Ambio

Electronic Supplementary Material This supplementary material has not been peer reviewed.

Title: Strictly protected areas are not necessarily more effective than areas in which multiple human uses are allowed

Authors: Moses Elleason, Zhuoli Guan, Yiming Deng, Aiwu Jiang, Eben Goodale, Christos

Mammides

Table of Contents

Table S1. List of studies included in the literature review 3
Table S2. Mean values for each of the confounding variables included in the analysis. NC = protected areas with no IUCN category 11
Table S3. Results of the generalized boosted models, comparing strictly protected areas (Categories I-VI) to:(a) areas in which multiple human uses are allowed (Categories V-VI) and, (b) areas with no IUCN category(NC). HFI = Human footprint index; LFC = Loss in forest cover (%)
Table S4. Results of the generalized boosted models when the alternative method was used to classifystrictly protected areas (Categories I-II) and multiple-use areas (Categories III-VI). NC = areas with no IUCNCategory; HFI = Human footprint index; LFC = Loss in forest cover (%).
Table S5. Results of the matching analysis comparing strictly protected areas to areas in which multiplehuman used are allowed. Comparisons were made using the Wilcoxon rank test. The total number ofprotected areas (PAs) and the number of matched areas are also shown.15
Figure S1. Differences in the change in human footprint between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-VI and multiple-use areas represent Categories V-VI. Negative numbers indicate a decrease in human footprint 16
Figure S2. Differences in the change in human footprint between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-II and multiple-use areas represent Categories III-VI. Negative numbers indicate a decrease in human footprint17
Figure S3. Differences in forest cover loss (%) between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-IV and multiple- use areas represent Categories V-VI
Figure S4. Differences in forest cover loss (%) between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-II and multiple- use areas represent Categories III-VI
Figure S5. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI. Unweighted values represent the differences between the treatment groups, for each of the confounding variables, based on the raw data. Solid circles indicate that differences were statistically significant at the 0.05 level
Figure S6. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-II, multiple-use = Categories III-VI

Figure S7. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the loss in forest cover (%) and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI.
Figure S8. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the loss in forest cover (%) and by grouping protected areas as follows: strictly protected = Categories I-II, multiple-use = Categories III-VI
Figure S9. The resulting balance when matching was used to compare the protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI
Figure S10. The resulting balance when matching was used to compare the protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-II, multiple-use = Categories III-VI
Figure S11. The resulting balance when matching was used to compare the protected areas, using the loss in forest cover (%) and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI
Figure S12. The resulting balance when matching was used to compare the protected areas, using the loss in forest cover (%) and by acouping protected areas as follows: strictly protected = Categories I-II, multiple-use

Table S1. List of studies included in the literature review

Year	Study region	Index used	IUCN Categories	Conclusions	Reference
2008	Global (Amazon forest, South American Atlantic coast forest, Congo forest, West African forest)	Natural vegetation	Strict: I-IV Non-strict: V-VI	Levels of natural vegetation were similar in both types of PAs (except in the West African forest in which natural vegetation was higher in categories I-IV compared to V and VI).	[1]
2010	Global	Human footprint index (used as a proxy of naturalness)	Each IUCN category was analyzed separately	The levels of human footprint within each category did not correspond to the expected gradient of naturalness (in a globally consistent manner).	[2]
2010	Global (tropical forests)	Deforestation and loss in carbon stock	Strict: I-II Non-strict: III-VI and PAs with no category	Strict PAs had lower rates of deforestation and carbon loss.	[3]
2010	Global	Anthropogenic disturbance (measured using changes in land-cover)	Strict: I-II Non-strict: III-VI	Strict PAs were more successful in reducing anthropogenic disturbance (although size was also important).	[4]
2011	Global	Normalized Difference Vegetation Index (NDVI)	Strict: I-III Non-strict: IV-V (Category VI was excluded)	Strict PAs were in more "natural state" (and were becoming increasingly isolated).	[5]
2011	Global (tropical forests)	Forest fires (used as a proxy of deforestation rates)	Strict: I-IV Non-strict: V-VI	Non-strict PAs had lower rates of forest fires compared to strict PAs (except in Africa in which there were insufficient data to compare the two types of protected areas).	[6]

