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Supplementary Table 1. AA7 sequences selected for recombinant expression.

Organism GenPept accession Name Clade Size of the MW* €280 nm
number recombinant (Da) (M*cem™)
enzymes
Aspergillus nidulans XP_660252 AnAA7A | 551(549) 59691.6 112690
Fusarium graminearum  XP_011319890 FgCelDH7C lla 488(476) 53225.1 85955
Fusarium graminearum CEF79461 FgChi7B Va 486(484) 53245.2 81040
Magnaporthe oryzae XP_003717634 MoChi7A Vb 704(698) 72202.9 77375
Polyporus brumalis RDX44700.1 PbChi7A VI 514(510) 52380.8 78395

All selected AA7s were predicted to be secreted using SignalP 5.0
(http://www.cbs.dtu.dk/services/SignalP/). The recombinant enzymes were produced without their native

signal peptides and as C-terminal fusions to an “AAAHHHHHH" purification tag. The number in parenthesis
is the size of the native mature peptide.

*The indicated molecular masses and molar extinction coefficients for the recombinant enzymes are
determined with the ProtParam tool (https://web.expasy.org/protparam/).




Supplementary Table 2. Substrate panel for the activity screening of AA7 enzymes.

Substrate Chemical name or abbreviation
Monosaccharides 1. Glucose Glc
2. Galactose Gal
3. Mannose Man
4. Xylose Xyl
5. Glucosamine GlcN
6. Galactosamine GalN
7. L-Arabinose Ara
8. Fructose Fru
9. N-Acetyl glucosamine GIlcNACc
10. N-Acetyl galactosamine GalNAc
11. N-Acetyl mannosamine ManNAc
Disaccharides 12. Cellobiose Glc-(B1->4)-Glc
13. Gentiobiose Glc-(B1->6)-Glc
14. Sophorose Glc-(B1->2)-Glc
15. Lactose Gal-(B1->4)-Glc
16. Xylobiose Xyl-(B1->4)-p-Xyl
17. Lacto-N-biose (LNB)* Gal-(B1->3)-GlcNAc
18. Galacto-N-biose (GLB)* Gal-(B1->3)-GalNAc
19. Chitobiose* GIcNAc-(B1->4)-GlcNAc
20. Trehalose Glc-(a1->1)a-Glc
21. Sucrose Glc-(a1->2)-B-Fru
22. Turanose Glc-(a1->3)-B-Fru
23. Maltose Glc-(a1->4)-Glc
24. Melibiose Gal-(a1->6)-Glc
25. Mannobiose* Man-(al->2)-Man
Oligosaccharides 26. Melezitose Glc-(al1->3)Fruf-(B2->1a)-Glc
27. Panose Glc-(a1->6)-Glc(al->4)-Glc
28. Raffinose Gal(al->6)-Glc(al—>2B)-Fru
29. Arabinotriose* L-Araf-(al1->5)-L-Araf(al->5)-L-Ara
30. Chitotriose* GIcNACc(B1->4)-GIcNAc(B1->4)-GIcNAc
31. Chitotetraose* GIcNAC(B1->4)-GIcNAC(B1->4)-GIcNAc(B1->4)-
GIcNAC
Sugar alcohols 32. L-Arabitol
33. Xylitol
Cyclic sugar 34. B-cyclodextrin (Glc)7
Aromatic alcohols 35. Ferulic acid 4-Hydroxy-3-methoxycinnamic acid
36. Caffeic acid 3,4-Dihydroxycinnamic acid
37. Coniferyl alcohol 4-Hydroxy-3-methoxycinnamyl alcohol
38. Sinapic acid 3,5-Dimethoxy-4-hydroxycinnamic acid
39. vanillic acid acid 4-Hydroxy-3-methoxybenzoic acid

40.

Coumaric acid

trans-4-Hydroxycinnamic acid

Unless, the L-configuration and the furanose form are denoted, the sugars adopt b-configuration and pyranose forms.
*From Megazyme, *From Carbosynth, the remaining substrates are from Sigma. All substrates are of high purity

(>90% w/w).




Supplementary Table 3. Apparent kinetic parameters of PbChi7A-catalysed
oxidation of less preferred substrates.

