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Supplementary Methods 
 
Datasets 

We evaluated the performance of PBLR in imputing scRNA-seq data on both simulated and 

real datasets. The simulated datasets were generated using Splatter (Zappia et al., 2017), 

and the parameters used are shown in Supplemental Material Table S1. The four real 

datasets include two small datasets collected from human and mouse embryonic 

development, and two large-scale datasets (~20k cells). HEE dataset (Yan et al., 2013) 

consists of 88 cells from seven stages (from oocytes to blastocyst) during human early 

embryo (HEE) development. We obtained a data matrix with 16658 genes across 88 cells 

after filtering out genes that were expressed in less than 5 cells. MEF dataset (Treutlein et al., 

2016) describes the reprogramming from mouse embryonic fibroblasts (MEFs) to induce 

neuronal (iN) cells. To reconstruct the reprogramming path from MEFs to iN cells, similar to 

the original study (Treutlein et al., 2016), we used 221 cells collected at multiple time points 

(0, 2, 5, 22 days) after removing cells that appeared stalled in reprogramming due to Ascl1 

silencing or cells converging on the alternative myogenic fate.  

 

In mouse retinal dataset, ∼28,000 cells were profiled from a transgenic mouse line that marks 

bipolar cells (BCs) of the mouse retina (Shekhar et al., 2016). We obtained the digital 

expression matrix of 13,166 appreciably expressed genes across 27,499 cells using the R 

Markdown Code (https://github.com/broadinstitute/BipolarCell2016). 18 cell clusters, including 

13 cone BC clusters, 1 rod bipolar cell cluster and 4 non-BC clusters, were obtained in the 

original study. In Campbell dataset, 20,921 cells were profiled from acutely dissociated Arc-

ME cells of adult mice under six feeding conditions: ad libitum access to standard mouse 

https://github.com/broadinstitute/BipolarCell2016
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chow, low-fat diet or high-fat diet, as well as overnight fasting, with or without subsequent 

refeeding(Campbell et al., 2017). 20 distinct clusters (including neuron and non-neuron cell 

types) was identified in the original study. To visualize cells in the low dimensional space, we 

used Seurat package and performed batch effect correction (using Combat), following the 

same procedure as the original study. As batch effect correction will totally change the 

proportion of zeros in the raw digital expression matrix, we thus used the raw expression 

matrix as an input of various imputation methods. We performed batch correction on the 

imputed data by scImpute and SAVER, and then run Seurat pipeline to project cells onto t-

SNE space. We did not perform batch correction on the PBLR-imputed data because we did 

not observe explicit batch effects after projecting cells onto t-SNE space.  

 

To evaluate the performance of PBLR in identifying cell subpopulations, we adopted five real 

datasets (Supplemental Material Table S5). Deng dataset (Deng et al., 2014) consists of 

22431 genes across 268 cells, which was taken from the mouse embryo development 

process from zygote to blastocyst. Pollen dataset (Pollen et al., 2014) contains 301 single 

cells across diverse tissues, including neural cells and blood cells. This dataset was used to 

test the utility of low-coverage scRNA-seq to identify cell subpopulations. Darmanis dataset 

(Darmanis et al., 2015) was used to capture the cellular complexity of the adult and fetal 

human brain, including 20214 genes across 90 cells. These cells were divided into six groups, 

including astrocytes, endothelial, microglia, neurons, fetal quiescent and fetal replicating. 

Zeisel dataset (Zeisel et al., 2015) contains 3005 single cells came from mouse cortex and 

hippocampus. The cells were collected by unique molecule identifier (UMI) and divided into 

nine clusters. Treutlein dataset (Treutlein et al., 2014) was taken from distal mouse lung 

epithelial cells at different developmental stages. We used 80 single cells at E18.5 stage, 

which were clustered into five groups including BP, AT1, AT2, Clara and Ciliated. 

 
Symmetric non-negative matrix factorization (SymNMF)  
 
SymNMF decomposes a non-negative affinity matrix into two symmetric non-negative low-

rank matrices as follows, 
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where A is the affinity matrix and H is the non-negative low-rank matrix, which can be used to 

indicate clustering assignment. As SymNMF is a non-convex problem that may lead to the 

assignment being not unique, we repeat it 20 times with random initial values.  