Year	Study region	Index used	IUCN Categories	Conclusions	Reference
2012	Global (tropical forests)	Deforestation	Strict: I-IV Non-strict: V-VI and PAs with no category	Non-strict PAs had lower (and less variable) deforestation rates compared to strict PAs.	[7]
2012	Costa Rica	Forest regrowth	Strict: I, II, and IV Non-strict: VI	Levels of forest regrowth did not vary substantially between the two types of protected areas.	[8]
2012	Canada	Developed land (i.e., roads, urban areas, and croplands)	Strict: I-IV Non-strict: V-VI	Non-strict PAs had more roads and croplands. However, there was no significant difference in urban areas.	[9]
2013	Global (Bolivia, Costa Rica, Indonesia, Thailand)	Deforestation	Strict: I-IV Non-strict: V-VI	Deforestation rates were lower within strict PAs compared to non-strict PAs.	[10]
2013	Spain	Management practices and regulations	Each IUCN category was analyzed separately	IUCN categories correlated only weakly with management practices and regulations of PAs.	[11]
2013	Latin America	Land and forest degradation	Strict: I-IV Non-strict: V-VI	There was no significant difference between the two categories.	[12]
2014	Cerrado Biodiversity Hotspot (Brazil)	Deforestation	Strict: I-IV Non-strict: V-VI	Strict PAs were more effective at reducing habitat conversion compared to non-strict PAs.	[13]
2014	Brazilian Amazon	Deforestation	Strict: I-IV Non-strict: V-VI	Non-strict PAs were more likely to be found in areas with higher deforestation rates and hence more likely to undergo deforestation.	[14]
2014	Global	Species richness and abundance of	Each IUCN category was analyzed separately	There was no clear relationship between the effectiveness of the protected areas and their	[15]

Year	Study region	Index used	IUCN Categories	Conclusions	Reference
		vertebrates, invertebrates, and plants.		IUCN category. However, protected areas had higher biodiversity than areas outside.	
2015	Cerrado Biodiversity Hotspot (Brazil)	Deforestation	Strict: I-III Non-strict: IV-VI	Strict PAs were more effective at reducing deforestation rates compared to non-strict PAs	[16]
2015	Mexico	Deforestation	Strict: I-IV Non-strict: V-VI	Non-strict PAs were more effective than strict PAs at reducing deforestation rates (due to the forest concessions).	[17]
2015	Guatemala	Deforestation	Strict: I-IV Non-strict: V-VI	Non-strict PAs were more effective than strict PAs at reducing deforestation rates (due to the forest concessions).	[18]
2015	Indonesia	Deforestation	Each IUCN category was analyzed separately	Strict PAs were not necessarily more effective in reducing deforestation. Overall, deforestation was higher within Categories Ia and V.	[19]
2015	European Russia	Deforestation	Strict: Zapovedniks (I) Non-strict: National Parks (II or IV) & Federal Zakazniks (IV or V)	No substantial differences in the effectiveness of the two types of PAs.	[20]
2016	Carpathian Mountains in Eastern Europe	Deforestation	Strict: I-II Non-strict: III-VI	Strict PAs were not necessarily more effective than non-strict PAs.	[21]
2016	Peru (Peruvian Amazon)	Deforestation and human disturbance	Strict: National Parks, National Sanctuaries Non-strict: Reserves in which sustainable use is permitted	Non-strict PAs had lower rates of deforestation and lower levels of human disturbance compared to strict PAs.	[22]

