

Fig. S1. Alignment of α7-AChR and β-GluCl sequences. The top sequence corresponds to the α7-AChR from chicken, and the bottom one corresponds to β-GluCl from *C. elegans*. The sequence of the α7-AChR–β-GluCl ECD–TMD chimera is indicated with a green background, and that of the reverse construct is indicated with a dark-yellow background; identical residues are indicated with a superimposed gray background. Residues that, on the basis of atomic models of other pLGlCs, are expected to be at the ECD–TMD interface are indicated in bold. The alignment was generated in ClustalW using 15 sequences that (in addition to those of the chicken α7-AChR and *C. elegans* β-GluCl) also included *C. elegans* α1-GluCl; mouse α1-, β1-, δ-, and ε-AChR; mouse 5-HT_{3A}R; rat α1-, β1-, and γ2-γ-aminobutyric-acid type-A receptor; rat α1- and β-GlyR; and the bacterial GLIC and ELIC. Disregarding the highly variable M3–M4 linker, the sequences of chicken α7-AChR and *C. elegans* β-GluCl are 17.7 % identical (28.6 % similar). For comparison, the mouse-muscle AChR (the average of the four adult-type subunits) and the bacterial pLGIC GLIC are 19 % identical (33 % similar); the mouse-muscle AChR and the—also bacterial—ELIC are 16.9 % identical (30.4 % similar); and GLIC and ELIC are 20.5 % identical (35.8 % similar). For all pairwise sequence comparisons, the identity and similarity are higher when calculated only for the structural elements at the ECD–TMD interface.

Fig. S2. Mutations in M2 speed up desensitization of the α 7-AChR- β -GluCl CS chimera. Much as they do in the background of the PPSV -> AAAA mutant, the M2 mutations G4'C and T12'S accelerated the time course of entry into desensitization of the CS construct. Normalized inward currents recorded in the whole-cell configuration under asymmetrical KCl-concentration conditions in response to the application of 1-min pulses of 100- μ M ACh. The membrane potential was ~-60 mV. Black dashed lines denote the zero-current baseline. Two representative responses from each mutant are shown. Each displayed response was recorded from a different cell. For comparison, the averaged response (mean ± 1SD) of the CS chimera (without any additional mutation) to 1-min pulses of 100- μ M ACh is also shown, as in Fig. 2D (mean: black solid line; SD: gray error bars).

Fig. S3. The gating kinetics of the α 7-AChR- β -GluCl CS chimera are similar to those of the rat α 1-GlyR. Normalized inward currents recorded from the rat α 1-GlyR in the whole-cell configuration under asymmetrical KCl-concentration conditions in response to the application of 20-ms or 1-min pulses of 1-mM glycine. The membrane potential was $^{\sim}$ -60 mV. Black dashed lines denote the zero-current baseline. (*A*, *B*) Three representative responses to 20-ms pulses, and four to 1-min pulses, are shown. Each displayed response was recorded from a different cell. For comparison, the averaged responses (mean ± 1SD) of the CS chimera (without any additional mutation) to 20-ms or 1-min pulses of 100- μ M ACh are also shown , as in Fig. 2 *C* and *D* (mean: black solid line; SD: gray error bars).

Fig. S4. Probing the effect of mutations to the C-terminal tail on gating. Normalized inward currents recorded from the indicated CS-chimera mutants in the whole-cell configuration under asymmetrical KCl-concentration conditions in response to the application of 20-ms or 1-min pulses of 100- μ M ACh. The membrane potential was ~-60 mV. Black dashed lines denote the zero-current baseline. (*A*, *B*) One representative response from each mutant is shown. For comparison, the averaged responses (mean ± 1SD) of the CS chimera (without any additional mutation) to 20-ms or 1-min pulses of 100- μ M ACh are also shown , as in Fig. 2 *C* and *D* (mean: black solid line; SD: gray error bars).

