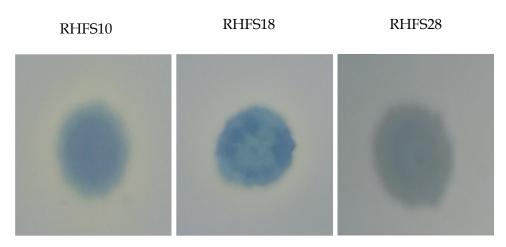
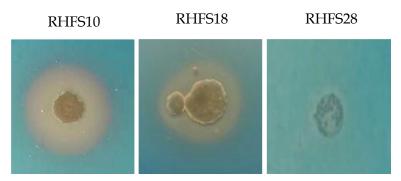


Supplementary Material

Table S1. Preliminary characterization of spore-forming bacteria isolated from the rhizosphere of *J. sabina* plants.


Isolate Code	Colony Color	Colony Morphology	*Anaerobic Growth	pH Range	Temperature Range (°C)
RHFS01	Creamy-white	Rhizoid	++	4-12	15-50
RHFS02	Creamy-white	Irregular	++	4-12	25-50
RHFS03	Creamy-white	Rhizoid	+++	4-12	15-60
RHFS04	Creamy-white	Punctiform	+++	4-12	15-60
RHFS05	Creamy-white	Lobate	+	4-12	15-50
RHFS06	Creamy-white	Irregular	+++	6-12	15-60
RHFS07	Brown	Circular	+++	4-12	15-60
RHFS08	Creamy-white	Filamentous	+	4-12	15-50
RHFS09	Creamy-white	Irregular	+++	2-12	15-50
RHFS10	White	Undulate	++	6-12	15-50
RHFS11	Creamy-white	Irregular	+++	4-12	15-60
RHFS12	Creamy-white	Circular	+++	4-12	15-60
RHFS13	Creamy-white	Circular	+++	2-12	15-60
RHFS14	Creamy-white	Circular	+	4-12	15-50
RHFS15	Creamy-white	Irregular	+++	4-12	15-60
RHFS16	Orange	Irregular	++	4-12	15-60
RHFS17	Translucent	Lobate	+++	4-12	15-50
RHFS18	Milky white	Filamentous	++	4-12	15-60
RHFS19	Milky white	Irregular	+++	4-12	15-60
RHFS20	Creamy-white	Undulate	++	4-12	15-40
RHFS22	Yellow	Translucent	+++	4-12	15-40
RHFS28	Creamy-white	Circular	++	4-12	15-40

^{*}Anaerobic growth: +:low growth; ++:moderately growth; +++:high growth.


Table S2. 16S rRNA gene-based molecular identity of isolated spore-forming bacteria, their accession numbers, and strain identification is reported.

Bacteria ID	Accession number	Nearest neighbor from NCBI with Accession number	Sequence similarity (%)
RHFS1	MW678576	Bacillus licheniformis strain QT-98 (MT065812.1)	98.96
RHFS2	MW678577	Bacillus mojavensis strain YZJP308 (MN931392.1)	100.00
RHFS3	MW678578	Bacillus paralicheniformis strain B34-013 (MK063845.1)	100.00
RHFS4	MW678579	Bacillus subtilis subsp. inaquosorum strain YZYR10 (MN931257.1)	100.00
RHFS5	MW677571	Bacillus velezensis strain EMP09 (MN062933.1)	100.00
RHFS6	MW677572	Bacillus halotolerans strain FUM1 (MK093005.1)	100.00
RHFS7	MW678580	Bacillus flexus strain S6c (MT645459.1)	99.65
RHFS8	MW678581	Bacillus licheniformis SV12 (LC422787.1)	99.89
RHFS9	MW677573	Bacillus velezensis strain XC1 (MT649755.1)	99.85
RHFS10	MW678582	Bacillus vallismortis strain CBs8 (MK290421.1)	100.00
RHFS11	MW678583	Bacillus velezensis strain GST21(MN809529.1)	100.00
RHFS12	MW678584	Bacillus subtilis strain HR02 (MK283755.1)	100.00
RHFS13	MW678585	Bacillus tequilensis strain R-QL-48-26(MT078639.1)	100.00
RHFS14	MW678586	Bacillus subtilis strain R47 (MH359177.1)	90.19
RHFS15	MW678587	Bacillus velezensis strain 1601 (MW242869.1)	100.00
RHFS16	MW678588	Bacillus toyonensis strain IBB-TEB3(MT573517.1)	100.00
RHFS17	MW678589	Bacillus amyloliquefaciens strain NO10 (MT377854.1)	100.00
RHFS18	MW678590	Bacillus amyloliquefaciens strain S8TS (MK729078.1)	100.00
RHFS19	MW677570	Bacillus paralicheniformis strain AJVR1(MT459810.1)	100.00
RHFS20	MW678591	Bacillus proteoliticus strain 1372 (MT573794.1)	100.00
RHFS22	MW678592	Bacillus tequilensis strain CFR01 (MT641220.1)	100.00
RHFS28	MW678593	Bacillus cereus strain F3-1-38 (KX350019.1)	100.00