Year	Study region	Index used	IUCN Categories	Conclusions	Reference
2016	Global	Species richness and abundance of vertebrates, invertebrates, and plants.	Strict: I-II Non-strict: III-VI	There was no statistically significant difference between strict and non-strict PAs.	[23]
2016	Brazil (Atlantic and Amazon forests)	Deforestation	Strict: I-IV Non-strict: V-VI	Strict PAs had lower rates of habitat conservation compared to non-strict PAs.	[24]
2017	Global (tropical forests)	Deforestation	Each IUCN category was analyzed separately	Deforestation rates within the various IUCN categories differed substantially across regions.	[25]
2018	Global	Human footprint index	Strict: I-II Non-strict: III-VI	Strict PAs tended to be under lower human pressure. However, the differences in the increases of human pressure were small (although size was important).	[26]
2018	Central America	Normalized Difference Vegetation Index (NDVI)	Strict: I-II Non-strict: III-VI	Strict and non-strict PAs were both effective in avoiding deforestation.	[27]
2019	Global (Last wilderness regions)	Human footprint index	Strict: I-II Non-strict: III-VI	There was no statistically significance difference between strict and non-strict PAs.	[28]
2019	East Africa	Habitat conversion (measured using changes in land-cover)	Strict: I-IV Non-strict: V-VI	Land-cover changes were lower within strict PAs.	[29]
2019	Colombia	Deforestation	Strict: I-IV Non-strict: V-VI	Strict PAs were more effective than non-strict PAs at reducing deforestation rates.	[30]

Year	Study region	Index used	IUCN Categories	Conclusions	Reference
2020	North America	Mortality rates of mammals	Each IUCN category was analyzed separately	There was no difference in the mortality rates of mammals between the various categories of PAs.	[31]
2020	Global	Deforestation	Each IUCN category was analyzed separately but were also analyzed as follows: Strict: I-III Non-Strict: IV-VI	The effectiveness of the protected areas in each category varied substantially among regions.	[32]
2020	Global	Alien animal species richness	Each IUCN category was analyzed separately	There was no obvious relationship between the number of alien animal species established and the IUCN categories. PAs in Category II had the highest number of alien species richness.	[33]
2020	Global	Deforestation	Each IUCN category was analyzed separately	Strict PAs (e.g., in Categories Ia and Ib) experienced lower rates of forest loss compared to non-strict PAs (e.g., in Categories IV and VI).	[34]
2020	Global	Mammal population declines driven by illegal hunting	Strict: I-II Non-strict: III-IV Categories V-VI were excluded from the analysis	Mammal populations across the globe had lower probabilities of decline in strict PAs compared to non-strict PAs.	[35]
2020	Global	Land productivity	Each IUCN category was analyzed separately	Land productivity was most stable in PAs in Categories III and VI and most unstable in PAs in Category V.	[36]

References:

