HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis

Mengke Yuan, Jingcheng Zhang, Yuanpeng Gao, Zikun Yuan, Zhenliang Zhu, Yongke Wei, Teng Wu, Jing Han and Yong Zhang

Supporting Information

Supporting Tables

Table S1. Sequences of primers for qPCR.

Table S2. Sequences of primers for promoter fragments amplification.

Table S3. Sequences of primers for promoter fragments amplification.

Table S4. Primer sequences for sgRNA cloning.

 Table S5. Sequences of primers for Junction PCR.

 Table S6. Sequences of sgRNA11 potential on/off target sites.

Table S7. Primer sequences for amplification of potential off target region.

Supporting Figures

Figure S1. Comparison of mouse, bovine and pig *ROSA26* promoter and exon 1 sequences showed high sequence conservation among these species.

Figure S2. Identification of the bROSA26 non-coding RNA.

Figure S3. Insertion and selection of the reporter genes transgenic colonies by HDR-based method.

Figure S4. Representative junction PCR of the reporter gene transgenic colonies by HMEJ-, NHEJ- and HDR-based method.

Figure S5. Photographs of *NRAMP1* gene KI colony and representative junction PCR results of puromycin-resistant colonies.

Figure S6. Sanger sequencing results of eight potential off-target sites in gene-edited cattle.

Supporting Tables Table S1. Sequences of primers for qPCR.

Gene name	Primer	Sequence (5'-3')	Product length	
DOGAD	Forward	GCGTTTGTTACACTTGCTCATC	2421	
KOSA20	Reverse	AAGAGGGTCAGTAGAATCCCA	243 bp	
Reatin	Forward	ATCACCATCGGCAATGAGCGGTTC	217 ha	
p-actin	Reverse	CGGATGTCGACGTCACACTTCATGA	217 bp	
THUMPD3	Forward	GCAAAATCAGCAAAGACCGG	120 ha	
	Reverse	TGAACTGGTAATCCTTAAACTCCTG	129 bp	
SETD5	Forward	AGCAAGCTCCTGAGAAAGTAAC	200 h.	
	Reverse	CTTCAACCTTCCTATCTTCCCG	200 bp	
LHFPL4	Forward	GCCACGGTCTACAAGATCTG	204 hz	
	Reverse	GATGAGGGCGTTGAGGATG	20 4 0p	

Table S2. Sequences of primers for promoter fragments amplification.

Vectors	Primer	Samaraa (5/ 2))	Product
vectors		Sequence (5 - 5)	length
mCI 4 10 2007/+505	Forward	CTCGCTAGCAGATTCTAATCCCATAACGAGC	2512 hr
pGL4.10-2007/+303	Reverse	CCCAAGCTTCCACCCTACCTACCTAAGCAC	2312 Up
pGL4.10-1807/+505	Forward	CTCGCTAGCAAACACTGATATAAAACTAATC	2312 bp
pGL4.10-1607/+505	Forward	CTCGCTAGCTAAAGGAAATTTGCAGAGAACC	2112 bp
pGL4.10-1407/+505	Forward	CTCGCTAGCAGAGCTGGCTGCAGCATC	1912 bp
pGL4.10-1207/+505	Forward	CTCGCTAGCGGAAAGAGAATTGATAAAGGC	1712 bp
pGL4.10-1007/+505	Forward	CTCGCTAGCTAATGTCCTTAGTGTGGGAAACG	1512 bp
pGL4.10-807/+505	Forward	CTCGCTAGCGAGGAGAGCAGTGAGAGG	1312 bp
pGL4.10-607/+505	Forward	CTCGCTAGCAGGGGGGATGAGAAGGG	1112 bp
pGL4.10-407/+505	Forward	CTCGCTAGCGAGGCAGCAGGACTCGAGTTA	912 bp

Table S3. Sequences of	primers for p	promoter fragments	amplification.
------------------------	---------------	--------------------	----------------

