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e-Appendix 1. 
 
Supplemental Methods 
Participants and Study Design 
The COPDGene Study (NCT00608764) cohort has been described in great detail previously1. Briefly, it is a 
multicenter longitudinal observational investigation of smokers focused on the epidemiologic and genetic factors 
associated with chronic obstructive pulmonary disease (COPD). At baseline, all participants underwent an 
inspiratory and expiratory CT scan, six-minute walk test (6MWT), spirometry, assessments of dyspnea and 
health status via the St. George Respiratory Questionnaire (SGRQ), review of medication use, and self-report of 
physician diagnosed conditions. The baseline enrollment of the 10,306 baseline COPDGene participants 
occurred between October 2006 and January 2011.  All participants were invited to return for five and ten year 
interval follow-up, and are currently being invited back for ten year follow-up visits. They are also followed 
longitudinally through the longitudinal follow-up (LFU) program.  As LFU program, participants are contacted by 
telephone every 6 months and asked questions regarding diagnoses, medications, acute respiratory 
exacerbations and hospitalizations.  Mortality data was obtained from the LFU and from the social security death 
index. For those individuals whose mortality was determined based the LFU, vital status was back censored six 
months prior to dataset generation. Those whose follow up time terminated in death were included if their contact 
in the prior six months indicated that they were being actively followed at the time of death. For those participants 
with vital status ascertained using the SSDI, deaths and vital status were back censored three months to account 
for the expected lag time between a death and its appearance in the SSDI dataset2–4.  
 
Biospecimen Collection in DECAMP 
All individuals in the DECAMP study underwent bronchoscopy.  Bronchial airway epithelial cells were obtained 
from brushings of the right mainstem bronchus collected during fiberoptic bronchoscopy with an endoscopic 
cytobrush (Cellebrity Endoscopic Cytology Brush, Boston Scientific, Boston).  The brushes were immediately 
placed in 1 mL of RNAprotect Cell Reagent (Qiagen, Valencia, CA) and kept at -80oC until RNA isolation was 
performed.   
 
Imaging acquisition in COPDGene and DECAMP 
For COPDGene participants, volumetric CT scans of the chest were performed at both maximal inflation and 
relaxed exhalation. Images were acquired with the following CT protocol: for General Electric (GE) LightSpeed-
16, GE VCT-64, Siemens Sensation-16 and -64, and Philips 40- and 60-slice scanners with 120kVp, 200mAs, 
and 0.5s rotation time. Images were reconstructed using a standard algorithm at 0.625mm slice thickness and 
0.625mm intervals for GE scanners; using a B31f algorithm at 0.625 (Sensation-16) or 0.75mm slice thickness 
and 0.5mm intervals for Siemens scanners; and using a B algorithm at 0.9mm slice thickness and 0.45mm 
intervals for Philips scanners. 
 
DECAMP-1 utilized CT scans collected as part of routine clinical care while DECAMP-2 utilized a standardized 
protocol for image acquisition and reconstruction.  DECAMP-2 scans were collected using low dose helical 
computed tomography on a minimum 16-slice scanner. The scans were acquired at 2.5 to 5 mm but 
reconstructed into 1 mm slice thickness using the soft tissue and lung algorithms. Images from all sites were 
then de-identified and submitted to the American College of Radiology Imaging Network (ACRIN) Core 
Laboratory for storage.  
 
Quantitative CT Analysis 
The objective imaging measurements used for cluster definition in both cohorts were obtained using previously 
defined methods.  The breadth of possible quantitative imaging measures that could be used to define clusters 
of individuals with cigarette smoking related lung diseases is beyond the scope of this study. Briefly, cigarette 
smoking has been shown to have effects on both pulmonary and extrapulmonary tissues measurable by 
quantitative CT imaging and related to clinical outcomes and disease pathophysiology5. In the lungs alone, these 
include both scarring (fibrosis) and destruction (emphysema) of the lung parenchyma, thickening of the airway 
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wall and destruction of the small airways, and loss of the peripheral pulmonary vasculature6–9. Outside of the 
lung these changes include those that occur in the coronary vasculature, as well as changes to body composition 
including the loss of fat free mass, and the loss of bone density10–13.  Based on prior experience and expertise 
in this area, we selected a parsimonious list of imaging features to attempt to represent the breadth of both 
pulmonary and extra-pulmonary quantitative CT metrics of lung disease5,14–16.  These included 1) the objective 
characterization of interstitial features as well as emphysema-like tissue using a local histogram-based 
technique, 2) the measurement the of pectoralis muscle area (expressed in cm2) performed on a single axial 
image above the level of the aortic arch and 3) airway wall thickness as defined by the mean thickness of 6 
segmental airways from each subject 6,10,17–24.  Each of these metrics has been shown to be related to both 
pathobiological changes that occur in certain, but not all, individuals in response to cigarette smoking exposure 
and to smoking related lung disease outcomes, as such, we felt they were likely to define clusters of patients 
who not only had different clinical outcomes, but who also may have specific and differing patterns of gene 
expression. 
 