- 1. Joppa LN, Loarie SR, Pimm SL. On the protection of "protected areas." Proceedings of the National Academy of Sciences of the United States of America. 2008;105: 6673–6678. doi:10.1073/pnas.0802471105
- 2. Leroux SJ, Krawchuk MA, Schmiegelow F, Cumming SG, Lisgo K, Anderson LG, et al. Global protected areas and IUCN designations: Do the categories match the conditions? Biological Conservation. Elsevier Ltd; 2010;143: 609–616. doi:10.1016/j.biocon.2009.11.018
- 3. Scharlemann JPW, Kapos V, Campbell A, Lysenko I, Burgess ND, Hansen MC, et al. Securing tropical forest carbon: The contribution of protected areas to REDD. Oryx. 2010;44: 352–357. doi:10.1017/S0030605310000542
- 4. Joppa LN, Pfaff A. Global protected area impacts. Proceedings of the Royal Society B: Biological Sciences. 2011;278: 1633–1638. doi:10.1098/rspb.2010.1713
- 5. Seiferling IS, Proulx R, Peres-Neto PR, Fahrig L, Messier C. Measuring Protected-Area Isolation and Correlations of Isolation with Land-Use Intensity and Protection Status. Conservation Biology. 2012;26: 610–618. doi:10.1111/j.1523-1739.2011.01674.x
- 6. Nelson A, Chomitz KM. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. Bruun HH, editor. PLoS ONE. Public Library of Science; 2011;6: e22722. doi:10.1371/journal.pone.0022722
- Porter-Bolland L, Ellis EA, Guariguata MR, Ruiz-Mallén I, Negrete-Yankelevich S, Reyes-García V. Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. Forest Ecology and Management. Elsevier B.V.; 2012;268: 6–17. doi:10.1016/j.foreco.2011.05.034
- 8. Andam KS, Ferraro PJ, Hanauer MM. The effects of protected area systems on ecosystem restoration: A quasi-experimental design to estimate the impact of Costa Rica's protected area system on forest regrowth. Conservation Letters. 2013;6: 317–323. doi:10.1111/conl.12004
- 9. Leroux SJ, Kerr JT. Land Development in and around Protected Areas at the Wilderness Frontier. Conservation Biology. 2013;27: 166– 176. doi:10.1111/j.1523-1739.2012.01953.x
- 10. Ferraro PJ, Hanauer MM, Miteva DA, Canavire-Bacarreza GJ, Pattanayak SK, Sims KRE. More strictly protected areas are not necessarily more protective: Evidence from Bolivia, Costa Rica, Indonesia, and Thailand. Environmental Research Letters. 2013;8: 025011. doi:10.1088/1748-9326/8/2/025011
- 11. Muñoz L, Hausner VH. What do the IUCN categories really protect? A case study of the alpine regions in spain. Sustainability (Switzerland). 2013;5: 2367–2388. doi:10.3390/su5062367
- 12. Leisher C, Touval J, Hess SM, Boucher TM, Reymondin L. Land and forest degradation inside protected areas in latin america. Diversity. 2013;5: 779–795. doi:10.3390/d5040779
- 13. Carranza T, Balmford A, Kapos V, Manica A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: The

Brazilian Cerrado. Conservation Letters. 2014;7: 216-223. doi:10.1111/conl.12049

- 14. Pfaff A, Robalino J, Lima E, Sandoval C, Herrera LD. Governance, Location and Avoided Deforestation from Protected Areas: Greater Restrictions Can Have Lower Impact, Due to Differences in Location. World Development. Elsevier Ltd; 2014;55: 7–20. doi:10.1016/j.worlddev.2013.01.011
- 15. Coetzee BWT, Gaston KJ, Chown SL. Local scale comparisons of biodiversity as a test for global protected area ecological performance: A meta-analysis. Guralnick R, editor. PLoS ONE. 2014;9: e105824. doi:10.1371/journal.pone.0105824
- 16. Françoso RD, Brandão R, Nogueira CC, Salmona YB, Machado RB, Colli GR. Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Natureza & Conservação. 2015;13: 35–40. doi:10.1016/j.ncon.2015.04.001
- 17. Blackman A, Pfaff A, Robalino J. Paper park performance: Mexico's natural protected areas in the 1990s. Global Environmental Change. Elsevier Ltd; 2015;31: 50–61. doi:10.1016/j.gloenvcha.2014.12.004
- 18. Blackman A. Strict versus mixed-use protected areas: Guatemala's Maya Biosphere Reserve. Ecological Economics. Elsevier B.V.; 2015;112: 14–24. doi:10.1016/j.ecolecon.2015.01.009
- 19. Brun C, Cook AR, Lee JSH, Wich SA, Koh LP, Carrasco LR. Analysis of deforestation and protected area effectiveness in Indonesia: A comparison of Bayesian spatial models. Global Environmental Change. Elsevier Ltd; 2015;31: 285–295. doi:10.1016/j.gloenvcha.2015.02.004
- 20. Wendland KJ, Baumann M, Lewis DJ, Sieber A, Radeloff VC. Protected area effectiveness in European Russia: A postmatching panel data analysis. Land Economics. 2015;91: 149–168. doi:10.3368/le.91.1.149
- 21. Butsic V, Munteanu C, Griffiths P, Knorn J, Radeloff VC, Lieskovský J, et al. The effect of protected areas on forest disturbance in the Carpathian Mountains 1985–2010. Conservation Biology. 2017;31: 570–580. doi:10.1111/cobi.12835
- 22. Miranda JJ, Corral L, Blackman A, Asner G, Lima E. Effects of Protected Areas on Forest Cover Change and Local Communities: Evidence from the Peruvian Amazon. World Development. 2016;78: 288–307. doi:10.1016/j.worlddev.2015.10.026
- 23. Gray CL, Hill SLL, Newbold T, Hudson LN, Boïrger L, Contu S, et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications. 2016;7: 12306. doi:10.1038/ncomms12306
- 24. de Marques AAB, Schneider M, Peres CA. Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. PeerJ. 2016;2016: e2206. doi:10.7717/peerj.2206
- 25. Bebber DP, Butt N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012. Scientific Reports. 2017;7: 14005. doi:10.1038/s41598-017-14467-w
- 26. Jones KR, Venter O, Fuller RA, Allan JR, Maxwell SL, Negret PJ, et al. One-third of global protected land is under intense human pressure. Science. 2018;360: 788–791. doi:10.1126/science.aap9565
- 27. Muñoz Brenes CL, Jones KW, Schlesinger P, Robalino J, Vierling L. The impact of protected area governance and management capacity

