Structural insights into plasticity and discovery of remdesivir metabolite GS-441524 binding in SARS-CoV-2 macrodomain

Xiaomin Ni^{1,2#}, Martin Schröder^{1,2#}, Vincent Olieric³, May E. Sharpe³, Victor Hernandez-Olmos⁴, Ewgenij Proschak^{2,4}, Daniel Merk², Stefan Knapp^{1,2*}, Apirat Chaikuad^{1,2*}

¹ Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, 60438 Frankfurt am Main, Germany

² Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany

³ Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland.

⁴ Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany

[#]These authors contributed equally.

* Correspondence: Stefan Knapp: <u>knapp@pharmchem.uni-frankfurt.de</u>; Apirat Chaikuad: <u>chaikuad@pharmchem.uni-frankfurt.de</u>

Supplementary information

	Page
Supplementary figure s1. $ F_0 - F_c $ omitted electron density map contoured at 3σ for the bound ligands.	S2
Supplementary table s1. Details of recombinant SARS-CoV-2 macrodomain.	S3
Supplementary Table s2. Data collection and refinement statistics.	S4
Supplementary method. Synthesis of GS-441524 monophosphate	S6

Supplementary Figure s1. $|F_0| - |F_c|$ omitted electron density map contoured at 3 σ for the bound ligands.

Supplementary table s1. Details of recombinant SARS-CoV-2 macrodomain.

	Vector	Recombinant protein sequence
SAR-CoV-2	pET-28a(+)	MGSSHHHHHHSSGENLYFQGHMVNSFSGYLKLTDNVYIKNADIVEEAK
macrodomain		KVKPTVVVNAANVYLKHGGGVAGALNKATNNAMQVESDDYIATNGP
		LKVGGSCVLSGHNLAKHCLHVVGPNVNKGEDIQLLKSAYENFNQHEVLL
		APLLSAGIFGADPIHSLRVCVDTVRTNVYLAVFDKNLYDKLVSSFLEMK

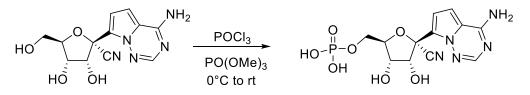
apo/HEPES	apo/MES	ADP-ribose
6ywk	6ywm	6ywl
SLS X06SA	SLS X06SA	SLS X06SA
49.09-2.20 (2.28-2.20)	49.22-2.16 (2.24-2.16)	48.83-2.50 (2.64-2.50)
P 212121	P 212121	P 212121
a=39.2, b=111.8, c=196.4 Å	a=37.8, b=109.1, c=114.4 Å	a=38.4, b=111.9, c=195.3 Å
α=β=γ=90.0	α=β=γ=90.0	<i>α</i> =β=γ=90.0°
45,087 (4,348)	26,281 (2,558)	30,002 (4,288)
100.0 (99.9)	100.0 (100.0)	99.4 (99.3)
10.7 (2.0)	8.3 (2.0)	6.9 (1.9)
0.138 (0.925)	0.162 (0.873)	0.199 (0.930)
0.998 (0.762)	0.995 (0.787)	0.990 (0.736)
8.5 (7.9)	6.7 (6.9)	5.6 (5.9)
6,496/ 15/ 424	3,885/ 24/ 287	6,472/ 180/ 248
39/76/48	34/ 57/ 39	40/ 31/ 38
17.6	17.5	18.9
21.4	22.9	22.3
0.013	0.013	0.010
1.4	1.3	1.1
99.65	99.01	98.11
0	0	0
33% broad-molecular- weight PEG smears, 0.1 M MgCl2, 0.1 M HEPES, pH 7.0	23% PEG 6000, 0.1 M MgCl ₂ , 5% ethylene glycol, 0.1 M MES, pH 6.0	27% PEG 4000, 0.2 M sodium acetate, 0.05 M MgCl2, 0.1 M tris, pH 8.0
	6ywk SLS X06SA 49.09-2.20 (2.28-2.20) P 2 ₁ 2 ₁ 21 a=39.2, b=111.8, c=196.4 Å $\alpha = \beta = \gamma = 90.0$ 45,087 (4,348) 100.0 (99.9) 10.7 (2.0) 0.138 (0.925) 0.998 (0.762) 8.5 (7.9) 6,496/15/424 39/76/48 17.6 21.4 0.013 1.4 99.65 0 33% broad-molecular-weight PEG smears, 0.1 M MgCl ₂ , 0.1 M HEPES,	6ywk6ywmSLS X06SASLS X06SA $49.09-2.20$ (2.28-2.20) $49.22-2.16$ (2.24-2.16) $P 2_{12}12_1$ $P 2_{12}2_{12}$ $a=39.2$, $b=111.8$, $c=196.4$ Å $a=37.8$, $b=109.1$, $c=114.4$ Å $\alpha=\beta=\gamma=90.0$ $\alpha=\beta=\gamma=90.0$ $45,087$ (4,348) $26,281$ (2,558) 100.0 (99.9) 100.0 (100.0) 10.7 (2.0) 8.3 (2.0) 0.138 (0.925) 0.162 (0.873) 0.998 (0.762) 0.995 (0.787) 8.5 (7.9) 6.7 (6.9) $6,496/15/424$ $3,885/24/287$ $39/76/48$ $34/57/39$ 17.6 17.5 21.4 22.9 0.013 0.013 1.4 1.3 99.65 99.01 0 0 33% broad-molecular- 23% PEG 6000, 0.1 Mweight PEG smears, 0.1MgCl ₂ , 5% ethylene M MgCl ₂ , 0.1 M HEPES, $glycol, 0.1$ M MES, pH