Loop 2 D ^{ME} KNQV D66A + E67A + N69A + Q70A <u>A^{MSA}KAAV</u> Yes 0.011 + 0.0068 (4) D ^{ME} KNQV β-GluC1 loop 2 D ^{MSA} VMME Yes 1.3 ± 0.078 (4) W156A C ^{LSM} /IDVRMPFDVQXC Yes 0.63 ± 0.11 (2) P158A C ^{LSM} /IDVRMP_GPVQXC No 0.035 ± 0.11 (2) P158A C ^{LSM} /IDVRMP_GPVQXC No 0.00052 ± 0.00075 (4) P158G C ^{LSM} /IDVRMPF_GPVQXC No 0.0012 ± 0.0038 (4) D160A + Q162A C ^{LSM} /IDVRMPF_GPVQXC Yes 0.047 ± 0.012 (4) D160A + Q162A C ^{LSM} /IDVRMPF_GPVQXC Yes 0.047 ± 0.012 (4) D160A + Q162A C ^{LSM} /IDVRMPF_GPVQXC Yes 0.047 ± 0.012 (4) D160A + Q162A C ^{LSM} /IDVRMFFGPVQXC Yes 0.047 ± 0.012 (4) G1694 S ^{LSM} /IDVRMFFGPVQXC Yes 0.054 ± 0.002 (4) JEOGP 9 E195A S ^{LSM} /LDVRMFGPVQXC Yes 0.15 ± 0.010 (4) S ^{LSM} /LDVRMFFGPVQXC Yes 0.024 ± 0.0025 (4) Yes 0.026 ± 0.0021 (4) JEOGP 9 E195A S ^{LSM} /LDVRMFFGPVQXC Yes </th <th>Structural element/ wild-type sequence</th> <th>Mutation(s)</th> <th>Mutated sequence[*]</th> <th>Function[†]</th> <th>Cell-surface expression mutant-to-CS ratio (mean ± SE) (replicates)</th>	Structural element/ wild-type sequence	Mutation(s)	Mutated sequence [*]	Function [†]	Cell-surface expression mutant-to-CS ratio (mean ± SE) (replicates)
D ⁶⁵ EKNQV β-GluCl loop 2 D ⁶⁶ UVMME Yes 1.3 ± 0.078 (4) V156A C ¹⁵⁰ YIDVR.4PPTDVQKC Yes 0.69 ± 0.057 (4) F157A C ¹⁵⁰ YIDVRW.4PPTDVQKC No 0.35 ± 0.11 (12) P158Q C ¹⁵⁰ YIDVRW.4PPTDVQKC No 0.005 ± 0.0075 (4) P158Q C ¹⁵⁰ YIDVRW.4PPTDVQKC No 0.005 ± 0.00075 (4) Q162A C ¹⁵⁰ YIDVRW.4PFDVQKC No 0.001 ± 0.0038 (4) Q162A C ¹⁵⁰ YIDVRW.4PFDVQKC Yes 0.047 ± 0.022 (4) Q162A C ¹⁵⁰ YIDVRW.4PFDVQKC Yes 0.047 ± 0.022 (4) Q162A C ¹⁵⁰ YIDVRW.4PFDVQKC Yes 0.047 ± 0.022 (4) Q162A C ¹⁵⁰ YIDVRW.4PFDVQKC Yes 0.15 ± 0.010 (4) β-GluCI (75-loop C ¹⁵⁰ MIQULQIYPIDYQSC Yes 0.15 ± 0.010 (4) β-GluCI (75-loop S ¹⁵⁰ NG&MDL Yes 0.32 ± 0.0081 (4) Q154A S ¹⁵⁰ NG&MDL Yes 0.32 ± 0.0021 (4) G194A S ¹⁵⁰ NG&MDL Yes 0.017 ± 0.012 (4) G194P ± 1515N ± W196F S ¹⁵⁰ NG&MDL Yes	Loop 2 D ⁶⁶ EKNQV	D66A + E67A + N69A + Q70A	<u>A⁶⁶AKAA</u> V	Yes	0.011 ± 0.0068 (4)
Loop 7		β-GluCl loop 2	D ⁶⁶ VVNME	Yes	1.3 ± 0.078 (4)