on ecosystem function in Central America. Mertens F, editor. PLoS ONE. 2018;13: e0205964. doi:10.1371/journal.pone.0205964

- 28. Anderson E, Mammides C. The role of protected areas in mitigating human impact in the world's last wilderness areas. Ambio. Springer Netherlands; 2020;49: 434–441. doi:10.1007/s13280-019-01213-x
- 29. Riggio J, Jacobson AP, Hijmans RJ, Caro T. How effective are the protected areas of East Africa? Global Ecology and Conservation. Elsevier Ltd; 2019;17: e00573. doi:10.1016/j.gecco.2019.e00573
- 30. Bonilla-Mejía L, Higuera-Mendieta I. Protected Areas under Weak Institutions: Evidence from Colombia. World Development. 2019;122: 585–596. doi:10.1016/j.worlddev.2019.06.019
- 31. Hill JE, DeVault TL, Belant JL. Protected areas reduce poaching but not overall anthropogenic mortality of North American mammals. Global Ecology and Conservation. Elsevier Ltd; 2020;21: e00810. doi:10.1016/j.gecco.2019.e00810
- 32. Leberger R, Rosa IMD, Guerra CA, Wolf F, Pereira HM. Global patterns of forest loss across IUCN categories of protected areas. Biological Conservation. Elsevier; 2020;241: 108299. doi:10.1016/j.biocon.2019.108299
- 33. Liu X, Blackburn TM, Song T, Wang X, Huang C, Li Y. Animal invaders threaten protected areas worldwide. Nature Communications. Springer US; 2020;11: 2892. doi:10.1038/s41467-020-16719-2
- 34. Wade CM, Austin KG, Cajka J, Lapidus D, Everett KH, Galperin D, et al. What Is Threatening Forests in Protected Areas? A Global Assessment of Deforestation in Protected Areas, 2001–2018. Forests. 2020;11: 539. doi:10.3390/f11050539
- 35. Rija AA, Critchlow R, Thomas CD, Beale CM. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. Grignolio S, editor. PLOS ONE. 2020;15: e0227163. doi:10.1371/journal.pone.0227163
- 36. de la Fuente B, Weynants M, Bertzky B, Delli G, Mandrici A, Garcia Bendito E, et al. Land productivity dynamics in and around protected areas globally from 1999 to 2013. Martínez-Paz JM, editor. PLOS ONE. 2020;15: e0224958. doi:10.1371/journal.pone.0224958

