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Sequence alignment of representative striated and smooth muscle myosins

Sequences were obtained from the NCBI server to show the high level of conservation between
myosin tail sequences. The heptad pattern with 4 skips is conserved and makes the myosin tail
sensitive to insertion or deletions. Consequently, differences between vastly different species are
limited to single amino acid substitutions. The alignment was performed in ClustaX 2.1 and the
output was prepared in the online interface of Clustal Omega (1). However, the coloring and
formatting and annotation was done manually in Microsoft Excel to emphasize structurally
relevant sections (with color-coding consistent with our figures) and the location of hydrophobic
residues (in purple) and the conservation of charged residues (colored in red and blue). The top
row shows the heptad profile predicted based on the sequence by the software PairCoil 2 (2) and
below that are the observed position from the atomic model. There are few instances where the
heptad position is not the same in two chains after fitting the atomic model. This is because the
real coiled coil is often a little different when compared to an idealized one and the Cq atoms can
be quite close to the border between two theoretical positions. For simplicity only positions for
the free head heavy chains are shown here (Fig. S1).

Alignment of the Lethocerus and human cardiac sequences with chicken smooth and human non-
muscle myosin Il (Fig. S2) shows a single residue deletion prior to the conventional Skip 2
location effectively negating the effect of Skip 2. Smooth and non-muscle myosin also lack the
KGGKK motif at Skip 4 replacing it with two unrelated sequences lacking any glycine. Although
chicken smooth and human non-muscle myosin have long non-helical C-terminal extensions,
they lack the strongly acidic character of Lethocerus and human cardiac myosin.
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Fig. S$1. Sequence alignment between Lethocerus indicus (ASP18627.1) and other landmark
species: Human (NP_000248.2), Mouse(NP_542766.1), Fruit flies (Drosophila melanogaster
NP_001246050.1), and Zebrafish (Danio rerio; NP_001106204.1). Boxed areas are colored as
follows: Accommodation Regions are orange, the Assembly Competence Domain is dark green,
the extended domain is light green, skip residues are purple, yellow denotes where the S2
bending starts and the invariant proline is black.
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Fig. S2. Alignment between Lethocerus myosin (ASP18627.1), Human (NP_000248.2), Chicken
Smooth Muscle (NP_990605.2), and Human non-muscle myosin (NP_001070654). Striated
myosins have an insertion at 1388 which introduces Skip 2 to the heptad of cardiac, skeletal and
insect flight muscle. The predicted Skips are highlighted with purple boxes. The accommodation
regions are boxed for the four skip residues (gold) as well as the ACD (light and dark green).
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Fig. S3. PairCoil scores for myosin sequences from landmark species. Top panel shows the
score for the entire sequence. Bottom panel is an enlarged version showing only the tail scores.
(A) The Paircoil score shows the coiled-coil starting at the tail region. This score is calculated in a
moving average with a window of 28 residues. The 0.03 threshold corresponds to sensitivity
0.730 and specificity of 0.998 (2). The predicted profile shows the 4 Skips. (B) The score
increases above the threshold especially close to Skips 1 and 3, however the coiled-coil is not
broken in the structure. Note presence of a skip residue often means a worse coiled-coil
prediction but does not necessarily change the PairCoil score significantly since the score is
calculated over a 28 residue window. Vertical dotted lines show in order: end of the proximal S2,
Skips 1-4 and the end of the coiled-coil. The first vertical solid line from 1.0 to 0.0 is the head-tail
junction at residue 850. The last vertical solid line is the end of the tail a-helix at residue 1931.
The inset shows how the score declines starting at 1930 but the probability of the coiled-coil is
still high at residue 1937. This kind of discrepancy is expected because of the 28 residue window
for fitting.
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Fig. S4. Radial and azimuthal changes in the myosin tail coiled coil. (A) Plot of the radial position
of the myosin tail from N- to C-terminus. Above the graph is an image of the myosin tail scaled to
the same length and viewed perpendicular to the radial vector approximately in the middle of the
graph. The plot shows the distance from the center of the filament (i.e. half of the distance from
the myosin tail on the opposite side). As expected, the distance decreases from ~120A at the
head-tail junction to ~50A at the C-terminus. However, the distance does not decrease steadily,
but shows sharp increases after Skips 2 and 4. The coiled coil reaches the filament core twice:
once at Skip 4 and again at the end of the coiled coil. (B) The azimuthal angle of the myosin
showing the tangential movements of the coiled coil. Above the graph is an image of the myosin
tail scaled to the same length and viewed along a radial vector from roughly the middle of the
graph. Sharp changes in direction occur at eight locations; the bend of the proximal S2, before
and after Skip 1, after Skip 2, before the Skip 3 Accommodation Region, midway between Skips 3
and 4 and after Skip 4.