Vectors	Primer	Sequence (5'-3')	Product length
mCI 4 10 1007/±505	Forward	CTCGCTAGCAGATTCTAATCCCATAACGAGC	1510 hr
pGL4.10-1007/+303	Reverse	CCCAAGCTTCCACCCTACCTACCTAAGCAC	1312 op
pGL4.10-1007/+405	Reverse	CCCAAGCTTAAAACACGCCATTTGTG	1412 bp
pGL4.10-1007/+305	Reverse	CCCAAGCTTCTCCGTCCGGATTCGA	1312 bp
pGL4.10-1007/+205	Reverse	CCCAAGCTTTTCAGCGTAACAAACGC	1212 bp
pGL4.10-1007/+105	Reverse	CCCAAGCTTCGGACCCCCTCCCACCA	1112 bp
pGL4.10-1007/+5	Reverse	CCCAAGCTTCTTCCGCTGATTGGCAG	1012 bp

Table S4.	Primer	sequences	for sgRNA	cloning.
		1		

Number	Top Guide oligo	Bottom Guide oligo
11	CACCGTGTCGAGTCTCGATTATGGG	AAACCCCATAATCGAGACTCGACAC
34	CACCGAGCGAAACCACTGCGCGGGT	AAACACCCGCGCAGTGGTTTCGCTC
43	CACCGTCCATGTCGAGTCTCGATTA	AAACTAATCGAGACTCGACATGGAC
44	CACCGCCATGTCGAGTCTCGATTAT	AAACATAATCGAGACTCGACATGGC
45	CACCGTTGCAGCTCGCGCCGATTTT	AAACAAAATCGGCGCGAGCTGCAAC

Table S5. Sequences of primers for Junction PCR.

Primer	Sequence (5'-3')	Product length
Lj-S	GCCAATCAGCGGAAGCC	1924 ha
Lj-A	TTCACCTTGATGCCGTTCTT	1824 bp
Rj-S	ATAATCAGCCATACCACA	2922 1
Rj-A	TTCCAGCCTACCAACA	2833 bp
Rj-S'	CAGGCAGATTCTTTACCG	2261 hm
Rj-A'	CAAGTCACTCATTCCGTTT	2201 bp

Table S6. Sequences of sgRNA11 potential on/off target sites.

Name	On-target site	Potential off-target site
sgRNA11-OT1	TGTCGAGTCTCGATTATGGGNGG	TtaaGgGTCTtGATTATGGGTGG
sgRNA11-OT2		TGTgGAGaaTaGATTATGGGTGG
sgRNA11-OT3		TtTaGAtgCTtGATTATGGGGGG
sgRNA11-OT4		TGatGtGaCTgGATTATGGGGGG
sgRNA11-OT5		gGTCagtTCcCGATTATGGGCGG
sgRNA11-OT6		TGTgGAGagTgGATTATGGGTGG
sgRNA11-OT7		TGTCGtGgtTaGATTATGGGAGG
sgRNA11-OT8		TGTgGttgCTgGATTATGGGAGG

Primer	Sequence (5'-3')	Product length
Forward	ACCTGGTCTTCTGCTTCA	507 1
Reverse	TCCTCTTTCCTTCTCCCT	597 бр
Forward	AGGAGGATGGAAGTGAA	5501
Reverse	TACTTGGGTGTCTCATAAA	550 бр
Forward	CACAGAATCGCCTCC	(20.1
Reverse	ATGCCTCAAAGAATGG	638 bp
Forward	TGTCTCAGAAACCCTACAA	5151
Reverse	GGAGTCTACAGGCACCAT	515 bp
Forward	CCTGCACCCTAATAGATGG	450 1
Reverse	GACGAATGCCTCCGACT	458 bp
Forward	AACACTGGGCATCTGG	420.1
Reverse	GGGAGGAATGGGCTA	430 bp
Forward	TACACTAAATCACGCAGAC	2751
Reverse	AGTGGCAGGGATGG	375 bp
Forward	GGGAAGATGAATGAAAGCA	(971
Reverse	CATTTACCAGCAGTTAGGGA	687 bp
	Primer Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse	PrimerSequence (5'-3')ForwardACCTGGTCTTCTGCTTCAReverseTCCTCTTTCCTTCTCCCTForwardAGGAGGATGGAAGTGAAReverseTACTTGGGTGTCTCATAAAForwardCACAGAATCGCCTCCReverseATGCCTCAAAGAATGGForwardTGTCTCAGAAACCCTACAAReverseGGAGTCTACAGGCACCATForwardCCTGCACCCTAATAGATGGReverseGACGAATGCCTCCGACTForwardACACTGGGCATCTGGReverseGGGAGGAATGGGCTAForwardTACACTAAATCACGCAGACReverseAGTGGCAGGGATGGForwardGGGAAGATGAATGAAAGCAReverseCATTTACCAGCAGTTAGGGA

Table S7. Primer sequences for amplification of potential off target region.