Cluster derivation and statistical analysis 
Cluster analysis was performed using a parsimonious set of variables selected to represent the breadth of airway, 
lung parenchyma and extrapulmonary processes evident in smokers. The imaging features were log-transformed 
and standardized as needed to address distribution skewness and range. K-means clustering was then applied 
to these variables to group the subjects into clusters. The optimum number of clusters was determined using the 
Silhouette (using Euclidean distance) and Elbow methods (e-Figure 1)25. 
 
ANOVA, pairwise t-tests and chi-squared tests were used to analyze differences in baseline clinical variables 
between the clusters as appropriate. Differences in longitudinal changes in lung emphysema, lung function and 
exercise capacity were analyzed using mixed effects models and limited to those individuals whose CT imaging 
was performed on the same scanner type at both visits, while differences in mortality were analyzed using Kaplan 
Meier analysis and the log-rank test.  Finally, differences in the rate of acute respiratory disease (ARD) events 
were analyzed using multivariable zero-inflated negative binomial regression with adjustments made for age, 
sex, race, smoking status, percent predicted forced expiratory volume in one second (FEV1%), St. George’s 
Respiratory Questionnaire (SGRQ) score, gastroesophageal reflux and prior exacerbation, and with the inclusion 
of a time scale factor to account for varying durations of follow-up. ARD events were assessed prospectively and 
occur in smokers with and without COPD. They were defined as intermittent episodes of increased shortness of 
breath, cough and/or change in sputum quality requiring a change in treatment, including antibiotics and/or 
steroids26. Because these analyses are exploratory no correction of multiple comparisons was implemented. All 
statistical tests were two sided and a p-value threshold of 0.05 was utilized to declare statistical significance. 
Statistical analyses were performed using R (version 3.5.0). 
 
RNA isolation, sequencing and data pre-processing 
Total RNA was isolated using the miRNeasy Mini Kit (Qiagen, Valencia, CA). RNA integrity was assessed by 
Agilent BioAnalyzer, and RNA purity confirmed using a NanoDrop spectrophotometer. Libraries were generated 
using the Illumina TruSeq Stranded Total RNA kit and sequenced on the Illumina NextSeq 500 and Illumina 
HiSeq3000 with 75 base-pair paired-end reads (Illumina, San Diego, CA). 
 
For data preprocessing, we developed an automatic pipeline using the Nextflow framework27. Quality of FASTQ 
files was assessed with FastQC. Reads were aligned to the human genome with 2-pass STAR28 and gene-level 
and isoform-level expression quantified with RSEM29. Splice junction saturation, transcript integrity, and biotype 
distributions were calculated for each sample with RSeQC. DESeq230 or edgeR31 was used to identify 
associations between gene expression profiles and clinical variables while controlling for confounding covariates. 
Genetic variants were called using the Broad Institute’s GATK RNA-seq best-practices workflow32. Briefly, 
duplicates were marked with Picard tools, splitting of intronic reads, realignment around indels, and base quality 
score recalibration were performed with GATK, and variants were called with Haplotypecaller.  
Gene Expression Analysis 
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The LIMMA package in R (version 3.4.0) was used to assess the differential bronchial epithelial gene expression 
(DGE) by cluster. To do this, raw count matrix of gene expression was initially filtered by counts per million (CPM) 
such that a gene could only be included if its CPM was greater than 1 in 10% of the total number of patients. 
DGE analysis was then performed using a pairwise comparison between the de novo imaging clusters at a false 
discovery rate (FDR)33 of 0.25. The differentially expressed genes (DEG) identified by LIMMA were further 
analyzed by Enrichr34 for over-representation analysis. Heatmaps were used to visualize the data and identify 
unsupervised gene clusters using the “Ward.D2” algorithm35. Gene set enrichment analysis (GSEA) was 
performed on pre-ranked gene lists created by pairwise comparisons between imaging clusters. Hallmark gene 
sets from the Molecular Signature Database (MSigDB) curated by the Broad Institute34,36, as well as a gene set 
correlated to COPD severity previously identified by the lab were used for querying. A FDR at 0.01 was applied 
to select significant hallmark gene sets.  
 