Expanded comparison between the atomic model and the crystal structure

Myosin coiled coil atomic model from Lethocerus was compared to segments of this coiled coil

from human cardiac muscle myosin that were crystallized and solved at high resolution (3-5). We
used the MMTSB package (6) to fit the crystal structures and our atomic model after shifting the

residue numbers and selecting the Ca atoms. As expected, the proximal S2 (PDBs 2FXO and

2FXM) had a very high RMSD due to the difference in structure caused by the presence and

arrangement of myosin heads in the Lethocerus thick filament as previously observed (7). The

comparison between the crystal structures and our atomic model in the Skip regions is discussed
in the main text. Here we show all 13 relevant crystal structures and their RMSDs after fitting to

the thick filament atomic model.
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PDB Name First Residue Last Residue Ca RMSD (A) Zone
2FXM 838 963 5.3 S2
2FX0 838 961 4.2 S2
4XA1 1173 1238 19 Skip 1
4XA1l 1173 1238 18 Skip 1
4XA3 1361 1425 3.7 Skip 2
501 1526 1571 2.4
4XA4 1551 1609 21 Skip 3
5Ci14 1562 1622 2.3 Skip 3
5014 1562 1622 23 Skip 3
S5CHX 1590 1657 13 Skip 3
5c10 1631 1692 1.7
5WLZ 1677 1758 19
5WLZ 1677 1758 2.0
5Wi7 1733 1797 1.1
5wiB 1733 1797 1.8
5WIB 1733 1797 1.8
4XA6 1777 1855 3.5 Skip4 |

Fig. S5. Comparison of all crystal structures of myosin tail segments with the Lethocerus atomic
model. (A) An overall view of crystal structures fitted on our atomic model. (B) Closer views of fits

before and after 90° rotation. (C) Information of all the crystal structures including their residue
range (in cardiac sequence) and the RMSD after fitting them on the Lethocerus atomic model.
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Symmetry of the two heavy chains

Myosin has two identical heavy chains that differ in structure in situ because their interactions
with nearest neighbor myosin tails within the filament backbone involve axial shifts of multiple
crowns (several hundred residues). When the two chains are fitted based on their Cq atoms, the
backbones have a very small RMSD (this is done with a moving window of 7 and 14 residues with
the same results) but the side chains do not fit beyond 2A for the most part. The proximal S2 in
the filament shows more asymmetry than observed in the crystal structure. In general the side-
chains of the crystal structure are more symmetrically arranged than our atomic model reflecting
the significant effects of their environment in crystals and filaments. An ideal coiled coil would
have a perfect symmetry in the backbone.

= [eth. Backbone
= [ eth. Side Chain

| b

Cardiac Backbone

— Cardiac Sidechain

RMSD

RMSD

L

800 1000 1200 1400 1600 1800
Residue Number

Fig. S6. Coiled coil asymmetry measured by the RMSD between the two heavy chains of myosin
when aligned on the backbone atoms. When the coiled coil is examined one heptad at a time the
RMSD between the backbone atoms is very low. Side chains show higher levels of asymmetry
since they interact with other myosin tails. Large differences can be detected at the proximal S2
and Skips 3 and 4.
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Metric Percentile Ranks Value
Clashscore IR - 12
Ramachandran outliers I 0
Sidechain outliers NN 1 N 1.0%
Worse Better