Loop 7 F157A C ¹⁵⁰ /1D/RWAPFDVQKC No 0.35 ± 0.11 (12) P158A C ¹⁵⁰ /1D/RWFQFDVQKC No Undetectable (4) P158Q C ¹⁵⁰ /1D/RWFQFDVQKC No 0.0052 ± 0.00075 (4) P158Q C ¹⁵⁰ /1D/RWFQFDVQKC No 0.0012 ± 0.00075 (4) Q150A C ¹⁵⁰ /1D/RWFPGDVQKC No 0.010 ± 0.0038 (4) Q162A C ¹⁵⁰ /1D/RWFPGDVQKC Yes 0.047 ± 0.012 (4) Q162A C ¹⁵⁰ /1D/RWFPGDVQKC No 0.0096 ± 0.0041 (4) β-GluCl Cys-loop C ¹⁵⁹ /1D/RWFPFAVGKC No 0.0096 ± 0.0041 (4) β-GluCl Cys-loop C ¹⁵⁹ /1D/RWFPFAVGKC No 0.0095 ± 0.001 (4) β-GluCl Cys-loop C ¹⁵⁹ /1D/RWFPFAVGKC No 0.0025 ± 0.001 (4) G194A S ¹⁵⁹ /NGEWDL Yes 0.33 ± 0.0088 (4) S ¹⁵² NGEWDL G194P + E195N + W196F S ¹⁵² /NGEWDA Yes 0.017 ± 0.010 (4) G194P + E195N + W196F S ¹⁵² /NGEWDA Yes 0.018 ± 0.0022 (4) 1198A S ¹⁵² /NGEWDA Yes 0.018 ± 0.0026 (4) Pre-M1 Iffer	Loop 7 C ¹⁵⁰ YIDVRWFPFDVQKC	W156A	C ¹⁵⁰ YIDVR <u>A</u> FPFDVQKC	Yes	0.69 ± 0.057 (4)
Loop 7 C ¹⁵⁰ YIDVRWFPFDVQKC No Undetectable (4) P158Q C ¹⁵⁰ YIDVRWFQFDVQKC No 0.0052 ± 0.00075 (4) C ¹⁵⁰ YIDVRWFPFDVQKC P158G C ¹⁵⁰ YIDVRWFPFDVQKC Yes 0.010 ± 0.0038 (4) D160A C ¹⁵⁰ YIDVRWFPFDVQKC Yes 0.047 ± 0.012 (4) 0.0062 ± 0.00075 (4) D160A C ¹⁵⁰ YIDVRWFPFDVQKC Yes 0.047 ± 0.012 (4) 0.0066 ± 0.0041 (4) D160A + 0.162A C ¹⁵⁰ YIDVRWFPFDVQKC Yes 0.15 ± 0.010 (4) 0.0096 ± 0.0041 (4) B1000 9 S ¹⁵¹ DCGVS-loop C ¹⁵⁰ YIDVRWFPDVQKC Yes 0.54 ± 0.019 (4) G194A S ¹⁵¹ NQEWDL Yes 0.33 ± 0.0088 (4) 10.0025 ± 0.0017 (4) G194P + E195N + W196F S ¹⁵¹ NQEWDA Yes 0.033 ± 0.0046 (4) R ²¹⁷ RG R227A + R229A A ²²³ RG Yes 0.013 ± 0.0029 (4) Pre-M1 linker R ²²⁷ RG No 0.0023 ± 0.00019 (4) Arg insertion R ²²³ RG Yes 0.013 ± 0.0029 (4) Yes 0.12 ± 0.033 (4) Yes 0.12 ± 0.033 (4) Yes 0.12 ± 0.033 (4) Yes 0.0023 ±		F157A	C ¹⁵⁰ YIDVRW <u>A</u> PFDVQKC	No	0.35 ± 0.11 (12)
Loop 7 C ¹⁵⁰ YIDVRWFPFDVQKC P158Q C ¹⁵⁰ YIDVRWFQFDVQKC No 0.0052 ± 0.00075 (4) C ¹⁵⁰ YIDVRWFPFDVQKC P158G C ¹⁵⁰ YIDVRWFQFDVQKC No 0.010 ± 0.0038 (4) D160A C ¹⁵⁰ YIDVRWFPFAVQKC Yes 0.047 ± 0.012 (4) Q162A C ¹⁵⁰ YIDVRWFPFAVQKC Yes 0.047 ± 0.012 (4) D160A + Q162A C ¹⁵⁰ YIDVRWFPFAVQKC Yes 0.15 ± 0.010 (4) β-GIUCI (ys-loop C ¹⁵⁰ YIDVRWFPFAVQKC No 0.0096 ± 0.0041 (4) β-GIUCI (ys-loop C ¹⁵⁰ YIDVRWFPFAVQKC Yes 0.54 ± 0.019 (4) G194A S ¹⁵² JQGEWDL Yes 0.54 ± 0.019 (4) G194A S ¹⁵² NGEWDL Yes 0.33 ± 0.0088 (4) V1956A S ¹⁵² NGEWDL No 0.0025 ± 0.0017 (4) G194P + E195N + W196F S ¹⁵² NGEWDA Yes 0.033 ± 0.0064 (4) R227A + R229A A ²²³ NA No 0.0023 ± 0.0013 (4) R227A + R229A A ²²³ NA No 0.0023 ± 0.0013 (4) Pre-M1 linker β-GIUCI pre-M1 K ²²³ NA No 0.054 ± 0.0024 (4)		P158A	C ¹⁵⁰ YIDVRWF <u>A</u> FDVQKC	No	Undetectable (4)