Supplementary Figures

Mouse Bovine	TTTGGTGTGGGAAAAGCAGCATCTGAGATAGGAACTGGAAAACCAGAGGAGAGGGGTCAGGAAGAGTTTATGGGG-GGGAGGACTGGGCCCCCGAGGAGGGACGGGGACGGGGGGGG
Pig	GTGTGGGAAAGGAAGCAATCATCTGCAATAGGGACCCTAGGACGAGAGGGAAAAGCGTCCAGGAACATTCTTGGAGGGGGG
Mouse	GTCACAAGGCCCCAAGAACAGGGGAGGTGGGGG-GCTCAGGGACAGAAAAAAA-GTATGTGTATTTTGAGAGCAGGGTTGGGAGGCCTCTCCTGAAA-AGGGTATAAACGTGG
Bovine	GTCACAAGGCCGCGCGAACCGGGGTGGGGGTGGGGTTTGGGGAGGGA
Pig	GTCACAAGGCCGCCGAACGGGGGTGGGGGTGGGGGTGGGGGTAAAAAAAGTGTGCTGTGTATTTTGAGGAGGGCGCCGAGAGGCCTATTCTCAAGTAAAAGGTAAACGTGG
Mouse	AGTAGGCAATACCCAGGCAAAAAGGGGAGACCAGAGTAGGGGGGAGGGGAAGAGTCCTGACCCAGGGAAGACATTAAAAAGGTAGTGGGGTCGACTAGATGAAGGAGAGCCTTTCTCTCTG
Bovine	AGTAGGCAGTTCCCGGG-AAAACGGGTGAAGAGGCGTCGGGGGGAGGGGA
Pig	AGTAGGCAGTTCACAGG-AAAAGGGGTGAAGAGGCGTGGGGGGGGGG
Mouse	GGCAAGAGCGGTGCAATGGTGTGTAAAGG-TAGCTGAGAAGACGAAAAGGGCAAGCATCTTCCTGCTACCAGGCTGGGGAGGCCCACGACCCCGAGGAGAGGGAAGGGAACGCAGGGAG
Bovine	TGGGAAAGGGGTGCAACGGTGTGTAGGGGGGGGGGGGGG
Pig	TGGGAAAGAGGGGTACAGTGGTGTGGGGGGG-GCCAGGGGGGATGGGAAGGGGCAGCATCCTCCTGCTGAGAGCCGGGGGGGG
Mouse	ACTGAGGTGACCCTTCTTTCCCCCGGGGCCCGGTCGTGTGGTTCGGTGTCTCTTTTCTGTTGGACCCTTGACCCAGGCGCCGGGGCCCGGGGCCCGGGCCGGGCGCGGGCCGGGCGC
Bovine	ACGGAGGAGGTGACCCTTCCCCCCCCGGGCCCGGTCGTGAGGGTAGGTCTCTCTTTTCGTTGGACCCCTTGCCCAGGCCTGGGCCCGGGCTGCGGCGCACG
Pig	ACGGAGGAGGTGACCCTTCCCTCCCCCGGGGCCCCGGTGGTGAGGGGAGGTCTCTCTTTTCTGTCGCACCCTTACCTTGTCCCAGGCCTGGGCCCGGGCGCGCGCGCACG
Mouse	GCACTCCCGGGAGGCAGCGAGACTCGAGTTAGGCCCAACGCGGCGCCACGGCGTTTCCTGGCCGGGAATGGCCCGTACCCGTGAGGTGGGGGGGG
Bovine	GCACTCCCGGGAGGCAGCAGGAGTCGAGTTAGGCCCAACGCGGCGCCACGGCGTTTCCTGGCCGGGAATGGCCCGTGCGCGGGGGGGG
Pig	GCACTCCCGGTAGGCAGCAGGACTCGAGTTAGGCCCAGCGCGCCACGGCGTTTCCTGGCCGGGAATGGCCCCGTGACGTGGGGGGGG
Mouse	GAGGCGGGGAGGGGA-GGGCCAGGGGCGGAGGGGGCCGGCACTACTGTGTGGCGGACTGGCGGGACTAGGGCTGCGTGAGTCTCTGAGCGCAGGCGGGCG
Bovine	AAGGCGGGAGGGGAAGGGCCAGGGAAGGAGGGGGGCCGGCACTACAGTGTTGGCGGACTGGCGGGACTGGGGCTGCGTGAGTCTCTGAGCGCAGGCGGCGGCGGCGCCCCCCCC
Pig	AAGGCGGTGAGGGGGA-GGGCCAGGGAAGGAGGGGGGGGGG
Mouse	CCGGCGGCGGCAGCGGCGGCAGCGGCGGCAGCTCACTCAGCCCGCTGCCCGAGCGGAAACGCCACTGACCGCACGGGGATTCCCAGTGCCGGCGCCAGGGGGACACGCGGGACACG
Bovine	CCGGCGGCGCGCGCGCGCGCGCGCGCGCCCAGGGGCAACGCCGAAACGCCACTGACCGCACGGGGATTCCCAGCGCCGCGCGCCAGGGGCACCCGGGACACG
Pig	
Mouse	CCCCCTCCCGCCGCCCATTGGCCTCTCCGCCCACCCCCACACTTATTGGCCGGTGCGCCGCCAATCAGCGGAGGCTGCCGCGGGGCCGCCTAAAGAAGAGGCTGTGCTTTGGGGCTCCG
Bovine	CCCCCTCCCGCCGCCATTGGCCCTCCGCCCACCGCACCCATTGGCCAACCGCCGCAGCGCAGCGCGGGGCCACCTAGAGAAGAGGCTGTGCTCTGGGGCTCCG
Pig	CCCCCTCCCGCCGCGCCATTGGCCCCTCCGCCCACCGTCTCGCACCCATTGGCCAGCTCCCCGCCAATCAGCGGAAGCCGCCGCCGCGCCTAGAGAAGAGGCTGTGCTCTGGGGCTCCG
Mouse	GCTCCTCAGAGAGCCTCGGCTAG
Bovine	GCTCCTCAGAGAGCCTCGGCTAG
Pig	GCTCCTCAGAGAGCCTCGGCTAG