 

Incomplete non-negative matrix factorization (INMF) 
 
Let Ms represent the raw expression matrix with selected genes as its rows and cells as its 

columns. Let S represent the indicator matrix with element S(i,j)=1 if Ms(i,j) is a non-zero 
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value, otherwise S(i,j)=0. The following INMF model is used to learn a low-rank coefficient 

matrix Hs to assign each cell to one cluster, 
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where  is dot product. Similar to SymNMF, we also repeat INMF 20 times with random 

initial values. SymNMF and INMF are solved by alternative nonnegative least square and 

multiplier update algorithm, respectively.  

 

Consensus clustering method 

Each column’s maximum value of H or Hs obtained from SymNMF or INMF under each run is 

used to determine the cluster membership (Kim and Tidor, 2003). The membership can be 

represented by a connectivity matrix C, with element C(i,j) = 1 if cell i and cell j are assigned 

into the same cluster, otherwise C(i,j) = 0. Then the connectivity matrices are summed across 

all runs and normalized by the number of runs. Thus, we obtain a consensus matrix C  and 

the entries vary from 0 to 1. The entry represents the probability of cells being grouped 

together. Next, hierarchical clustering (HC) with average linkage is applied on 1- C , where 1 

is matrix with all entries equaling 1. The clustering stability can be estimated by the 

cophenetic correlation coefficient  , which is computed as the Pearson correlation of 1-

C and the distance between cells inferred by average linkage. We found that the number of 

clusters (in a reasonable range) had minor effect on the performance (Supplemental Material 

Fig S18). Let 1 represent coefficient obtained from the average consensus matrix of Pearson, 

Spearman and Cosine distance, and
2 stands for that from the consensus matrix computed 

from INMF. If 1 2 cutoff   , the final clustering result is computed by the average linkage HC 

on 1- maxC , where maxC means the consensus matrix of the lager coefficient. If
1 2 cutoff   , the 

final clustering result is computed on 1- avgC , where avgC is the average of all consensus 

matrices. 

 
Bounded low-rank imputation algorithm 

Algorithm 1: BLR 

 Step 1: Initialize Xt, Zt with zero matrices, 1.6  , 2.5
mn

  , tol = 10-6 and set the 

iteration step t=0. 

 Step 2: Fix Xt, Zt and update Yt+1 with  
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 Step 3: Fix Zt, Yt+1, update Xt+1 via the well-known singular value shrinkage by 

file:///C:/Users/dell/AppData/Local/Youdao/Dict/Application/7.5.2.0/resultui/dict/
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 Step 4: Fix Xt+1, Yt+1, update Zt+1 by      1 1 1( )t t t tZ Z X Y . 

 Step 5: Let 1t t  , repeat Steps 2-4 until the following convergence criterion is satisfied: 
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PBLR algorithm 

Algorithm 2: PBLR 

 Step 1: Input raw data M, cluster number K, outer iterations N, threshold c. 

 Step 2: Data filtering and normalization.  

 Step 3: Select highly variable genes, and Ms represents the sub-matrix with selected 

genes across cells. Compute cell-cell distance matrices based on Pearson, Spearman 

and Cosine metrics, then transform to affinity matrices.  

 Step 4: Run SymNMF 20 times on each affinity matrix and compute average consensus 

matrix C1 and 
1 . 

 Step 5: Run INMF 20 times on Ms and compute consensus matrix C2 and 
2 . 

 Step 6: If 
1 2- c   , suppose 

1 2max( , )k   , then determine cell clustering assignment 

by average linkage HC on 1-Ck, else determine clustering result by average linkage HC 

on 1-C, where C is the average matrix of C1 and C2. 

 Step 7: Let ( )k

sM  and ( 1)K

rM  represent the gene expression of selected genes across the k-

th subpopulation and remaining genes across all cells. Obtain the imputed sub-matrices 

by Algorithm 1, respectively. 