IUCN	Area	Elevation	Slope	Nearest city	Human footprint	Forest cover
Category	(km²)	(m)	(degree)	, (km)	in 1993	in 2000 (%)
Afrotropio	al					
la	420	826	8.39	71	5.8	76.5
Ib	7454	1168	6.07	73	6.7	76.9
П	3326	898	3.61	78	5.9	51.3
111	697	972	2.10	52	6.5	45.7
IV	2952	700	4.45	86	6.0	67.5
V	791	914	3.28	66	7.6	33.0
VI	3174	822	2.18	108	6.5	45.5
NC	328	768	3.02	73	8.0	55.9
Australasi	an					
la	350	290	2.35	310	4.7	48.1
Ib	333	565	8.11	162	1.7	86.9
II	849	327	4.89	300	4.5	70.7
111	44	351	6.90	147	4.3	71.0
IV	130	457	6.93	143	6.5	59.7
V	224	355	7.61	100	4.6	78.7
VI	1638	240	2.49	273	4.3	56.0
NC	1409	330	4.69	150	5.2	61.4
Indomala	yan					
		_				
la	299	443	8.46	106	7.3	92.1
Ib	77	127	3.20	57	11.1	75.3
II	623	586	8.13	74	8.6	77.5
	7	104	1.32	115	11.3	96.0
IV	451	543	5.67	103	11.5	52.2
V	154	375	6.60	140	12.5	63.3
VI	1110	655	9.12	75	7.4	86.2
NC	695	432	4.79	102	11.6	57.4
Nearctic						
	6-			2.4.5		70 5
la	67	1100	8.90	246	2.3	70.5
lb	569	1576	9.02	204	2.3	51.6
 	809	790	5.87	225	4.4	68.0
 	11	417	3.95	128	12.0	69.2
IV	1003	342	1.26	138	10.1	41.4
V	126	563	3.63	148	7.1	57.7
VI	193	505	1.45	147	4.3	43.6

Table S2. Mean values for each of the confounding variables included in the analysis. NC = protected areas with no IUCN category

IUCN	Area	Elevation	Slope	Nearest city	Human footprint	Forest cover
Category	(km²)	(m)	(degree)	(km)	in 1993	in 2000 (%)
NC	2363	574	3.62	157	7.9	50.0
Neotropic	al					
la	1177	464	4.07	150	6.1	74.8
Ib	15	967	6.87	62	10.7	59.0
II	1694	984	9.07	80	7.0	73.8
III	1574	1347	7.52	61	8.6	60.0
IV	410	616	7.14	64	7.4	70.0
V	1659	611	6.34	64	13.5	56.1
VI	1658	1037	7.44	83	7.3	77.7
NC	1621	863	5.97	106	7.8	68.8
Palearctic						
la	1000	716	6.88	92	5.9	58.6
lb	235	420	3.03	119	3.2	56.3
II	897	705	7.57	75	8.9	53.7
III	39	271	2.63	94	8.5	52.3
IV	168	380	5.14	91	13.3	56.9
V	129	368	4.86	52	18.6	54.0
VI	782	521	5.41	95	12.6	51.4
NC	307	297	3.25	59	14.7	35.6

Table S3. Results of the generalized boosted models, comparing strictly protected areas (Categories I-VI) to: (a) areas in which multiple human uses are allowed (Categories V-VI) and, (b) areas with no IUCN category (NC). HFI = Human footprint index; LFC = Loss in forest cover (%).

