSGGRRMVN
			MVGSSMORGDPI VVGRVIGDVVDPF
			VRRVAL RVGYASRDVANGCEL RPSAIA
			DOPRVEVGGPDMRTFYTLVMVDPDA
HvFT2	ABB99414.1	Hordeum vulgare	PSPSDPSLREYLHWLVTDIPATTGVSF
			GTEVVCYEGPRPVLGIHRLVFLLFQQL
			GRQTVYAPGWRQNFSTRDFAELYNLG
			LPVAAVYFNCQRETGTGGRRM
			MVGSGMHAQRGDPLVVGRVIGDVVD
			PFVRRVALRVGYASRDVANGCELRPS
A ot FT1	VD 020200580 1	Aggilons tauschij	AIADPPRVEVGGPDMRTFYTLVMVDP
Aetr II	AI_020200369.1	Aeguops iuusenii	DAPSPSDPSLREYLHWLVTDIPATTGV
			SFGIEVVCYEGPRPVLGIHKLVFLLFQ
			LCLDVA AVVENCODETCTCCDDM
			MAGRDRDPI VVGRVVGDVI DPFIRTT
			NIRVTEGNRTVSNGCELKPSMVAOOP
			RVEVGGNEMRTFYTLVMVDPDAPSPS
AetFT2	XP_020200153.1	Aegilops tauschii	DPNLREYLHWLVTDIPGTTGASFGQE
			VMCYESPRPTMGIHRFVLVLFQQLGR
			QTVYAPGWRQNFNTRDFAELYNLGPP
			VAAVYFNCQREAGSGGRRMYN
			MAGRDRDPLVVGRVVGDVLDPFVRT
			TNLRVTFGNRTVSNGCELKPSMVAQQ
$T_{a}FTI_{-}A$	TraceCS7A02G115400.1	Triticum aestivum	PRVEVGGNEMRTFYTLVMVDPDAPSP
1 <i>u</i> 11-A	11acses/A020113400.1	Innicum destivum	SDPNLREYLHLVTDIPGTTGASFGQEV
			MCYESPRPIMGIHRFVLVLFQQLGRQ
			A AVVENCODE A CSCCDDMVN
			MVGSGMORGAPIVVGRVIGDVVDPF
			VRRVALRVGYASRDVANGCELRPSAIA
			DPPRVEVGGPDMRTFYTI VMVDPDAP
TaFT2-A	TraesCS3A02G143100.1	Triticum aestivum	SPSDPSLREYLHWLVTDIPGTTGVSFD
			ACPGTEVVCYEGPRPVLGIHRLVFLLF
			QQLGRQTV YAPGWRQNFSTRDFAELY
			NLGLPVAAVYFNCQRETGTGGRRM
			MAGRDRDPLVVGRVVGDVLDPFVRT
TaFT1-B	TraesCS7B02G013100.1	Triticum aestivum	TNLRVTFGNRTVSNGCELKPSMVAQQ
			PRVEVGGNEMRTFYTLVMVDPDAPSP

			SDPNLREYLHWLVTDIPGTTGASFGQ
			EVMCYESPRPTMGIHRFVLVLFQQLG
			RQTVYAPGWRQNFNTRDFAELYNLGP
			PVAAVYFNCOREAGSGGRRMYN
			MVGSGMHAORGDPLVVGRVIGDVVD
			PFVRRVALRVGYASRDVANGCELRPS
			AIADPPRVEVGGPDMRTFYTLVSSASA
			VRTSVRAMLARCLITPPRLLTPVSACA
TaFT2-B	TraesCS3B02G162000.1	Triticum aestivum	OVMVDPDAPSPSDPSLREYLHWLVTD
			IPATTGVSFGTFVVCYFGPRPVI GIHRI
			VELLEOOL GROTVYAPGWRONESTRD
			FAFLYNI GI PVA AVVENCORETGTGG
			RPM
			MAGRDRDPI VVGRVVGDVI DPFIRTT
			NI RVTEGNRTVSNGCEL KPSMVAOOP
			RVFVGGNFMRTFYTIVMVDPDAPSPS
TaFT1-D	TraesCS7D02G111600.1	Triticum aestivum	DPNI REVI HWI VTDIPGTTGA SEGOE
			VMCVESPRPTMGIHREVI VI EQOI GR
			OTVVA DGWDONENTD DEA EI VNI GDD
			VAAVVENCODEACSCCDDMVN
			ALADDDVEVCCDDMDTEVTLVMVDD
TaFT2-D	TraesCS3D02G144500 1	Triticum aestivum	
141 12 2	114000000000000000000000000000000000000		DAPSPSDPSLKEILEWLVIDIPALIUV
			SFALEV VC LEGPKP VLGIHKLVFLLFQ
			RSINLKVIYGSKIVSNGCELKPSMVI
$O_{S}ET1$	XP 015641951 1	Orwza satiwa	HQPRVEVGGNDMRTFYTLVMVDPDA
03111	<u>AI_015041751.1</u>	Oryza saliva	PSPSDPNLREYLHWLVTDIPGTTAASF
			GQEVMCYESPRPTMGIHRLVFVLFQQ
			LGRQTVYAPGWRQNFNTKDFAELYN
			LGSPVAAV YFNCQREAGSGGRRV YP
			MAGSGRDRDPLVVGRVVGDVLDAFV
			RSTNLKVTYGSKTVSNGCELKPSMVT
$O_{\pi}ET2$	AEV21097 1	Orana a attina	HQPRVEVGGNDMRTFYTLVMVDPDA
OSF12	AFK51067.1	Oryza saliva	PSPSDPNLREYLHWLVTDIPGTTAASF
			GQEVMCYESPRPTMGIHRLVFVLFQQ
			LGRQTVYAPGWRQNFNTKDFAELYN
			LGSPVAAVYFNCQREAGSGGRRVYN
			MVGGGMPRGDPLVVGRVIGDVVDPF
			VRRVSLRVGYASRDVANGCELRPSAIA
DICTI	VD 002565602 1	Brachypodium	DPPRVEVGGPDMRTFYTLVMVDPDAP
Barli	XP_003565602.1	distachvon	SPSDPSLREYLHWLVTDIPATTGVSFG
		uisidenyon	TEVVCYESPRPVLGIHRLVFLLFQQLG
			RQTVYAPGWRQNFSTRDFAELYNLGL
			PVAAVYFNCQRESGTGGRRM
			MAGRDRDPLVVGRVVGDVLDPFVRT
			TNLRVSFGNRNVSNGCELKPSMVTHQ
D 1572		Brachypodium	PRVEVGGNEMRTFYTLVMVDPDAPSP
BdFT2	XP_003564300.1	distachyon	SDPNLREYLHWLVTDIPGTTGASFGQ
		uisiachyon	EVMCYESPRPSMGIHRFVFVLFQQLG
			RQTVYAPGWRQNFNTRDFAELYNLGP
			PVAAVYFNCQREAGSGGRRMYP
			MSINIRDPLIVSRVVGDVLDPFNRSITL
			KVTYGQREVTNGLDLRPSQVQNKPR
			VEIGGEDLRNFYTLVMVDPDVPSPSNP
AtFT1	AT1G65480	Arabidopsis thaliana	HLREYLHWLVTDIPATTGTTFGNEIVC
			YENPSPTAGIHRVVFILFRQLGRQTVY
			APGWRQNFNTREFAEIYNLGLPVAAV
			FYNCQRESGCGGRRL
			`