 Step 8: Integrate these imputed sub-matrices to form the output data matrix. 
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Supplementary Figures 

 

Figure S1. Comparison of PBLR with LR and PLR on the synthetic dataset 1 with three sub-

populations. (A) PCA visualization of the raw data, full data (data without dropouts) as well as imputed 

ones by LR, PLR and PBLR, respectively. LR represents the typical low-rank matrix recovery method, 

PLR indicates the population-based LR method. Visualization by PCA on the full data (data without 

dropouts) clearly shows three separated subpopulations or clusters. However, the clusters are 

confounded on the raw data due to the existence of dropouts. We applied LR to impute the raw data 

and revealed mixed clusters (subpopulations) in the PCA space. Interestingly, performing LR on the 

inferred sub-matrices determined by cell sub-populations (denoted as PLR) can well separate them 

with more disperse clusters than those in the full data.  However, it tends to over-estimate the 

expression of low-expressed genes compared to the real expression levels (see panel B). Based on 

PLR, by further taking expression upper boundary into account, PBLR imputed data shows well 

separated clusters and more consistent distributions to the full data in the low-dimensional space as 

well as more reasonable expression-to-dropout relationships (see panel B). (B) Scatter plots of each 

gene with x axis representing log-transformed mean gene expression value and y axis representing the 

ratio of zeros across cells of each group. The top row shows distribution of real values of full data in the 

zero space (dark color) and non-zero space (light color) respectively for each sub-matrix. The middle 

and bottom rows show that of imputed values by PLR and PBLR for each sub-matrix respectively. Dots 

in different colors stand for imputed values of each sub-matrix in the zero space. The black dots 

represent the upper boundary. (C) SSE computed between the full data and the imputed ones by LR, 

PLR and PBLR respectively. (D) PCC computed for all single cell pair between the full data and the 

imputed ones by LR, PLR and PBLR respectively. P-value is computed by one-side Wilcoxon rank-sum 

test. As expected, compared to LR and PLR, PBLR gives more accurate imputed values in terms of 

sum of squared error (SSE) and Pearson correlation coefficients (PCC).  
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Figure S2. Illustration of the key components of PBLR. (A) Visualization of cells by the first two t-

SNE components on the raw synthetic dataset 2 with a large number of genes (n = 10,000), full data 

and imputed ones by scImpute, SAVER, LR, PLR, PBR and SAVER in each group respectively. The 

large-scale synthetic dataset 2 was simulated using the same parameter with dropout.shape = -0.05 

and the number of genes being 10,000 (Table S1).  (B) The Spearman correlation coefficient (SCC) of 

differential genes across all cells between full data and raw or imputed data. 
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Figure S3. Comparison of the imputation performance of scImpute, SAVER and PBLR on 

synthetic datasets 3. (A) Density plot of the imputed values versus real ones in the zero space (top) 

and the observed non-zero space (bottom), respectively. In the non-zero space, scImpute treats many 

moderate expression values as dropouts and imputes them by larger values than the true ones, while 

SAVER recovers non-zero values with some deviations. (B) SSE values computed between the full 

data and the raw data as well as the imputed ones. (C) PCC values of all single cell pair computed 

between the full data and the raw data as well the imputed ones. All of these three methods decrease 

the SSE values and improves PCC values relative to that of the raw data. However, PBLR gives more 

accurate imputed data than other two methods in terms of SEE and PCC values. (D) PCA plot on raw 

data, full data, and imputed data matrices by scImpute, SAVER, PBLR, respectively. The three cell 

clusters are distinguishable on the full data although the red and green clusters are close to each other, 

but they become less well separated in the raw data with dropout events. However, the relationships 

among these three clusters are separated after we applied PBLR. For other two methods, scImpute 

cannot separate the red and blue clusters. Although SAVER can distinguish these three clusters, it 

changes the data distribution as the relative distances between the three clusters are very different to 

that of the full data. 
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Figure S4. tSNE visualization of the reduced dimensions of raw data and imputed data of 7 

imputation methods on synthetic dataset 4. 