Substrate Km (mM) keat (s) keat/Km (s M)
Mannose 417 +182 2.80+0.63 7
Mannose* 905 + 213 0.53+0.05 1
Glucose 231+38 3.50+0.20 15
Glucose* 284 + 44 0.95 +0.05 3
Xylose 333+ 66 0.20£0.01 1
Galactose 320+55 1.65+0.10 5
Maltose 124 +9.1 3.62+£0.12 29
Cellobiose 51.0+4.1 3.10+0.07 61
Mannobiose 36.0x 13 1.85+0.48 51
Mannotriose 90.5+7.4 2.75+0.16 30

"Dehydrogenase steady-state kinetics of PbChi7A determined by measuring
glucose and mannose oxidation using DCIP the electron acceptor at pH 7.0 and
35 °C. The data (n=3 independent experiments) are means * standard deviations.
The oxidase assay was performed at pH 8.0 and 37 °C.




Supplementary Table 4. Data collection and refinement statistics (data for the highest-resolution
shell are shown in parentheses) for FgCelDH7C and FgChi7B.

FgCelDH7C FgChi7B
PDB code 6YJI 6YJO
Data collection
Wavelength 0.9762 0.9677
Resolution range 53.2-1.64 (1.70-1.64) 35.3-2.38 (2.47-2.38)
Space group P 22,2 Cc2

Unit cell
ab,c(A),B()
Total reflections
Unique reflections
Multiplicity
Completeness (%)
Mean 1/o(l)
Wilson B-factor

96.54, 187.82, 55.45
1546975 (91062)
119235 (9035)
13.0 (10.1)
95.55 (73.16)
6.22 (1.07)
22.67

111.6, 67.46, 85.08, 116.31
164648 (16216)
22534 (2206)
7.3(7.3)

98.30 (97.35)

10.79 (1.17)

46.96

Rmerge 0.1827 (1.547) 0.1385 (1.573)
Rmeas 0.1901 (1.634) 0.1492 (1.695)
Rpim 0.0518 (0.5036) 0.0547 (0.6205)
CCyp2 0.996 (0.728) 0.997 (0.454)
Ccc* 0.999 (0.918) 0.999 (0.79)
Refinement

Reflections used in refinement
Reflections used for Ryree
Rwork
Rfree
CC(work)
CC(free)
Number of non-hydrogen atoms
macromolecules
ligands
solvent
Protein residues
RMS(bonds)
RMS(angles)
Ramachandran favoured (%)
Ramachandran allowed (%)
Ramachandran outliers (%)
Rotamer outliers (%)
Clash score
Average B-factor
macromolecules
ligands
solvent
Number of TLS groups

119234 (8942)
5909 (425)
0.1637 (0.2496)
0.2008 (0.2765)
0.966 (0.904)
0.949 (0.877)
8707
7471
290
946
952
0.009
1.00
96.31
3.59
0.11
0.51
2.48
32.36
31.30
45.90
36.63
10

22508 (2206)
1115 (103)
0.2123 (0.3425)
0.2376 (0.3755)
0.951 (0.703)
0.942 (0.723)
3870
3668
92
110
479
0.003
0.62
95.56
4.02
0.42
4.21
5.80
58.36
58.87
47.75
50.12
5
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Supplementary Fig. 1. Oxidase and dehydrogenase activity screening of AA7 enzymes. Oxidase (a, c
and e) and dehydrogenase (b, d, f and h) activities shown as normalized rates (V,-E™) and the enzyme
names are indicated in each panel. g The oxidation of cellobiose (20 mM) by 150 and 500 uM of
FgCelDH7C monitored using the HRP oxidase assay. The reaction reveals an initial burst followed by
linear phase with a lag for the 500 uM reaction. The blank control is in the absence of enzyme (n=2
independent experiments. The screening assay in panels a-f and h was carried out using 0.1 uM of each
enzyme. The data (n=3 independent experiments) show the means # standard deviations, except for
panel g, (n=2 independent assays) were performed at each enzyme concentration. Activity on GNB is
only analysed in the dehydrogenase assay. Source data are provided as a Source Data file.
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Supplementary Fig. 2. The activity-pH profiles of AA7 enzymes and conformational stability of
FgCelDH7C. a The activity-pH profiles of AA7 enzymes as determined using the dehydrogenase assay and
DCIP as electron acceptor. The data (n=3 independent experiments) are shown as means + standard
deviations are shown. b The differential scanning calorimetry thermograms of the unfolding of 1 mg mL?
FgCelDH7C. The thermograms are from a single measurement (n=1) performed at a scanning rate of 1°C
min?. ¢ and d are the normalised residual activities for pH and temperature dependence of PbChi7A,
respectively. Source data are provided as a Source Data file.
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Supplementary Fig. 3. Overlay of 'H-*C HSQC and HMBC NMR spectra for the assignment of
intermediates and products formed in the conversion GalNAc, GIcNAc and GNB by FgChi7B and
MoChi7A. Structural assignment of a GalNAc, b GIcNAc and ¢ GNB as well as their lactone and acid open-
form oxidation products are shown alongside the corresponding chemical shift values. The data are from