In Silico Validation 
To further understand the function of these differentially expressed genes, we utilized the CREED tool37 to search 
it’s library of manually curated signatures from the Gene Expression Ominbus (GEO) for experimental 
perturbations that lead to a pattern of gene expression alterations similar to the emphysema signature. Gene 

expression signatures from five published datasets involving the response to interferon- were identified as 
concordant (GSE2610438, GSE1939239, GSE392040, GSE12506641 and GSE4840042). We summarized the 

expression of genes increased in emphysema or the genes decreased with emphysema in these interferon- 

datasets using gene set variation analysis (GSVA)43, a gene set enrichment method that estimates variation of 
pathway activity over a sample population.  We found the GSVA scores from the signature of genes increased 

in the emphysema cluster is significantly increased in PBMC following interferon- treatment (GSE26104; Figure 

5). We found a similar increase in the GSVA scores from the emphysema-increased signature in datasets 
examining the response of hepatocytes, fibroblasts, endothelial cells, and bronchial epithelial cells to interferon-

39–42 (e-Figure 3).  
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e-Figure 1A: Elbow Method 

 
e-Figure 1B: Silhouette Method 

 
 
 
 
e-Figure 1: Cluster derivation. Cluster analysis was performed using a parsimonious set of variables 
selected to represent the breadth of airway, lung parenchyma and extrapulmonary processes evident in 
smokers. The imaging features were log-transformed and standardized as needed to address distribution 
skewness and range. K-means clustering was then applied to these variables to group the subjects into 
clusters. The optimum number of clusters was determined using the Silhouette (using Euclidean distance) and 
Elbow methods.   
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e-Figure 2. Genes that are changed in subjects with COPD are enriched among the genes changed in 
the emphysema cluster relative to the preserved cluster.  The distribution of genes identified by Steiling et 
al. 44 as being either up-regulated (top) or down-regulated (bottom) in subjects with COPD were examined in a 
list of all genes ranked by their expression difference between the emphysema cluster and the preserved 
cluster by Gene Set Enrichment Analysis (GSEA). Genes that are up-regulated in COPD are enriched among 
the genes most increased in individuals from the emphysema cluster (q < 0.001). Genes that are down-
regulated in COPD are enriched among the genes most decreased in individuals from the emphysema cluster 
(q < 0.001). 
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e-Figure 3: Gene set variation analysis (GSVA) of emphysema signature gene clusters in various cell 

types following interferon- treatment. GSVA was used to summarize the expression of each emphysema 

signature gene cluster in a number of previously published datasets involving interferon- treatment: PBMCs 
(GSE26104), hepatocytes (GSE48400), fibroblasts (GSE125066), endothelial cells (GSE3920), and bronchial 
epithelial cells (GSE19392). Post-hoc Tukey’s HSD was applied to examine the pairwise differences in GSVA 
scores between groups.  Symbols for pairwise comparisons: * = P ≤ 0.05; ** = P ≤ 0.01. 
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e-Table 1 

 Genes Associated Functions  

Genes up-regulated 
in Preserved Group 

TRAC, THEMIS T-cell receptor signaling pathway 

SIT1, TRAC 
Regulation of T-cell activation via T-cell receptor contact 

with antigen bound to MHC molecule on antigen presenting 
cells 

Genes up-regulated 
in Emphysema 

Group 

CEBPB, TNFA1P6, 
CCL20, IL1B, CXCL3 

Inflammatory response 

CEBPB, CCL20, 
IL1B, CXCL3, PTGS2 

TNF-signaling pathway 

CCL20, IL1R2, IL1B, 
OSM, CXCL3 

Cytokine-cytokine receptor interaction 

 
 
e-Table 1: Functional gene expression analysis using Enrichr. Using linear modeling, 41 genes were 
found to be differentially expressed between the preserved and emphysema cluster (FDR < 0.25).  We used 
Enrichr to identify over-represented functional categories. MHC = major histocompatibility complex; TNF = 
tumor necrosis factor.  
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e-Table 2 

 Preserved vs Interstitial 
Predominant 

Preserved vs Emphysema 
Predominant 

Interstitial Predominant vs 
Emphysema Predominant 

 