Supplementary Table s2. Data collection and refinement statistics.

^a Value in brackets indicates high-resolution shell statistics.

^bP/L/O indicates protein, ligands and others. ^c rmsd indicates root-mean-square deviation.

Complex	Adenosine	GMP	ADPRP	GS-441524
PDB codes	7bf3	7bf4	7bf5	7bf6
Beamline	SLS X06SA	SLS X06DA	SLS X06SA	SLS X06SA
Data Collection				
Resolution ^a (Å)	48.99-2.00	36.26-1.55	48.80-2.05	48.43-2.15
	(2.07-2.00)	(1.60-1.55)	(2.12-2.05)	(2.23-2.15)
Space group	P 212121	$P 4_1$	P 212121	С2
Cell dimensions	a=39.2, b=111.4, c=196.0 Å	a=b=72.5, c=33.4 Å	a=38.6, b=111.3, c=195,2 Å	a=157.2, b=30.5, c=111,7 Å
	$\alpha = \beta = \gamma = 90.0$	α=β=γ=90.0	$\alpha = \beta = \gamma = 90.0^{\circ}$	$\alpha = \gamma = 90.0^{\circ}, \beta = 119.9^{\circ}$
Number of unique reflectionsª	59,412 (5,774)	25,315 (2,287)	53,878 (5,196)	25,440 (2,459)
Completeness ^a (%)	100.0 (100.0)	99.2 (92.8)	99.7 (99.8)	99.1 (99.2)
Ι/σI ^a	10.9 (2.0)	13.8 (2.6)	8.3 (1.9)	10.7 (1.9)
R _{merge} ^a (%)	0.127 (0.885)	0.064 (0.349)	0.141 (0.839)	0.090 (0.755)
CC (1/2) ^a	0.998 (0.735)	0.998 (0.807)	0.995 (0.695)	0.998 (0.677)
Redundancy ^a	7.5 (7.5)	6.1 (3.3)	6.2 (6.3)	5.3 (5.2)
<i>Refinement</i> Number atoms in refinement (P/L/O) ^b B factor (P/L/O) ^b	6,538/ 38/ 628 29/ 60/ 37	1,329/ 48/ 241 14/ 13/ 30	6,500/ 160/ 569 28/ 41/ 35	3,838/ 63/ 168 49/ 39/ 43
$(Å^2)$		10.0	455	10.0
R_{fact} (%)	17.5	13.8	17.7	18.0
R_{free} (%)	21.7	17.4	21.7	22.6
rmsd bond ^c (Å)	0.013 1.4	0.018 1.7	0.014	0.012
rmsd angle ^c (°)	1.4	1./	1.4	1.4
Molprobity Ramachandran				
Favor (%)	98.94	99.40	97.64	99.00
Outlier (%)	0	0	0	0
Crystallization condition	33% broad- molecular-weight PEG smears, 0.1 M MgCl ₂ , 0.1 M tris, pH 7.0	30% PEG 4000, 0.2 M sodium acetate, 0.1 MgCl ₂ , 0.1 M tris, pH 8.3	30% broad- molecular-weight PEG smears, 0.1 M MgCl ₂ , 0.1 M tris, pH 7.0	30% PEG 4000, 0.2 M sodium acetate, 0.1 M tris, pH 8.3