a single experiment (n=1).
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Supplementary Fig. 4. Time course NMR analyses of MoChi7A oxidation of N-acetyl hexosamine
monosaccharides. a GIcNAc (25 mM) or b GalNAc (25 mM), both MoChi7A (1 uM) in 50 mM NaOAc/AcOH
buffer pH 5.2 at 25 °Cin 0.5 mL NMR samples. The fractions of converted substrate and formed product
were approximated using signal areas in a time series of two-dimensional *H-3C HSQC spectra acquired
at 15 °Cin 0.5 mL NMR samples. The data are from a single experiment (n=1) and source data are provided
as a Source Data file.
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Supplementary Fig. 5 NMR Spectra for the assighment of the electron acceptor DCIP and cellobiose
oxidation products. a 'H NMR spectra of ascorbate-reduced DCIP (2 mM in 50 mM NaOAc/OH buffer pH
5.2) and oxidized DCIP and comparison to a time series of *H NMR spectra recorded during the conversion
of cellobiose (2 mM) by FgCelDH7C (0.56 uM) at 25°C in the presence or in the absence of 1.3 mM DCIP.
The time series shows the consumption of oxidized DICP and the formation of reduced DCIP. b Overlay of
IH-13C HSQC and HMBC NMR spectra yielding the identification of lactone and open-chain oxidation
products in the conversion of cellobiose by FgChi7B, alongside the corresponding chemical shift values.
The data are from a single experiment (n=1)
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Supplementary Fig. 6. Time course NMR analyses of the oxidation of cellobiose by FgCelDH7C in the
presence of and absence of the artificial electron acceptor DCIP. a Time series of *H NMR experiments
for the oxidation of cellobiose (DP2) by FgCelDH7C in the absence (-DCIP, with oxygen as the sole electron
acceptor) and in the presence (+DCIP) of 1 mM 2,6-dichlorophenolindophenol. b Oxidation of cellobiose
(DP2) by FgCelDH7C in the presence of 1.3 mM 2,6-dichlorophenolindophenol (DCIP) electron acceptor.
IH NMR traces after initiation of the reaction (15 minutes time point) and after completion (10 h time
point) are shown. In the intermediate-slow exchange regime, the exchange rate constant k,,=k; + k,
(with k; and k, being rate constants for the chemical exchange between distinct states) can be
determined from line widths in the presence of exchange and native linewidths upon complete conversion
as ko, = m- (W, —wy). Here, w, and wy are NMR line widths at half height in the presence and in the
absence of exchange, respectively. With line widths of 29.1(+0.6) Hz and 1.5(x0.1) Hz upon start of the
reaction and upon completion (average line widths for the detected *H NMR signals of reduced DCIP), the
exchange rate constant k., can be determined to 87 s™. The data are from one experiment (n=1)
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Supplementary Fig. 7. The dependence of cellooligosaccharide oxidation by FgCelDH7C on DCIP. a The
oxidation of cellotetraose (6 mM) by FgCelDH7C (0.56 uM) followed by time-resolved in situ *H NMR
spectroscopy. b The DCIP dependence of the oxidation of cellobiose (20 mM) by FgCelDH7C (0.1 uM)
depicted by the Michaelis Menten plot of the oxidation. The high absorbance and poor solubility of DCIP
preclude performing the assay at higher DCIP concentration to determine reliable apparent kinetic
parameters, but the slight curvature indicates the apparent Kn with respect to DCIP is in the low mM
range. The reactions shown in panel a are from a single experiment (n=1) and data in panel b (n=3