 

 

 

 

 

Figure S5. Performance of reconstructing pseudotime order of 7 imputation methods on 

synthetic dataset 5. (A) Visualization of the inferred trajectory by Monocle on raw and imputed data of 

7 imputation methods. (B) Bar plots of POS scores between pseudotime inferred by Monocle and 

golden standard pseudotime. (C) Bar plots of Kendall’s rank correlation coefficients between 

pseudotime inferred by Monocle and golden standard pseudotime. 
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Figure S6. Imputation performance on synthetic dataset 6 describing a continuous cell 

trajectory with two paths. (A) Visualization of cells on the first two PHATE components using raw 

data, full data (golden standard data without dropout) and imputed data of eight methods. Cells were 

colored with golden standard steps (i.e., pseudotime). (B) Comparison of manifold preservation scores 

between full data and raw data or imputed data. High manifold preservation score indicates the well 

preservation of manifold distance in the imputed data compared to that in the full data.  

 

 

 

Figure S7. Imputation performance on synthetic dataset 7 describing a continuous cell 

trajectory with three paths. (A) Visualization of cells on the first two PHATE components using raw 

data, full data (golden standard data without dropout) and imputed data of eight methods. Cells were 

colored with golden standard steps (i.e., pseudotime). (B) Comparison of manifold preservation scores 

between full data and raw data or imputed data.  
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Figure S8. Imputation performance on synthetic dataset 8 with varied cell subpopulation 

distance and degree of noise. (A) Visualization of cells on the first two UMAP components using raw 

data, full data (golden standard data without dropout) and imputed data of eight methods. Cells were 

colored with golden standard cell subpopulation labels. Each row represents one data corresponding to 

one pair of parameters. The cell subpopulation distance decrease and the degree of noise increase 

from data (1) to (4), which are controlled by the parameter de.facLoc varying from 4 to 11, and the 

parameter bcv.common varying from 0.1 to 0.44 in the Splatter package, respectively. (B) Comparison 

of manifold preservation scores between full data and raw data or imputed data. scImpute, PBLR and 

deepImpute consistently had higher scores than other methods, suggesting the better preservation of 

cell-cell distances in the imputed data.  
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Figure S9. Comparison of the performance of scImpute, SAVER and PBLR on inferring 

pseudotime on two real datasets. (A) Scatter plots of marker genes’ expression in imputed HEE data 

by scImpute and SAVER. The corresponding Spearman correlation coefficient (SCC) of expression 

values in the late blastocyst cells is shown. (B) Visualization of the inferred trajectory on HEE raw data 

and PBLR imputed data in the first two discriminative dimensions computed by Monocle 2. Each dot 

represents a cell, which is colored by the inferred pseudotime. Cells with higher values are in more 

differentiated states. (C) Visualization of the inferred trajectory on MEF raw data and PBLR imputed 

one in the first two discriminative dimensions computed by Monocle 2. Each dot represents a cell 

colored by the experimental time points. (D) Barplots of POS scores and Kendall’s rank correlation 

coefficients (quantifying the similarity between the inferred pseudotime and the real experimental time 

points) after applying Monocle 2 on MEF data and imputed one by scImpute, SAVER and PBLR, 

respectively.  
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Figure S10. Evaluation running time (left, y-axis is minutes) and peak RAM usage for Shekhar 

dataset with different cell numbers. PBLR+SNNs represents PBLR with second strategy of cell 

heterogeneity consideration, while PBLR+affinity represents PBLR with the first strategy of cell 

heterogeneity consideration. 

 

 

 

 

Figure S11. Quantitative evaluation of batch effect correction using local inverse Simpson’s 

index (LISI) metric on imputed Shekhar data by 7 imputation methods. For comparison between 

methods, we took the median value of the scores computed for all cells in the dataset, and scaled 

such that 0 and 1 denote the worst and best possible scores respectively. 
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Figure S12. Cells are visualized on the first two t-SNE components using the imputed Shekhar 

data by DCA, deepImpute, CMFImpute and ALRA. Cells are colored by batches (top) and cell types 

(bottom). 

 

 

 
 
Figure S13. The imputation performance on the Shekhar dataset. (A) Cells (n = 26830) are 

visualized by the first two t-SNE components of the raw data and batch corrected raw data by combat. 