Loop J P158G C130YIDVRWFGFDVQKC No 0.010 ± 0.0038 (4) C150YIDVRWFFPDVQKC D160A C120YIDVRWFFFQVQKC Yes 0.071 ± 0.012 (4) Q162A C120YIDVRWFFFQVQKC Yes 0.71 ± 0.062 (4) D160A + 0162A C150YIDVRWFFQVQKC Yes 0.71 ± 0.062 (4) D160A + 0162A C150YIDVRWFFPQVQKC No 0.0096 ± 0.00041 (4) G194A S192NGEWDL Yes 0.54 ± 0.019 (4) Loop 9 E195A S192NGEWDL Yes 0.33 ± 0.0088 (4) W196A S192NGEWDL W196A S192NGEADL Yes 0.33 ± 0.0025 ± 0.0017 (4) G194P + E195N + W196F S192NGEWDA No 0.0025 ± 0.0017 (4) G194P + E195N + W196F S192NGEWDA Yes 0.033 ± 0.0026 (4) L198A S192NGEWDA Yes 0.017 ± 0.010 (4) R227A R R229A A227RA No 0.0023 ± 0.00019 (4) M2-M3 linker β-GluCl pre-M1 K227RQ Yes 0.17 ± 0.010 (4) R2270 R R227A + R229A R227AR No 0.0023 ± 0.00031 (4)		P158Q	C ¹⁵⁰ YIDVRWF <u>Q</u> FDVQKC	No	0.0052 ± 0.00075 (4)
C HOHMH PEQUAL D160A C ¹⁵⁰ YIDVRWFPF2AVQKC Yes 0.047 ± 0.012 (4) Q162A C ¹⁵⁰ YIDVRWFPF2AVQKC Yes 0.71 ± 0.052 (4) D160A + Q162A C ¹⁵⁰ YIDVRWFPF2AVQKC No 0.0096 ± 0.0041 (4) β-GILC (2y-loop C ¹⁵⁰ YIDVRWFPF2AVQKC No 0.0096 ± 0.0041 (4) β-GILC (2y-loop C ¹⁵⁰ PMCUPLDYQSC Yes 0.15 ± 0.010 (4) G194A S ¹⁹² NGEWDL Yes 0.54 ± 0.019 (4) G194A S ¹⁹² NGAWDL Yes 0.33 ± 0.0088 (4) S ¹⁹² NGEWDL W196A S ¹⁹² NGEMDL No 0.0025 ± 0.0017 (4) G194P + E195N + W196F S ¹⁹² NGEWDL No 0.0025 ± 0.0017 (4) 10.0026 (4) L198A S ¹⁹² NGEWDA Yes 0.018 ± 0.0029 (4) 11.98 12.92 NGEWDA Yes 0.018 ± 0.0029 (4) R ²²⁷ RR R227A + R229A A ²²⁷ RQ Yes 0.018 ± 0.0029 (4) 14.92 NGEWDA Yes 0.023 ± 0.00019 (4) R ²³⁷ RR S ¹⁹² SYY β-GILC IPr-M1 K ²²⁷ RQ Yes 0.78 ± 0.055 (4) 14.92 NGEWDA Y232A + Y233		P158G	C ¹⁵⁰ YIDVRWF <u>G</u> FDVQKC	No	0.010 ± 0.0038 (4)
Q162A C150YIDVRWFPFDVAKC Yes 0.71 ± 0.062 (4) D160A + Q162A C150YIDVRWFPFAVAKC No 0.0096 ± 0.0041 (4) β-GluCl Cys-loop C150PMRIQLYPLOYQSC Yes 0.15 ± 0.010 (4) A S1972AGEWDL Yes 0.54 ± 0.019 (4) G194A S197AGEWDL Yes 0.54 ± 0.019 (4) B E195A S197NGEWDL Yes 0.33 ± 0.0088 (4) B E195A S197NGEADL No 0.0025 ± 0.0017 (4) G194P + E195N + W196F S192NGEWDA Yes 0.038 ± 0.0026 (4) L198A S192NGEWDA Yes 0.018 ± 0.0029 (4) R227A + R229A A227RA Yes 0.018 ± 0.0029 (4) R277R R β-GluCl pre-M1 K227RQ Yes 0.017 ± 0.010 (4) R2273R R Y232A + Y233A P230SAA Yes 0.78 ± 0.055 (4) P285A + P286A + S288A + V290A L284AVAYAK Yes 0.78 ± 0.055 (4) P285A + P286A + S288A + V290A L284AVAYAK Yes 0.53 ± 0.056 (3) P285A + P286A + S288A + V290A L284AV		D160A	C ¹⁵⁰ YIDVRWFPF <u>A</u> VQKC	Yes	0.047 ± 0.012 (4)