Figure S1. Comparison of mouse, bovine and pig *ROSA26* promoter and exon 1 sequences showed high sequence conservation among these species. The top arrow and the bottom arrow denote the 5' start of the mouse and pig *ROSA26* transcript, respectively; the same site of the middle sequence is assumed to be the start of the 5' bovine transcript.

3' RACE

Figure S2. Identification of the *bROSA26* **non-coding RNA.** The partial sequence of the *bROSA26* predicated exon 1 was marked with gray shadow. Primer 3' RACE was marked in red.

Figure S3. Insertion and selection of the reporter genes transgenic colonies by HDR-based method. (A) Schematic representation of the HDR-mediated gene targeting vector. (B) The 5' (left, 1824-bp) and 3' junction (right, 2833-bp) PCR analyses confirming correct joining between genome and HDR-based donor plasmids. "WT" represents wild-type cells (non-transfected BFFs). M, marker.

Α

Figure S4. Representative junction PCR of the reporter gene transgenic colonies by HMEJ-, NHEJ- and HDR-based method. The 5' (left, 1824-bp) and 3' junction (right, 2833-bp) PCR analyses confirming correct joining in HMEJ and HDR groups. M, marker.

Figure S5. Photographs of *NRAMP1* gene KI colony and representative junction PCR results of puromycin-resistant colonies. (A) Stably transfected cells by HMEJ-mediated NRAMP1 gene KI after positive drug selection under a fluorescence stereomicroscope. (B, C) Representative 5' junction (B, 1824-bp), 3' junction (C, 2261-bp) PCR results of puromycin-resistant colonies. Red fonts represent positive results. "WT" represents wild-type cells (non-transfected BFFs). M, marker.

Figure S6. Sanger sequencing results of eight potential off-target sites in gene-edited cattle.