0 Percentile relative to all structures

[l Percentile relative to all EM structures

B C

Ramachandran plot for all non-Pro/Gly residues

Ramachandran plot for Glycine

120 120

-60

120 -120

-120 -60 ] &0 120
Phi

Fig. S7. Atomic model validation. (A) Validation scores are given and compared to all structures
and EM structures in the PDB database. (B) Ramachandran plots for non-glycine residues shows
all the angles are concentrated in the alpha-helical region with some exceptions: the N-terminal
part of the S2 (residues 852-861) where the free-head a-helix is unwound, the uncoiled region of
the Skip 4 (residues 1815-1816), and two residues close to Skip 3 where the coiled coil is bent
(residues 1591-1592). Right: Ramachandran plot for glycine residues. Two glycine residues of
the KGGKK motif, G1815-G1816, and G1387 in the Skip 2 region which fall just within the
allowed a-helical region.
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Molecular Dynamics simulations

The four isolated skip regions, which were obtained from the atomic reconstruction for the coiled
coil, were solvated in TIP3P water with 150 mM NaCl. The MD simulations for the four systems
were performed with the GPU-accelerated version of Amber18 using the ff14SB force field (8, 9).
Firstly, energy minimization was carried out for the systems while keeping the protein positions
fixed with 1 kcal/(mol A2) harmonic constraints. Applying the same constraints, a 1 ns simulation
in the isothermal-isobaric ensemble (NPT) was performed at 1 bar and 300K. The subsequent
production simulation without any constraints for each Skip region was performed for 100 ns in
the NPT ensemble. Langevin dynamics with a friction coefficient of 1 ps-1 was applied to maintain
the temperature and MC barostat (10) was coupled to the system for pressure control. Bonds
involving hydrogen atoms were constrained with the SHAKE algorithm (11). Particle Mesh Ewald
(PME) (12) was used for full-system periodic electrostatics and a 9 A cutoff was applied to
Lennard-Jones interactions. The MD movies for each Skip region were rendered with VMD (13).
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Comparison of coiled coil parameters at the skip residues

The MD simulation shows that the RMSD between filament atomic model and the crystal
structures decreases over time. However, a closer look at coiled coil parameters reveals more
about the Skip accommodation. At Skip 2 coiled coil parameters (wo and a) are closer to zero in
both crystal structure and the MD results than in the filament atomic model. Skips 3 and 1 had
similar parameter values already and Skip 4 the Accommodation Index becomes un-interpretable
as a coiled coil because of the double-hinge even though these hinges are not as large as the
crystal structure.
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Fig. S8. Important geometrical parameters for Skips 1-4, (A-D) respectively. These parameters
explain how the filament atomic model agrees with the crystal structure in Skip 1 and not in other
Skips. w0 and a are both going to zero in Skips 1-3 in crystal structure. In the filament atomic
model at Skip 2, both parameters remain unchanged while at Skips 3 and 4 both parameters
become positive, meaning that the coiled coil becomes right handed for few residues. In both
places this seems to be cause by proteins present in the thick filament that are not part of the
coiled coil.
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C-terminal non-helical extension

The same sequences that were examined for conservation of the KGGKK motif were also
examined for the length of their C-terminus extension. We assume that the C-terminal extension
starts after T1930 based on our structure even though PairCoil predicted that the coiled-coil could
go further (S1937). This discrepancy cannot be attributed to an error in our structure since our
resolution is high in that region and the resolved lower resolution extension ends at the C-
terminus (M1971). The length of C-terminal extension is on average 38 residues for invertebrates
and 13 residues for vertebrates (See Fig. S3). We also observed that almost all vertebrate C-
termini end with one or more glutamic acid residues.

B Invertebrate
s Vertebrate

80

=3}
=]

Number
Y
(=]

20

0 10 20 30 40 50 60 70
C-terminus Extension Length

Fig. S9. Histogram showing that C-terminal extension for vertebrates is shorter than invertebrates
by almost 20 residues. The sequences are from the NCBI server (one per species).
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Fig. $10. Conservation (identity) between Lethocerus and human cardiac myosin sequence
averaged over a window of 20 residues. Vertical dotted lines mark residues 938, the point of entry
of the proximal S2 into the thick filament backbone, the four skip residues and the end of the
coiled coil at residue 1930. Average identity is 52%.
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Conservation of the striated muscle KGGKK motif

A subsequent search of the NCBI’s protein database for striated muscle myosin heavy chains
resulted in 3675 invertebrate and 590 vertebrate sequences. The biopython package was used to
select one sequence per species (14) with the longest chain length. All of the sequences were
then aligned to the Lethocerus sequence and the Skip 4 KGGKK (starting with K1814) motif was
examined. Among vertebrates every sequence with a gap or different amino acids in this region
turned out to be a predicted sequence. Of the 154 remaining sequences, all had the KGGKK
motif conserved (2 with the K > R conservative substitution). Among the 134 invertebrate
sequences remaining, the KGGKK motif was ubiquitous with one exception (AXA20421.1).
AXA20421.1 from Ptychodera flava (a genus of acorn worm) shows very unusual characteristics
including a >100 residue insertion before Skip 1. Note that the sequences having the KGGKK
domain were not examined one by one so there could be more predicted sequences in the final
list.