$ \frac{10160A + Q162A}{P_{1}} = \frac{C_{150}^{150} VIDVRWFPF_{A}VAC}{P_{150}^{150} VID_{10}^{10} VID_{10}$		Q162A	C ¹⁵⁰ YIDVRWFPFDV <u>A</u> KC	Yes	0.71 ± 0.062 (4)
$ \beta \cdot GluCl Cys \cdot loop \\ I = 0 + GluCl Cys \cdot $		D160A + Q162A	C ¹⁵⁰ YIDVRWFPF <u>A</u> V <u>A</u> KC	No	0.0096 ± 0.0041 (4)
Loop 9 N193A S ¹³² ΔGEWDL Yes 0.54 ± 0.019 (4) G194A S ¹⁹² NΔEWDL Yes 1.2 ± 0.15 (4) S ¹³² NGEWDL W195A S ¹⁹² NGAWDL Yes 0.33 ± 0.0088 (4) W196A S ¹⁹² NGAWDL Yes 0.33 ± 0.0088 (4) G194P ± E195N + W196F S ¹⁹² NGEDL No 0.0025 ± 0.0017 (4) G194P ± E195N + W196F S ¹⁹² NGEWDA Yes 0.053 ± 0.0046 (4) R270A + R229A A ²²⁷ NG Yes 0.018 ± 0.0029 (4) R277A + R229A A ²²⁷ NG Yes 0.018 ± 0.0029 (4) Arg insertion R ²²⁷ RQ Yes 0.018 ± 0.0029 (4) Arg insertion R ²²⁷ AR No 0.066 ± 0.0084 (4) N-terminus of M1 F ²³⁰ SYY Y232A + Y233A F ²³⁰ SAA Yes 0.78 ± 0.055 (4) A ²³⁰ SYY Y232A + Y233A F ²³⁰ SAA Yes 0.78 ± 0.058 (4) M ²⁴⁰ SYVK Yes 0.78 ± 0.058 (4) 280 + V290A + 6266 (2) 284 APVAYAK and M2 G4'C Yes 0.99 ± 0.075 (4) P285A + P286A + S288A + V290A + 6266 C L ²⁸⁴ AAVAY		β-GluCl Cys-loop	C ¹⁵⁰ PMRLQLYPLDYQSC	Yes	0.15 ± 0.010 (4)
	Loop 9 S ¹⁹² NGEWDL	N193A	S ¹⁹² AGEWDL	Yes	0.54 ± 0.019 (4)
		G194A	S ¹⁹² N <u>A</u> EWDL	Yes	1.2 ± 0.15 (4)
$\begin{split} S^{192}\text{NGEWDL} & \frac{W196A}{G194P + E195N + W196F} & S^{192}\text{NGEADL} & No & 0.0025 \pm 0.0017 (4) \\ \hline G194P + E195N + W196F & S^{192}\text{NgENEDL} & No & 0.084 \pm 0.0026 (4) \\ \hline & L198A & S^{192}\text{NGEWDA} & Yes & 0.053 \pm 0.0046 (4) \\ \hline & L198A & S^{192}\text{NGEWDA} & Yes & 0.053 \pm 0.0046 (4) \\ \hline & R227A + R229A & A^{222}RA & Yes & 0.018 \pm 0.0029 (4) \\ \hline & & & & & & & & & & & & & & & & & &$		E195A	S ¹⁹² NG <u>A</u> WDL	Yes	0.33 ± 0.0088 (4)
$ \frac{G194P + E195N + W196F}{G194P + E195N + W196F} \frac{S^{192}NPFDL}{S^{192}NGEWDA} No 0.084 \pm 0.0026 (4) \\ \hline H198A S^{192}NGEWDA Yes 0.053 \pm 0.0046 (4) \\ \hline R227A + R229A A^{222}RA Yes 0.018 \pm 0.0029 (4) \\ \hline \beta - GluCl pre-M1 K^{222}RQ Yes 0.17 \pm 0.010 (4) \\ \hline R228A R^{227}AR No 0.0023 \pm 0.00019 (4) \\ \hline Arg insertion R^{227}RR No 0.0023 \pm 0.00019 (4) \\ \hline Arg insertion R^{227}RR No 0.66 \pm 0.0084 (4) \\ \hline N-terminus of M1 Y232A + Y233A F^{230}SAA Yes 0.78 \pm 0.055 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}AAVAYAK Yes 0.53 \pm 0.056 (4) \\ \hline \alpha 7 - AChR M2 - M3 linker M^{284}PATSDSV No 1.5 \pm 0.10 (4) \\ \hline \alpha 7 - AChR M2 - M3 linker + D289K M^{284}PATSDSV No 2.0 \pm 0.083 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}AVAYAK and M2 G4'C Yes 0.99 \pm 0.075 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}AVAYAK and M2 G4'C Yes 0.99 \pm 0.075 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}AAVAYAK and M2 G4'C Yes 0.14 \pm 0.014 (4) \\ + T274S L^{284}AVAYAK And M2 G4'C Yes 1.2 \pm 0.056 (3) \\ \hline P415A M^{408}SANASTPESLV Yes 1.0 \pm 0.10 (3) \\ \hline N411A P415A + E416A M^{408}SANASTAESLV Yes 1.0 \pm 0.10 (3) \\ \hline N411A + P415A + E416A M^{408}SANASTAESLV Yes 1.1 \pm 0.076 (3) \\ \hline N4113top M^{408}SA Yes 0.74 \pm 0.036 (3) \\ \hline \alpha 7 - AChR C-terminal tail P^{408}NFVEAVSDFA Yes 0.27 \pm 0.033 (3) \\ \hline \$		W196A	S ¹⁹² NGE <u>A</u> DL	No	0.0025 ± 0.0017 (4)
$\frac{1198A}{M^{408}SANASTPESLV} \left\{ \begin{array}{c c c c c } \hline L198A} & S^{192}NGEWD\underline{A}} & Yes & 0.053 \pm 0.0046 (4) \\ \hline R227A + R229A & \underline{A^{227}RA} & Yes & 0.018 \pm 0.0029 (4) \\ \hline \beta - GluCl pre-M1 & \underline{K^{227}RQ} & Yes & 0.17 \pm 0.010 (4) \\ \hline R228A & R^{227}\underline{AR} & No & 0.0023 \pm 0.00019 (4) \\ \hline Arg insertion & R^{227}RRB & No & 0.066 \pm 0.0084 (4) \\ \hline \textbf{N-terminus of M1} & Y232A + Y233A & F^{230}\underline{SAA} & Yes & 0.78 \pm 0.055 (4) \\ \hline \mu 285A + P286A + S288A + V290A & L^{284}\underline{AAV}\underline{AY}\underline{AK} & Yes & 0.53 \pm 0.056 (4) \\ \hline \alpha 7 - AChR M2 - M3 linker & \underline{M^{284}PATSDSV} & No & 1.5 \pm 0.10 (4) \\ \hline \mu 27 - AChR M2 - M3 linker + D289K & \underline{M^{284}PATSDSV} & No & 2.0 \pm 0.083 (4) \\ \hline \mu 285A + P286A + S288A + V290A & L^{284}\underline{AAV}\underline{AY}\underline{AK} and M2 G4'C & Yes & 0.99 \pm 0.075 (4) \\ \hline \mu 285A + P286A + S288A + V290A & L^{284}\underline{AAV}\underline{AY}\underline{AK} and M2 G4'C & Yes & 0.14 \pm 0.014 (4) \\ \hline \mu 1274S & M^{408}\underline{SANASTPESLV} & Yes & 1.0 \pm 0.010 (3) \\ \hline N411A + P415A & M^{408}\underline{SANASTP}\underline{SLV} & Yes & 1.0 \pm 0.010 (3) \\ \hline N4113top & M^{408}\underline{SA}A \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 7 - AChR C-terminal tail & \underline{P^{408}NFVEAVSDFA} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 7 - AChR C-terminal tail & \underline{P^{408}NFVEAVSDFA} & Yes & 0.74 \pm 0.033 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Ne1 \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Ne1 \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Ne1 \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Yes & 0.74 \pm 0.036 (3) \\ \hline \mu 408\underline{SANASTPESLV} & Yes$		G194P + E195N + W196F	S ¹⁹² NPNFDL	No	0.084 ± 0.0026 (4)
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $		L198A	S ¹⁹² NGEWD <u>A</u>	Yes	0.053 ± 0.0046 (4)
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Pre-M1 linker R ²²⁷ RR	R227A + R229A	<u>A²²⁷RA</u>	Yes	0.018 ± 0.0029 (4)
$ \frac{R^{227}RR}{R} = \frac{R228A}{R^{227}\underline{A}R} \\ No \\ 0.0023 \pm 0.00019 (4) \\ Arg insertion \\ R^{227}RR\underline{R} \\ No \\ 0.66 \pm 0.0084 (4) \\ P285A + P286A + S288A + V290A \\ \frac{\alpha^{7}-AChR M2-M3 linker}{M^{284}PATSDSV} \\ R^{7}-AChR M2-M3 linker + D289K \\ R^{7}-AChR M2-M3 linker \\ R^{7}-AChR + R^{7}-AChR \\ R^{7}$		β-GluCl pre-M1	<u>K²²⁷RQ</u>	Yes	0.17 ± 0.010 (4)
$\frac{Arg insertion}{R^{227}RR} \qquad No \qquad 0.66 \pm 0.0084 (4)$ $\frac{Arg insertion}{F^{230}SYY} \qquad Y232A + Y233A \qquad F^{230}SAA \qquad Yes \qquad 0.78 \pm 0.055 (4)$ $\frac{P285A + P286A + S288A + V290A}{\alpha^{7}-AChR M2-M3 linker} \qquad M^{284}PATSDSV \qquad No \qquad 1.5 \pm 0.10 (4)$ $\frac{\alpha^{7}-AChR M2-M3 linker + D289K}{P285A + P286A + S288A + V290A} \qquad L^{284}AAVAYAK \qquad Yes \qquad 0.53 \pm 0.056 (4)$ $\frac{\alpha^{7}-AChR M2-M3 linker + D289K}{P285A + P286A + S288A + V290A} \qquad L^{284}PATSDSV \qquad No \qquad 2.0 \pm 0.083 (4)$ $\frac{P285A + P286A + S288A + V290A}{+ G266C} \qquad L^{284}AAVAYAK and M2 G4'C \qquad Yes \qquad 0.99 \pm 0.075 (4)$ $\frac{P285A + P286A + S288A + V290A}{+ T274S} \qquad L^{284}AAVAYAK and M2 T12'S \qquad Yes \qquad 0.14 \pm 0.014 (4)$ $\frac{P415A}{P415A} \qquad M^{408}SAAASTPESLV \qquad Yes \qquad 1.0 \pm 0.10 (3)$ $\frac{N411A + P415A + E416A}{P415A + E416A} \qquad M^{408}SAAASTPASLV \qquad Yes \qquad 1.1 \pm 0.076 (3)$ $\frac{Arg insertion}{A^{7}-AChR C-terminal tail} \qquad P^{408}NFVEAVSKDFA}{P408} \qquad Yes \qquad 0.27 \pm 0.033 (3)$		R228A	R ²²⁷ <u>A</u> R	No	0.0023 ± 0.00019 (4)