independent experiments) are means + standard deviations. Source data are provided as a Source Data
file.
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Supplementary Fig. 8. Electron density of the active sites of FgChi7B and FgCelDH7C. a
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Supplementary Fig. 9. Structural domains and comparisons of AA7 enzymes. a and b are the domain
organization of FgChi7B and FgCelDH7C, respectively. The FAD- and substrate-binding domains are in
green and cyan, respectively. c and d show the surface electrostatic potentials of FgChi7B and FgCelDH7C,
respectively as generated from PyMOL. The FAD-cofactor is shown and FAD in both enzymes. e
Superimposition of structurally characterised oligosaccharide-specific AA7 enzymes. The comparison
shows a markedly shorter loop flanking the active site in FgCelDH7C, rendering the active site more open
than the compared counterparts.
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Supplementary Fig. 10. Active site signatures of AA7 clades. The Arabic numerals indicate the conserved
active site sequence patches (depicted as sequence logos) as signatures of each clade. Patches 1 and 2
flanking the histidine and cysteine that covalently tether the FAD in canonical AA7 oxidases, respectively;
3, flanks the histidine implicated in O, activation in FAD-dependent oxidases; 4, flanks the substrate
aromatic stacking platform in carbohydrate-active AA7s; 5 the flanks the catalytic tyrosine. The numbering
of key residues is according to biochemically characterised AA7 representing each clade: |, BBE; lla,
FgCelDH7C; Va, SsGOOX; Vb, MoChi7A; VI, PbChi7A.
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Supplementary Fig. 11. Surface electrostatic

residues in FgCelDH7C and clade II.

FgCelDH7C
SsGOOX
FgChitO
FgChi7B
TtXylO
MnLaO
MoChi7A
PbChi7A
EcBBE
ABBE15
AtOGOX1
AnAATA