Up Regulated 
Pathways 

INTERFERON GAMMA RESPONSE PANCREAS BETA CELLS PANCREAS BETA CELLS 

INTERFERON ALPHA RESPONSE OXIDATIVE PHOSPHORYLATION HEME METABOLISM 

ALLOGRAFT REJECTION INTERFERON ALPHA RESPONSE MYOGENESIS 

OXIDATIVE PHOSPHORYLATION MYC TARGETS V1 KRAS SIGNALING DN 

PROTEIN SECRETION HEDGEHOG SIGNALING UV RESPONSE DN 

FATTY ACID METABOLISM MYOGENESIS 
ESTROGEN RESPONSE 

EARLY 

PANCREAS BETA CELLS FATTY ACID METABOLISM HEDGEHOG SIGNALING 

COMPLEMENT PEROXISOME 
WNT BETA CATENIN 

SIGNALING 

MYC TARGETS V1 DNA REPAIR NOTCH SIGNALING 

ADIPOGENESIS PROTEIN SECRETION MYC TARGETS V1 

REACTIVE OXYGEN SPECIES 
PATHWAY 

 
 

Down Regulated 
Pathways 

TNFA SIGNALING VIA NFKB TNFA SIGNALING VIA NFKB 
INFLAMMATORY 

RESPONSE 

EPITHELIAL MESENCHYMAL 
TRANSITION 

INFLAMMATORY RESPONSE 
TNFA SIGNALING VIA 

NFKB 

HYPOXIA KRAS SIGNALING UP 
INTERFERON GAMMA 

RESPONSE 

WNT BETA CATENIN SIGNALING IL6 JAK STAT3 SIGNALING KRAS SIGNALING UP 

TGF BETA SIGNALING COMPLEMENT ALLOGRAFT REJECTION 

ESTROGEN RESPONSE LATE COAGULATION IL6 JAK STAT3 SIGNALING 

ESTROGEN RESPONSE EARLY TGF BETA SIGNALING COMPLEMENT 

HEME METABOLISM HYPOXIA 
INTERFERON ALPHA 

RESPONSE 

KRAS SIGNALING DN IL2 STAT5 SIGNALING MTORC1 SIGNALING 

P53 PATHWAY UV RESPONSE UP IL2 STAT5 SIGNALING 

e-Table 2: Gene Set Enrichment Analysis used to identify pathway-related genesets. To better characterize the 
biology of the differentially expressed genes, GSEA was performed on pre-ranked gene lists created by the comparison of 
the emphysema cluster and the preserved cluster to identify enrichment of pathway-related genesets from the KEGG, 
Reactome, and Gene Ontology databases. Gene sets with significant enrichment (GSEA q < 0.05) are bold.  
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e-Table 3: IRB committee names and project approval numbers for each center.  
Site Name ACR

IN 
Site 
# 

CTE
P 
Inst 
# 

FWA FWA  
Exp 
Date 

DECAMP 1 
IRB Approval 

DECAM
P 1 
HRPO 
Log # 

DECAMP 2  
IRB Approval 

DECAM
P 2 
HRPO 
Log # 

University of Pennsylvania 4202 PA1
41 

FWA0000
4028 

2/2/21 Protocol #: 816341 A-
17242.1
o 

Protocol #: 818746 
Review Board: IRB #2 

A-
17242.2
o  

Brooke Army Medical Center 4238 TX0
55 

FWA0000
4092 

12/5/2
1 

Project #: 376127 
Reference #: 
C.2012.135 

A-
17242.1
m 

Project #: 385999 
Reference #: C.2013.107 

A-
17242.2
m 

Roswell Park Memorial Institute 4278 NY1
58 

FWA0000
6731 

5/4/23 IRB ID:  I 217812 A-
17242.1
g  

IRB ID: I 251914 A-
17242.2
g 

VA Greater Los Angeles Health 
Care System 

4438 CA2
21 

FWA0000
0734 

11/1/2
2 

VA Project #: 0051 A-
17242.1
h 

VA Project #: 0052 A-
17242.2
h 

UCLA 4494 CA0
06 

FWA0000
4642 

6/22/2
3 

IRB#12-000926 A-
17242.1
p 

N/A N/A 

Philadelphia VA 4714 PA0
82 

FWA0000
1311 

4/13/2
2 

ID: 01405 | Prom #: 
0002 

A-
17242.1
e 

ID: 01428 | Prom #: 0003 A-
17242.2
e 

VA Boston Healthcare System 4790 MA1
39 

FWA0000
1270 

7/6/23 IRB# 2661 A-
17242.1
c 

IRB# 2802 A-
17242.2
c 

VA North Texas Health Care 
System 

4791 TX0
02 

FWA0000
1338 

1/2/23 IRB# 12-035 A-
17242.1
d 

IRB# 13-050 A-
17242.2
d 

VA Eastern Colorado Health 
Care System 

4792 CO0
15 

FWA0000
5070 
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