Realm	Index	Category	Estimate	Std. Error	t-value	p-value
Afrotropical	HFI	I-VI vs. V-VI	-0.234	0.163	-1.429	0.153
	HFI	I-VI vs. NC	0.147	0.104	1.418	0.156
	LFC	I-VI vs. V-VI	0.214	0.682	0.313	0.754
	LFC	I-VI vs. NC	3.354	0.571	5.878	<0.001***
Australasian	HFI	I-VI vs. V-VI	0.202	0.291	0.693	0.488
	HFI	I-VI vs. NC	1.814	0.467	3.887	<0.001***
	LFC	I-VI vs. V-VI	-3.872	0.866	-4.471	<0.001***
	LFC	I-VI vs. NC	-3.888	1.375	-2.828	0.005**
Indomalayan	HFI	I-VI vs. V-VI	0.275	0.367	0.749	0.454
	HFI	I-VI vs. NC	0.411	0.497	0.826	0.409
	LFC	I-VI vs. V-VI	2.090	0.799	2.615	0.009**
	LFC	I-VI vs. NC	6.244	3.357	1.860	0.063
Nearctic	HFI	I-VI vs. V-VI	-0.104	0.054	-1.925	0.054
	HFI	I-VI vs. NC	0.325	0.237	1.372	0.170
	LFC	I-VI vs. V-VI	0.797	0.453	1.759	0.079
	LFC	I-VI vs. NC	-0.542	1.264	-0.428	0.668
Neotropical	HFI	I-VI vs. V-VI	0.064	0.127	0.509	0.611
	HFI	I-VI vs. NC	0.224	0.153	1.461	0.144
	LFC	I-VI vs. V-VI	0.814	0.344	2.368	0.018*
	LFC	I-VI vs. NC	1.243	0.372	3.340	0.001**
Palearctic	HFI	I-VI vs. V-VI	-0.074	0.096	-0.769	0.442
	HFI	I-VI vs. NC	0.194	0.164	1.182	0.237
	LFC	I-VI vs. V-VI	0.267	0.231	1.157	0.247
	DR	I-VI vs. NC	0.384	0.451	0.850	0.395

Table S4. Results of the generalized boosted models when the alternative method was used to classify strictly protected areas (Categories I-II) and multiple-use areas (Categories III-VI). NC = areas with no IUCN Category; HFI = Human footprint index; LFC = Loss in forest cover (%).

Realm	Index	Category	Estimate	Std. Error	t-value	p-value
Afrotropical	HFI	I-II vs. III-VI	-0.049	0.162	-0.305	0.760
	HFI	I-II vs. NC	0.179	0.119	1.506	0.132
	LFC	I-II vs. III-VI	-0.140	0.675	-0.208	0.835
	LFC	I-II vs. NC	3.308	0.704	4.700	<0.001***
Australasian	HFI	I-II vs. III-VI	0.402	0.119	3.381	0.001**
	HFI	I-II vs. NC	1.778	0.443	4.016	<0.001***
	LFC	I-II vs. III-VI	-4.289	1.256	-3.414	0.001**
	LFC	I-II vs. NC	-5.374	2.271	-2.366	0.018*
Indomalayan	HFI	I-II vs. III-VI	0.828	0.235	3.516	<0.001***
	HFI	I-II vs. NC	1.355	0.434	3.123	0.002*
	LFC	I-II vs. III-VI	1.819	0.816	2.230	0.026*
	LFC	I-II vs. NC	5.416	2.510	2.158	0.031*
Nearctic	HFI	I-II vs. III-VI	0.009	0.040	0.225	0.822
	HFI	I-II vs. NC	0.060	0.123	0.489	0.625
	LFC	I-II vs. III-VI	1.153	0.661	1.744	0.081
	LFC	I-II vs. NC	-1.507	1.051	-1.434	0.152
Neotropical	HFI	I-II vs. III-VI	0.268	0.108	2.478	0.013*
	HFI	I-II vs. NC	0.272	0.157	1.732	0.084
	LFC	I-II vs. III-VI	0.835	0.350	2.386	0.017*
	LFC	I-II vs. NC	1.284	0.391	3.284	0.001**
Palearctic	HFI	I-II vs. III-VI	0.137	0.074	1.842	0.066
	HFI	I-II vs. NC	0.392	0.177	2.217	0.027*
	LFC	I-II vs. III-VI	0.879	0.259	3.395	0.001*
	LFC	I-II vs. NC	1.099	0.860	1.278	0.201

Table S5. Results of the matching analysis comparing strictly protected areas to areas in which multiple human used are allowed. Comparisons were made using the Wilcoxon rank test. The total number of protected areas (PAs) and the number of matched areas are also shown.

