Artificial Neural Network Model for Predicting Changes in Ion channel Conductance Based on Cardiac Action Potential Shapes Generated via Simulation

Da Un Jeong¹, Ki Moo Lim^{2*}

¹Kumoh National Institute of Technology, IT convergence engineering, Gumi, 39253, Republic of Korea. ²Kumog National Institute of Technology, Medical IT convergence engineering, Gumi, 39253, Republic of Korea.

*kmlim@kumoh.ac.kr

Supplementary Tables

	Number of hidden layers	F1 score	Accuracy
Case 1	1	0.985	0.983
Case 2	2	0.982	0.983
Case 3	3	0.967	0.968
Case 4	4	0.968	0.968

Supplementary Table S1. Sensitivity to the structures of ANN model

Supplementary Table S2. Sensitivity to the ratio of the training set and testing set

	Ratio of training set and testing set		E1 access	Acouroou
	ratio	Testing set	F1 score	Accuracy
Case 1	60:40	792	0.989	0.989
Case 2	70:30	594	0.993	0.992
Case 3	75:25	495	0.988	0.988
Case 4	80:20	396	0.985	0.983