Supplementary Table s2. (continued) Data collection and refinement statistics.

^a Value in brackets indicates high-resolution shell statistics.

^b P/L/O indicates protein, ligands and others.

^c rmsd indicates root-mean-square deviation.

Supplementary method. Synthesis of GS-441524 monophosphate

GS-441524 monophosphate

A solution of GS-441524 (43.7 mg, 0.15 mmol) in trimethyl phosphate (1.5 mL) was stirred in a sealed tube under Ar at rt for 15 min. The solution was then cooled to 0°C and freshly distilled phosphorous oxychloride (21.2 μ L, 0.225 mmol) was added dropwise. The resulting solution was stirred at rt for 1h. Further 100 μ L of phosphorous oxychloride were added at rt and the resulting solution was stirred at rt for 1h (full conversion by HPLC). The reaction mixture was quenched with water at 0°C and directly purified by preparative HPLC to obtain 43.6 mg (78%) of the expected product as a white solid. ¹H NMR (300 MHz, D₂O) δ 7.98 (s, 1H), 7.27 (d, *J* = 4.9 Hz, 1H), 7.05 (d, *J* = 4.9 Hz, 1H), 4.83 (d, *J* = 5.2 Hz, 1H), 4.43-4.39 (m, 1H), 4.31 (t, *J* = 4.7 Hz, 1H), 4.04-3.92 (m, 2H); R_f HPLC: 3.4 Min (13 Min from 10 to 95% MeCN in water (0.1 % formic acid), then 7 min 95% MeCN). 95.7 % purity; HRMS (MALDI): m/z found. 372.0705 [M+H]⁺ (cal. C₁₂H₁₅N₅O₇P 372.0704).

To record NMR-spectra, the compound was dissolved in D₂O and measured on Avance 300 from Bruker Corporation (Massachusetts, USA). All chemical shift values are reported in ppm, the multiplicity of the signals assigned as follows: s (singlet), d (duplet), t (triplet) and m (multiplet). Mass spectrometry analysis was performed in positive ion mode by electrospray-ionization (ESI) on a LCMS-2020 single quadrupole MS from Shimadzu (Duisburg, Deutschland). Precision mass was measured using MALDI Orbitrap XL from Life Technologies GmbH (Darmstadt, Germany). For purity estimation of the synthesized compounds, a reverse phase high-performance liquid chromatography (RP-HPLC) was performed using the Luna 10 μ m C18(2) 100 Å, LC Column 250 x 4.6 mm from Phenomenex LTD (Aschaffenburg, Germany) and the analysis was conducted using the Shimadzu prominence module from Shimadzu. Acetonitrile and aqueous formic acid 0.1% were used as eluents. The established method for purity determination was initiated with 90% water (0.1% formic acid), then a linear gradient from 90% to 5% water (0.1% formic acid) for 13 min was chosen, finally additional 7 min 5% water (0.1% formic acid). The flow rate was adjusted to 1.0 mL/min and the UV–vis detection occurred at 254 nm and 280 nm, respectively.