Int. J. Mol. Sci. **2021**, 22, 3324

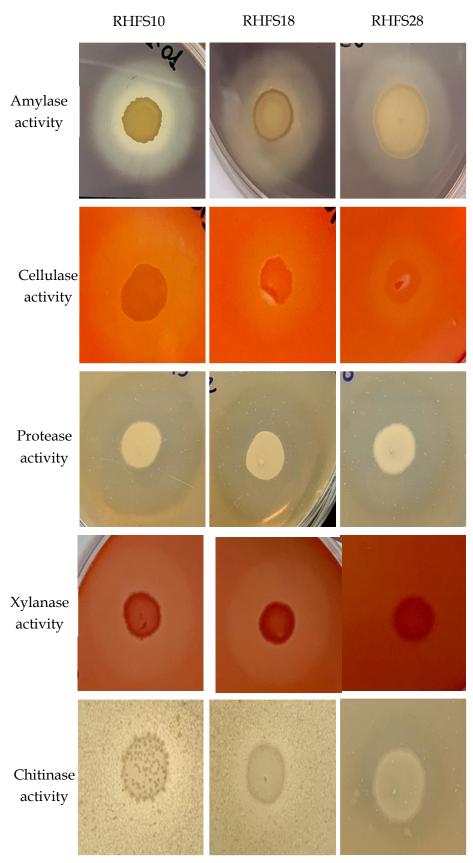
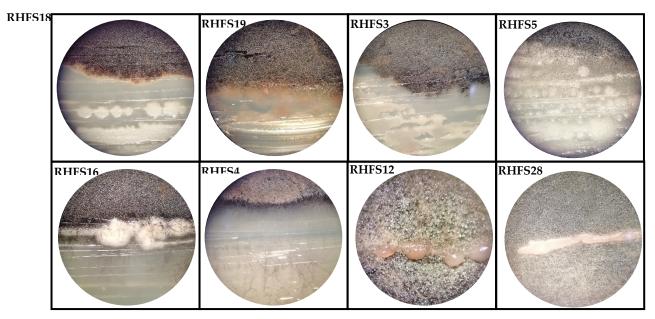


Figure S1. Potential plant growth-promoting traits of selected bacterial isolates. The ability to solubilize inorganic phosphate was assessed by growing the bacterial isolates on the Pikovskaya agar assay [30]. The experiment was performed in triplicate with three independent trials.


Figure S2. Potential plant growth-promoting traits of selected bacterial isolates. Siderophore production was assessed through O-CAS assay method [31]. The experiment was performed in triplicate with three independent trials.

Int. J. Mol. Sci. **2021**, 22, 3324

Figure S3. Hydrolytic activities of selected bacterial isolates [33–39]. The experiment was performed in triplicate with three independent trials.

Int. J. Mol. Sci. 2021, 22, 3324

Figure S4. Preliminary dual-culture assay. The figure shows other examples of spore-forming bacteria isolated from the rhizosphere of *J.sabina plants* tested against *M. phaseolina* with antifungal activity (RHFS18, RHFS19, RHFS3, RHFS5, RHFS16, and RHFS4) and examples of bacteria not able to inhibit the fungal growth (RHFS12 and RHFS28). All plates were observed under a stereoscopic microscope (10× magnification) [40].