Α

Induction of Wnt signaling antagonists and P21-activated kinase enhances cardiomyocyte proliferation during zebrafish heart regeneration

В

ctrl 3dpa 7dpa	ctrl 3dpa 7dpa	ctrl 3dpa 7dpa	ctrl 3dpa 7dpa	ctrl 3dpa 7dpa	ctrl 3dpa 7dpa	ctrl 3dpa 7dpa	ctrl 3dpa 7dpa
β -actin	wnt1	wnt2	wnt2ba	wnt2bb	wnt3	wnt3a	 wnt4a
wnt4b	wnt5a	 wnt5b	wnt6b	wnt7aa	 wnt7ba	wnt7bb	 wnt8a
wnt8b	wnt9a	wnt9b	wnt10a	wnt10b	wnt11	wnt11r	wnt16

Supplementary Figure S1 Expression of Wnt inhibitors and Wnt ligands during cardiac regeneration by RT-PCR analyses. (A) Expression of Wnt inhibitor genes, *dkk1a, dkk1b, dkk2, dkk3a, dkk3b, sfrp1a, sfrp1b, sfrp2, sfrp3;* Wnt receptor genes, *kremen1, lrp5, lrp6* were analyzed using semi-quantitative RT-PCR analyses. (B) Wnt ligands, including *wnt1, wnt2, wnt2ba, wnt2bb, wnt3, wnt3a, wnt4a, wnt4b, wnt5a, wnt5b, wnt6b, wnt7aa, wnt7ba, wnt7bb, wnt8a, wnt8b, wnt9a, wnt9b, wnt10a, wnt10b, wnt11, wnt11r, wnt16* were analyzed using semi-quantitative RT-PCR analyses. mRNAs were isolated from uninjured and amputated hearts at 3 days and 7 days.

Supplementary Figure S2 Dkk3 and sFrp1 are induced in epicardium during heart regeneration. (**A-D**) Representative confocal images of heart sections from uninjured and 7 dpa *Tg(tcf21:nEGFP)* animal co-stained with antibodies for GFP (green) and sFrp1 (red) or Dkk3 (red). Arrows point to sFrp1⁺ epicardium (**B** and **B**') or Dkk3⁺ epicardium (**D** and **D**'). **A'**, **B'**, **C'**, and **D'** are separate channels of **A**, **B**, **C** and **D**, respectively. Brackets indicate amputation plane. Scale bars: 100 μm.

Supplementary Figure S3 Expression of *dkk3b*, *lrp6* and *wnt5b* during heart

regeneration by *in situ* **hybridization analyses.** (**A**-**D**) While the uninjured ventricle shows no *dkk3b* expression, epicardial cells induce *dkk3b* expression (arrows) at 3 dpa. *dkk3b* expression is detectable in the regenerate (arrowheads) at 7 dpa, and *dkk3b* expression remains in the epicardial sheet enclosing the wound by 14 dpa. (**E**-**H**) ISH analyses reveal expression of *Irp6* (arrows) in myocardium in uninjured hearts, 1 dpa, 3 dpa and 7 dpa hearts. (**I**-**L**) *wnt5b* is expressed at the junctional region between the ventricle and the outflow tract (OFT) in uninjured hearts (arrow in **J** and **L**); Following resection at 7 dpa, *wnt5b* expression remains unaltered (arrow in **K** and **L**). Dotted line indicates amputation plane. Scale bars: 100 μ m (**A**-**L**).

Supplementary Figure S4 dkk3b and sfrp1 transcripts are induced in

endocardium during heart regeneration. (A-D) Schematic of experimental procedures for FISH analyses combined with GFP immunostaining. (B-E) Representative images of FISH of *sfrp1* (B and C, red) or *dkk3* (D and E, red) combined with immunofluorescence for GFP on heart sections from uninjured and 7 dpa Tg(fli1a:EGFP) animal. Boxed regions are magnified in adjacent right panels. Arrowheads point to *sfrp1**Fli1a* endocardial cells or *dkk3**Fli1a* endocardial cells. Brackets indicate amputation plane. Scale bars: 100 µm.

Supplementary Figure S5 Increased or reduced Wnt pathway activity in *Tg(hsp70:wnt8a)* or *Tg(hsp70:dkk1b)* hearts following ventricular resection by *axin2* RNAscope analyses, respectively. (A-F) RNAscope analyses showing *axin2* expression in control, *Tg(hsp70:dkk1b)* and *Tg(hsp70:wnt8a)* hearts following ventricular resection at 7 dpa. *axin2* transcripts are detectable in the injured heart and slightly enriched at the injury region (A and B). *axin2* expression is upregulated in *wnt8a*-overpexpressing hearts in heat shocked *Tg(hsp70:wnt8a)* animals (C and D), but reduced in *dkk1b*-overexpressing hearts in *Tg(hsp70:dkk1b)* zebrafish (E and F), when compared with control animals (A and B). Brackets indicate amputation plane. Scale bars: 100 μm.

Supplementary Figure S6 Identification of *ctnnb2(S675E)*^{CMi} transgenic zebrafish using lens-expressed fluorescent proteins. (A-D) Adult transgenic *ctnnb2(S675E)*^{CMi} zebrafish showed the selectable markers of yellow lens (overlap of GFP with mCherry). No mScarlet-I fluorescence were observed in zebrafish muscle, skin or fin upon DOX or vehicle treatment. Scale bars: 250 μ m.

Supplementary Figure S7 Pak2a kinase phosphorylates zebrafish β -catenin at the Ser675 residue in cells. Kinase phosphorylation assay shows that Ser675 residue of β -catenin is phosphorylated by zebrafish Pak2a, but completely abrogated by β -catenin S675A mutant. Administration of FRAX597 or FRAX486 reduces the Ser675 phosphorylation of β -catenin. The immunoprecipitated HA-Pak2 was subjected to kinase assay in the presence of 500 μ M ATP and 1.5 μ g of zebrafish GST-tagged WT or S675A- β -catenin purified from *Escherichia coli* as substrates. 2 μ M Pak2 inhibitor FRAX597 or FRAX486 was added to the reaction mixtures by incubating for 60 min. The reactions were subjected to analysis by SDS-PAGE with related antibodies.

Supplementary Figure S8 Inhibition of Pak2 activity attenuates injury-induced CM dedifferentiation. (A and B) Confocal high magnification image analyses exhibiting disassembled sarcomeres in DMSO-treated hearts (A), and relatively normal striated sarcomeres in FRAX597-treated hearts (B). (C-F) Separate fluorescence channel analyses revealing the reduction of pS675- β -catenin levels (D) and emCMHC expression (F) at injured myocardial cell edges in FRAX597-treated hearts, compared to DMSO-treated hearts (C and E). (G-J) ISH analyses display a reduction of α -SMA (H) and *actn1* (J) expression at wound edges in FRAX597-treated hearts, compared to that in DMSO-treated hearts (G and I) at 7 dpa. 1 μ M FRAX597 treatment from 4 to 6 dpa. Scale bars: 10 μ m (A-B), 100 μ m (C-J).