Sample Preparation

Lethocerus indicus dorsal longitudinal indirect flight muscle previously glycerinated for long term
storage (15) was the starting material. Myofibrils for the filament preparation were washed free of
glycerol and treated with calpain to dissolve the Z-disk followed by gelsolin to dissolve the thin
filaments (7). Thick filaments were separated by drawing the solution 10X through a 1 ml syringe
with 26G needle. Quantifoil carbon grids were frozen manually using the back-blotting technique
(16) followed by rapid immersion into liquid ethane.
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Data Collection/Preprocessing

We improved on the previously reported backbone resolution of 5.5A by collecting a larger data
set on a new specimen grid using the FSU Titan Krios at equipped with a DE64. The 8,192 x
8,192 frame size recorded longer lengths of individual filaments with a frame size 3.4x larger than
the previous dataset (7). The collection was done in integration mode using leginon/appion
pipeline software (17), with the dose of 60 e/A2. The sample was diluted to reduce the number of
crossing filaments and this caused a large number of micrographs to end up empty. Motioncor2
(18) was used for frame alignment and dose weighting with GCTF (19) utilized for global CTF
estimation (Fig. S11).
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Fig. S11. Distribution of defocus estimation of for all micrographs calculated using GCTF. Local
values were also calculated after manual picking determined particle positions.
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Fig. S12. An example micrograph is shown with manual picking and extraction: a line defined
with 2 points starting at the M-band towards Z-disk and overlapping boxes are extracted from the
filament. Not all the M-bands were visible and the manual picking was from M-to-Z when
possible.
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Classification and Refinement

Unfortunately, no automatic particle picking software tried worked reliably in picking our filaments.
Consequently, filament segments were picked manually and then extracted in relion (20). An
example micrograph for manual picking is shown (Fig. S12). Two points are selected to define the
filament axis starting at the M-band and ending towards Z-disk (when either the M-band or the
tapered end were visible). These two points also define the filament polarity. Overlapping
segments are later extracted along these filaments. From 2993 collected micrographs 7650
filaments were picked which were cut into 216,045 helical segments displaced by one crown (145
A axial repeat) unit per segment. The helical segments were first extracted in 145 A distances but
later re-extracted with 150 A distances to account for magnification error and to preserve the prior
information of the segments for later calculations. Initially the box size was 512 pixels because of
the GPU memory limit and this caused the spherical mask of the reconstruction to clash with
myosin heads and limit the resolution. The box size of 768 was then used and the CPU-based
program cisTEM produced a high-resolution reconstruction (21). cisTEM was also used to
perform 2D classification (Fig. S13). Those classes with pronounced head appearance were
selected for the final stack. The final refinement was done on 173,515 segments and yielded a
4.25 A structure. The structure was reconstructed under C4 rotational symmetry since cisTEM
does not perform iterative helical reconstruction. It is worth noting that there is an implicit helical
symmetry imposed because of overlapping segments.

Afterwards, Relion3 was used on larger box size but the resolution did not improve whether the
helical symmetry was imposed or only the rotational symmetry was used.
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Fig. S13. 2D Classification results in cisTEM. All non-empty classes are shown with their
populations and the rejected classes are denoted with red X marks.



Fig. S14. cisTEM reconstruction before sharpening. We can see the quality of the map is lower
on the top and bottom where the map goes beyond the background mask. The left picture has a
higher threshold.
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Resolution and Sharpening

The resolution reported by cisTEM is 4.26 A which is re-scaled from the unmasked FSC
resolution based on the molecular weight of the sample. To validate this resolution, we generated
the half-maps and calculated the FSC with and without soft edge masks. As expected, the
resolution changes if we include the poorly resolved myosin heads in the mask and a tighter
mask gives us an FSC of 4.1 A (Fig. S15A). The peak in the FSC plot at ~5 A resolution is due to
the high a-helix content of the structure.