comparison of AA7 structures. a Surface electrostatic
representation (vacuum electrostatics at pH 7.0 calculated in Pymol) of FgCelDH7C, b FgChi7B and the
other structurally characterised AA7s. c Stick representation of four arginine residues in FgCelDH7C in the
vicinity of FAD and substrate binding platform xylobiose is superimposed from TtXylO. d Sequence
alignment of characterised AA7s in the corresponding regions flanking the four conserved arginine
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Supplementary Fig. 12. Phosphoric acid swollen cellulose (PASC) degradation assay between FgCelDH7C
and either PaLPMO9E or PaLPMO9H. a The assay between FgCelDH7C (0.41 uM) and PaLPMOQ9E (4 uM)
in the absence of additives or in the presence of DCIP. Control experiments of PaLPMQO9E alone or in
presence of either 0.6 mM DCIP or 1 mM ascorbate were carried out. Reactions were incubated at 30 °C
for 18 h and then analysed by HPAEC-PAD. b The degradation assay between FgCelDH7C (0.41 uM) and
KUM). Control reactions were prepared using PaLPMQO9H with either ascorbate (1 mM),
cysteine (1 mM) or DCIP (0.4 mM). All reactions were performed in technical triplicates using 1% (w/v)
PASC as a substrate for 24 h. DP refers to the degree of polymerization of native or oxidized (ox)
cellooligosaccharides. Reactions were terminated by 10 min incubation at 100 °C and diluted 4-fold with
milliQ water prior to HPAEC-PAD analyses. Representative chromatograms are shown (n=3 independent
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Supplementary Fig. 13. Microcrystalline cellulose (Avicel) degradation with FgCelDH7C-PaLPMO9H. a
Assay between FgCelDH7C-PaLPMO9H in the presence of 1 mM cellotetraose (DP4) and 4 h incubation. b
Effect of added cellotetraose (DP4) concentration (0.02-1 mM) on the synergy between the two enzymes
in a after 24 h. The ascorbate concentration was 1 mM. Both synergy were carried out using PaLPMO9H
(4 uM) and FgCelDH7C (0.41 uM) incubated with 0.5% (w/v) Avicel at 35°C and subsequently terminated
using NaOH (0.1 M) prior to HPAEC-PAD analyses. Representative chromatograms are shown (n=3
independent experiments).
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Supplementary Fig. 14. Avicel degradation assay using FgCelDH7C-LsAA9A. The assay between
FgCelDH7C and LsAA9A in the presence of 0.8 mM cellotetraose (DP4) and 4 h incubation. The ascorbate
concentration was 1 mM. The assay was carried out using LsAA9A (4 uM) and FgCelDH7C (0.2 uM)
incubated with 0.5% (w/v) Avicel at 35°C for 24h and subsequently terminated using NaOH (0.1 M) prior
to HPAEC-PAD analyses. Source data are provided as a Source Data file. Representative chromatograms
(n=3 independent experiments)
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Supplementary Fig. 15. Avicel degradation using FgCelDH7C-PaLPMO9H or PaCDH-PaLPMO9H.
Reactions were run on Avicel using the FgCelDH7C and PaLPMQO9H enzymes and analyzed using ionic
chromatography (HPAEC-PAD). The assays included various combinations of Avicel (5 mg-mL?),
FgCelDH7C (0.4 uM), PaLPMOSH (4 UM uM), PaCDHB (1.2 uM) cellotetraose (DP4, 0.8 mM) and ascorbate
(Asc., 1 mM) as indicated in the figure. All reactions were carried out in NaOAc buffer (50 mM, pH 5.2), at
35°C. Native, Cl-oxidized and C1-C4 double oxidized cellooligosaccharides are labeled in the
chromatograms. The chromatogram numbering is the same as shown in Fig. 4. Source data (n=3
independent experiments) are provided as a Source Data file.
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Supplementary Fig. 16. Avicel degradation synergy assay between PaLPMO9H and either
FgCelDH7C or MoChi7A. a The FgCelDH7C-PaLPMO9H synergy assay including control reactions
with Avicel, FgCelDH7C, PaLPMO9H, PaLPMO9H+Asc and PaLPMO9H-FgCelDH7C in presence of
0.8 mM cellotetraose (DP4). b PaLPMO9H-MoChi7A synergy assay including controls with Avicel,
MoChi7A, PaLPMO9H, PaLPMO9H+Asc and PaLPMO9H-MoChi7A in the presence of 0.8 mM
cellotetraose. Both assays were carried out using avicel 0.5% (w/v) at 35°C and subsequently
terminated using NaOH (0.1 M) prior to analysis by HPAEC-PAD. Native, single oxidized, and
double oxidized cello-oligosaccharides are labeled. ¢ The oxidase normalized rates of MoChi7A
on cellobiose and cellotetraose are means * standard deviations. The data in a, b and c are from
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Supplementary Fig. 17. Structural signatures of activity on chitooligosaccharides or other C2 N-
acetylated substrates. a Structures of AA7 enzymes active on cellooligosaccharides, lactose (SsGOOX,
MnLaO, FgCelDH) and xylooligosaccharides (TtXylO), all with a free C2-OH. All these enzymes possess an
arginine that recognizes the C2-OH (oxygen as a red sphere) and the C3-OH of the reducing end pyranose
(visualized using the proximal ring of the cellobiose analogue ABL (5-amino-5-deoxy-cellobiono-1,5-
lactam) in the active site of MnLaO. b The two chitooligosaccharide active enzymes with a modelled N-
acetylglucosamine superimposed on the proximal ring of ABL unit in a. An arginine (as in a) would block
the binding of substrates with an N-acetyl group. Instead, a smaller residue (commonly a glutamine)
provides space and/or the recognition of the N-acetyl with a potential hydrogen bond. The N-atom of the
acetyl group may also be recognised by a small polar residue, e.g. S161 in FgChi7B. ¢ The molecular surface
of the chitooligosaccharide active FgChi7B reveals a cavity and available space at the C2-OH (oxygen as
red sphere) of the glucosyl penultimate to the oxidation subsite, which is consistent with the tolerance
for a C2 N-acetyl substitution, e.g. in chitobiose. By contrast an arginine residue recognises a non-
substituted C2-OH and C3-OH in an analogous manner to the pyranose at the oxidation subsite (see a) in
MnLaO. In summary a non-arginine residue is essential for the accommodation of substrates with
reducing end C2 N-acetyl substitution, while a spacious cavity allows for accommodation of the same
substitution at the penultimate position.
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