Realm	Method	Statistic	p-value	PAs total	PAs matched				
Human footp	Human footprint index								
Afrotropical	I-VI vs. V-VI	-0.771	0.441	553	288				
Australasian	I-VI vs. V-VI	0.807	0.420	1403	266				
Indomalayan	I-VI vs. V-VI	0.862	0.389	861	226				
Neartic	I-VI vs. V-VI	-4.165	<0.001***	3617	3456				
Neotropical	I-VI vs. V-VI	3.065	0.002**	944	688				
Paleartic	I-VI vs. V-VI	-12.148	<0.001***	7697	5226				
Afrotropical	I-II vs. III-VI	0.826	0.409	553	472				
Australasian	I-II vs. III-VI	3.859	<0.001***	1403	1100				
Indomalayan	I-II vs. III-VI	4.989	<0.001***	861	788				
Neartic	I-II vs. III-VI	-1.406	0.160	3617	2576				
Neotropical	I-II vs. III-VI	3.511	<0.001***	944	792				
Paleartic	I-II vs. III-VI	1.062	0.288	7697	1828				
Loss in forest	cover (%)								
Afrotropical	I-VI vs. V-VI	-0.072	0.942	423	230				
Australasian	I-VI vs. V-VI	1.608	0.108	1149	218				
Indomalayan	I-VI vs. V-VI	-3.617	<0.001***	775	224				
Neartic	I-VI vs. V-VI	-2.409	0.016*	3178	3086				
Neotropical	I-VI vs. V-VI	-4.714	<0.001***	873	628				
Paleartic	I-VI vs. V-VI	-7.371	<0.001***	7413	5092				
Afrotropical	I-II vs. III-VI	-0.219	0.827	423	372				
Australasian	I-II vs. III-VI	5.486	<0.001***	1149	886				
Indomalayan	I-II vs. III-VI	-0.121	0.904	775	770				
Neartic	I-II vs. III-VI	-4.465	<0.001***	3178	2158				
Neotropical	I-II vs. III-VI	-6.053	<0.001***	873	762				
Paleartic	I-II vs. III-VI	-7.292	<0.001***	7413	1694				

Figure S1. Differences in the change in human footprint between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-VI and multiple-use areas represent Categories V-VI. Negative numbers indicate a decrease in human footprint.

Figure S2. Differences in the change in human footprint between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-II and multiple-use areas represent Categories III-VI. Negative numbers indicate a decrease in human footprint.

Figure S3. Differences in forest cover loss (%) between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-IV and multiple-use areas represent Categories V-VI.

Figure S4. Differences in forest cover loss (%) between strictly protected areas (1) and matched areas in which multiple human uses are permitted (0). Strictly protected areas represent Categories I-II and multiple-use areas represent Categories III-VI.

Figure S5. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI. Unweighted values represent the differences between the treatment groups, for each of the confounding variables, based on the raw data. Solid circles indicate that differences were statistically significant at the 0.05 level.

Figure S6. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-II, multiple-use = Categories III-VI.

Figure S7. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the loss in forest cover (%) and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI.

Figure S8. The resulting balance when generalized boosted models were used to compare the three types of protected areas, using the loss in forest cover (%) and by grouping protected areas as follows: strictly protected = Categories I-II, multiple-use = Categories III-VI.

Figure S9. The resulting balance when matching was used to compare the protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI.

Figure S10. The resulting balance when matching was used to compare the protected areas, using the human footprint index and by grouping protected areas as follows: strictly protected = Categories I-II, multiple-use = Categories III-VI.

Figure S11. The resulting balance when matching was used to compare the protected areas, using the loss in forest cover (%) and by grouping protected areas as follows: strictly protected = Categories I-IV, multiple-use = Categories V-VI.

Figure S12. The resulting balance when matching was used to compare the protected areas, using the loss in forest cover (%) and by grouping protected areas as follows: strictly protected = Categories I-II, multiple-use = Categories III-VI.