Local resolution estimation showed that except for the S2 segment close to the myosin heads on
the surface the resolution was uniform (Fig. S15B). In the backbone the resolution was in the
range of 4.2-8 A, the highest inside the backbone and the lowest being close the S2 region.
Applying only C4 symmetry the resolution was not uniform along the helical axis but improved
after applying helical symmetry. Running monores (22) on the map after imposing helical
symmetry caused over-estimation of the resolution. Myosin heads were not resolved beyond 20 A
because they are poorly ordered compared to the backbone. Sharpening was done using local-
Deblur (23) and embfactor (24) and both gave us similar results, but local-Deblur was more
effective in resolving the large side chains (Fig. S15E-G).
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Fig. S15. Resolution determination. (A) FSC curves from cisTEM compared to FSC curves
produced in relion using the half maps. The un-masked cisTEM FSC (blue dashed line) compares
very well to the un-masked relion FSC (blue solid line) and the same is true for the cisTEM scaled
FSC (red dashed line) and relion FSC (red solid line) when masking out the myosin heads. The
FSC peaks at around 5.1A is due to the pronounced presence of the coiled-coil in our
reconstruction. As expected, leaving the heads inside the mask will result a lower FSC resolution
(solid green line). (B) Local monores resolution calculation shows that the backbone coiled-coils
are uniformly resolved to the highest resolution. The lower resolution parts on the top and bottom
improve after imposing helical symmetry. (C) Cross-sections of the reconstruction shows the
resolution in the backbone is uniformly 4.25A. Side chain quality for residues 1845-1854 is
compared in a non-sharpened map (E), after global B-factor sharpening (F), and after local deblur
sharpening (G). Well-resolved side chains are seen when the map is sharpened using local
deblur.
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Helical parameters and extension

Helical parameters calculated using relion_helix_toolbox (25) yielded a helical rise of 149.56 A
and helical twist of 34.08°. The pixel size was then reset from 1.009 to 0.978 to scale the helical
rise to the known value of 145A from X-ray studies (26). Using relion_helix_toolbox, we expanded
the structure to a large (2048%) box sufficient to contain a full myosin molecule, which was
subsequently segmented out by the Segger algorithm in chimera (27). The complete myosin tail
~1600A long was used to build the atomic model in a single piece.

Building and validating the Atomic Model

The complete myosin volume was imported into COOT (28) in which the atomic model of the
~1,070 residue coiled coil was built manually. The Ca positions were located on the skeletonized
map in the baton-mode and then converted to a poly-alanine with a-helical constraints (except on
the Skip-4 loop segment). We then used the “mutate” tool to replace the alanines with the
residues from the sequence, starting from the C-terminus because the resolution is higher than at
the N-terminus (proximal S2). The Lethocerus indicus flight muscle myosin sequence (29) was
obtained from Genbank accession number MF07800. We used the protein sequence isoform
Mhc_X1 (ASP18627.1), which is 1971 residues long and agrees with our structure better in the
alternatively spliced region (29). Isoforms X1, X4, and X5 are identical in the tail region, except for
a single splice site. The alternatively spliced region is resolved and the atomic model has
sufficient resolution and definition to differentiate between isoforms (Fig. S16). The larger and
positive side chains like tryptophan, histidine, arginine, and lysine were better resolved and acted
as guides to make sure the atomic model did not deviate from the volume. We used Phenix to
solve clashes between the two chains. A few side chains were not fitted well in the density. The
atomic model was fixed in COOT to make the side chains fit better and the final model was
refined for the last time in Phenix (30). Ramachandran plots show that the structure is almost
entirely a-helical except the KGGKK region in Skip 4, the head-tail junction and the non-helical C-
terminus. At residue 1592 one of the chains is pulled far enough to be out of the allowed a-helical
region.
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Fig. S16. (A) The alternatively spliced region in the myosin tail is shown along with the atomic
model for isoform 1. (B) Large amino acid side chains are well resolved in the reconstruction.
H1241 in isoform 1 is clearly resolved in the side chain density whereas A1241 present in isoform
2 is too small to account for the density. Similarly, for H1231 of isoform 1 vs. Q1231 of isoform 2.
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Coiled-coil Analysis