(B) Cells are visualized by the first two t-SNE components on raw Shekhar data and the imputed data 

by scImpute. (C) Cells are visualized by the first two t-SNE components on the imputed data by 

SAVER and PBLR. The initial cell groups are identified by Seurat. And batch effects are removed on 

these data. (D) Hierarchical clustering of average gene signatures of clusters based on gene 

expression of raw data and imputed data by scImpute and SAVER respectively (Pearson correlation 

distance metric, average linkage). 
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Figure S14. The imputation performance on the Campbell dataset. Downsampled cells (n = 10794) 

are visualized by the first two t-SNE components on the raw and imputed Shekhar dataset by scImpute, 

SAVER and PBLR. 

 
 

 

Figure S15. Comparison of cell cluster performance evaluated by NMI between before and after 

imputed by PBLR on five real datasets. 
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Figure S16. Cells are visualized on the first two t-SNE components using the imputed Shekhar 

data by PBLR with fast version of considering cell heterogeneity. Cells are colored by batches 

(left) and cell types (right). 
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Figure S17. Illustration of the three ways for boundary estimation. (A) Schematic diagrams of the 

three ways for boundary estimation. Left: The boundary of each gene is defined as the upper one-

sided 95% confidence bound by fitting the log-transformed mean gene expression value and the ratio 

of zeros using 
2xe 

; Middle: Boundary estimation by a simple piecewise function with two sub-

functions; Right: Boundary estimation by a sophisticated piecewise functions with four sub-functions. 

Scatter plots of each gene with x axis representing log-transformed mean gene expression value and y 

axis representing the ratio of zeros across cells. Dark color represents real values in the zero space, 

while light color represents values in the non-zero space. The black dots represent the estimated 

boundary. (B) Comparison of the estimated boundary based on the sampled reference data from both 

synthetic dataset and real dataset. Upper: The reference data was generated from synthetic dataset 1; 

Bottom: The reference data was generated from the real Zeisel dataset. (C) Scatter plots of each 

gene with x axis representing log-transformed mean gene expression value and y axis representing the 

ratio of zeros across cells of each group in synthetic dataset 1. Boundary is estimated by the 

exponential function (upper), the simple piecewise function (middle) and the sophisticated piecewise 

function (bottom), respectively. Again, we observed that the sophisticated piecewise function can 

accurately estimate the boundary of "dropout values" in each cell group.  
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Figure S18. Robust analysis of cluster numbers. Visualization of cells on the first two t-SNE 

components using imputed data by PBLR with the number of clusters equaling 4, 5 and 6 respectively. 
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Supplementary Tables 

Table S1. The parameters of Splatter used for generating synthetic datasets.  

 
Parameter dataset 1 dataset 2 dataset 3 dataset 4 dataset 5 dataset 6 dataset 7 dataset 8 

version 1.4.0 1.4.0 1.2.1 1.0.1 1.0.1 1.10.1 1.10.1 1.10.1 

nGenes 10000 1000 10000 1000 1000 1000 1000 1000 

nCells 200 100 100 1000 100 1000 1000 1000 

group.prob c(0.3,0.3,0.4) c(0.3,0.3, 
0.4) 

c(0.3,0.3,0.4) c(0.24,0.12,0.1,
0.02,0.37,0.15) 

Null c(1/3,1/3,1/3) c(1/5,1/5,1/5,
1/5) 

c(0.25,0.5, 
0.1,0.15) 

dropout.shape c(-0.5,-0.4,-
0.5) 

{-0.2, -0.15, 
-0.1, -0.05} 

Default Default Default c(-0.5,-1,      
-1.5) 

c(-0.2,-0.4,   
-0.6,-0.8,-1) 

c(-0.5,-1,      
-1.5,-2) 

dropout.mid  c(0,0,0) Default Default Default Default c(0,0,0) c(0,0,0,0,0) c(0,0,0,0) 

dropout.type "group" ”group” Null Null Null "group" "group" "group" 

Method "groups" "groups" "groups" "groups" "path" "path" "path" "groups" 

de.prob Default c(0.05,0.08,
0.1) 

Default Default Default Default Default Default 

de.facLoc Default 0.5 Default 0.1 Default Default Default {4,3,2,1} 

de.facScale Default 0.8 Default 0.4 Default Default Default Default 

bcv.common Default Default Default Default Default Default Default {0.1,0.2,0.3, 
0.4} 

path.from Null Null Null Null Default c(0,1,1) c(0,1,1,2,2) Null 

dropout.present Null Null TRUE TRUE TRUE Null Null Null 

 

Table S2. Genes enriched in TE, EPI and PE on HEE scRNA-seq dataset. 