As discussed in multiple figures throughout the manuscript, Crick’s Coiled-Coil Parameterization
(CCCP) server provided quantitative analysis of the entire myosin tail structure as well as
quantitative comparison with corresponding crystal structures (20). The most significant
calculation was the Accommodation Index , which provides a validation for our atomic model. The
Accommodation Index provides a quantitative comparison between filament and crystal
structures of the human cardiac myosin coiled-coil. Accommodation Index analysis is important
because the filament resolution is insufficient to resolve all the side chains. The greatest
challenge is to insure local errors of the structure do not propagate over longer ranges. Any such
occurrence would have appeared as an unexpected change in Accommodation Index.
Accommodation Index increased from zero to 4 along the coiled coil, which means an
insignificant range of residues are off-set in their a-helical angle. Accommodation Index also
provides a quantitative evaluation of the proximal S2 and its modified structure at the head-tail
junction. The CCCP server also determined the abcdefg positions of the Ca atoms in the atomic
model and compared it to predictions made by PairCoil.

Fiber Diffraction

X-ray fiber diffraction of relaxed IFM was done using the BioCAT beamline 18ID (31) at the
Advanced Photon Source, Argonne National Lab with an X-ray energy of 12.0 keV and a
specimen to detector distance of 0.2 m. Images were collected on a custom CCD detector with 48
pum pixels (32).
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Movie S1-4 (separate files). Morphing movies from a canonical Crick coiled coil into the actual
structure of the Lethocerus tail found in the thick filament backbone.

Movie S1, file Skip1.mov. Morphing movie of the Skip 1 region showing the change from
canonical coiled to the Lethocerus tail structure which has the Skip 1 region with the pair of
parallel helices typical of accommodation of a skip residue insertion. One chain is colored gray,
the other white. The accommodation regions are gold, and the skip residue is purple. The
structure is anchored at the top and swings azimuthally as it conforms to the rotated position of
Skip 1 on the filament backbone.

Movie S2, file Skip2.mov. Morphing movie of the Skip 2 region showing the change from
canonical coiled to the Lethocerus tail structure. One chain is colored gray, the other white. The
accommodation regions are gold, and the skip residue is purple. The structure is anchored at the
top. Only torsional movements of the separate helices are seen because the Skip 2 structure in
the filament has normal coiled-coil pitch.

Movie S3, file Skip3.mov. Morphing movie of the Skip 3 region showing the change from
canonical coiled to the Lethocerus tail structure. One chain is colored gray, the other white. The
accommodation regions are gold, and the skip residue is purple. The structure is anchored at the
bottom and swings azimuthally as it conforms to the Skip 3 orientation in the filament backbone.

Movie S4, file Skip4.mov). Morphing movie of the Skip 1 region showing the change from
canonical coiled to the Lethocerus tail structure which has the Skip 1 region with the pair of
parallel helices typical of accommodation of a skip residue insertion. One chain is colored gray,
the other white. The accommodation regions are gold, and the skip residue is purple. The
structure is anchored at the bottom and shows one of the helices unfolding and the other
straightening as the canonical structure conforms to the Skip 4 structure in the filament backbone.

Movie S5-8 (separate files). Molecular dynamics trajectories of the skip regions

Movie S5, file Skip1-MD.mov. Molecular dynamics trajectories (orange) for the Skip 1 region
displayed on the corresponding X-ray crystal structure (gray) showing minimal change during the
time period of the calculation.

Movie S6, file Skip2-MD.mov. Molecular dynamics trajectories (orange) for the Skip 2 region
displayed on the corresponding X-ray crystal structure (gray) showing the change from a
predicted coiled coil pitch toward two parallel helices typical of a skip residue insertion during the
time period of the calculation.

Movie S7, file Skip3-MD.mov. Molecular dynamics trajectories (orange) for the Skip 3 region
displayed on the corresponding X-ray crystal structure (gray) showing minimal change during the
time period calculation.

Movie S8, file Skip4-MD.mov. Molecular dynamics trajectories (orange) for the Skip 4 region
displayed on the corresponding X-ray crystal structure (gray) showing unfolding of the free head
tail helix during the time period calculation. The blocked head Skip 4 started unfolded and ended
unfolded
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