 Genes 

TE CDX2 

EPI SOX2, KLF4, FOXD3, GDF3, CLDN19, NANOG  

PE FGFR4, TDGF1, KRT8, KRT19, CLDN3, IFTM1, DPPA5, JMJD4, NODAL 
 

Table S3. Marker genes of 18 cell subpopulations in Shekhar scRNA-seq dataset. These markers 
were obtained from the table S2 in the the original study (Shekhar et.al, 2016). 

  Marker genes 
RBC (Rod Bipolar cell) Vsx2, Otx2, Grm6, Isl1, Prkca, Car8, Sebox 
Müller Glia (MG) Vsx2, Apoe, Glul, Aqp4 
BC5A (Bipolar cell 5A) Vsx2, Otx2, Scng, Grm6, Isl1, Cabp5, Hcn1, Kcng4 
BC7 Vsx2, Otx2, Grm6, Isl1, Vsx1 
BC6 Vsx2, Otx2, Scgn, Grm6, Isl1, Vsx1, Syt2 
BC5C Vsx2, Otx2, Scgn, Grm6, Isl1 
BC1A Vsx2, Otx2, Scgn, Tacr3 
BC3B Vsx2, Otx2, Scgn, Grik1, Prkar2b  
BC1B Vsx2, Otx2, Scgn, Tacr3 
BC2 Vsx2, Otx2, Scgn, Tacr3, Syt2, Rcvrn 
BC5D Vsx2, Otx2, Isl1, Cabp5, Hcn1, Kcng4 
BC3A Vsx2, Otx2, Scgn, Irx6, Hcn4 
BC5B Vsx2, Otx2, Scgn, Grm6, Isl1, Cabp5, Hcn1 
BC4 Vsx2, Otx2, Scgn, Grik1 
BC8/9 Vsx2, Otx2, Grm6, Isl1 
Amacrine cells (AC) Pax6, Tfap2a, Gad1, Slc6a9 
Rod  photoreceptors Rho, Pdc, Nrl, Pde6a 
Cone photoreceptors Arr3, Opn1mw, Opn1sw, Pde6h 
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Table S4. Marker genes of 20 cell subpopulations in Campbell scRNA-seq dataset. These marker 
genes were obtained from the figure 1d in the original study (Campbell et.al, 2017). 

  Marker genes 
a01.Oligodend3 Gm21984 
a02.Oligodend2 Mag, Man1a 
a03.Endothelial Cells Slco1c1 
a04.Mural Cells Mustn1 
a05.Oligodend1 Bmp4 
a06.NG2/OPC Cspg4 
a07.PVMMicro Aif1 
a08.VLMC Col1a1, Col3a1, Lum 
a09.Ependymocytes Ccdc153 
a10.Astrocyte Gfap 
a11.Tanycyte1 Adm 
a12.Tanycyte2 Crym 
a13.Neurons1 Oxt 
a14.Neurons2 Rgs16 
a15.Neurons3 Tac2 
a16.Neurons4 Ghrh 
a17.Neurons5 Slc18a2 
a18.Neurons6 Tubb3 
a19.ParsTuber1 Cyp2f2 
a20.ParsTuber2 Tshb, Timeless 

 

 
Table S5. Description of five real datasets used in this study for cell subpopulation 
identification. 

Dataset #genes vs #cells Ratio of zeros (%) #clusters 

Deng 22431 vs 268 60.5 6 

Pollen 23730 vs 301 67.1 11 

Darmanis 20214 vs 90 80.8 9 

Zeisel 19972 vs 3005 81.2 9 

Treutlein 23271 vs 80 90.2 5 

 