$ \frac{\textbf{N-terminus of M1}}{F^{230}SYY} Y232A + Y233A F^{230}S\underline{AA} Yes 0.78 \pm 0.055 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}\underline{AAV}\underline{AY}\underline{AK} Yes 0.53 \pm 0.056 (4) \\ \hline \alpha7 - AChR M2 - M3 linker M^{284}\underline{PATSDSV} No 1.5 \pm 0.10 (4) \\ \hline \alpha7 - AChR M2 - M3 linker + D289K M^{284}\underline{PATSKSV} No 2.0 \pm 0.083 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}\underline{AAV}\underline{AY}\underline{AK} and M2 G4'C Yes 0.99 \pm 0.075 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}\underline{AAV}\underline{AY}\underline{AK} and M2 T12'S Yes 0.14 \pm 0.014 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}\underline{AAV}\underline{AY}\underline{AK} and M2 T12'S Yes 0.14 \pm 0.014 (4) \\ \hline P285A + P286A + S288A + V290A L^{284}\underline{AAV}\underline{AY}\underline{AK} and M2 T12'S Yes 1.2 \pm 0.056 (3) \\ \hline P415A M^{408}SANAST\underline{PESLV} Yes 1.0 \pm 0.10 (3) \\ \hline M411A + P415A + E416A M^{408}SANAST\underline{ASTP}\underline{SLV} Yes 1.0 \pm 0.10 (3) \\ \hline M411A + P415A + E416A M^{408}SA Yes 0.74 \pm 0.036 (3) \\ \hline \alpha7 - AChR C-terminal tail \underline{P^{408}NFVEAVSKDFA} Yes 0.27 \pm 0.033 (3) \\ \hline \end{array}$		Arg insertion	R ²²⁷ RR <u>R</u>	No	0.66 ± 0.0084 (4)
$ \frac{P285A + P286A + S288A + V290A}{\alpha^{7}-AChR M2-M3 linker} \frac{M^{284}PATSDSV}{M^{284}PATSDSV} No 1.5 \pm 0.10 (4) \\ \frac{\alpha^{7}-AChR M2-M3 linker + D289K}{\alpha^{7}-AChR M2-M3 linker + D289K} \frac{M^{284}PATSKSV}{M^{284}PATSKSV} No 2.0 \pm 0.083 (4) \\ \frac{\alpha^{7}-AChR M2-M3 linker + D289K}{P285A + P286A + S288A + V290A} \frac{L^{284}AAVAYAK and M2 G4'C}{P285A + P286A + S288A + V290A} \frac{L^{284}AAVAYAK and M2 G4'C}{P285A + P286A + S288A + V290A} \frac{L^{284}AAVAYAK and M2 G4'C}{P285A + P286A + S288A + V290A} \frac{L^{284}AAVAYAK and M2 T12'S}{P285A + P286A + S288A + V290A} \frac{L^{284}AAVAYAK and M2 T12'S}{P285A + P286A + S288A + V290A} \frac{L^{284}AAVAYAK and M2 T12'S}{P285A + P286A + S288A + V290A} \frac{L^{284}AAVAYAK and M2 T12'S}{P415A} \frac{Ves}{P415A} \frac{1.2 \pm 0.056 (3)}{P415A} \frac{P408SANASTPESLV}{P408} \frac{Ves}{P415} \frac{1.0 \pm 0.10 (3)}{P415A} \frac{P408SANASTPASLV}{P408SANASTPASLV} \frac{Ves}{P415} \frac{1.0 \pm 0.10 (3)}{P415A} \frac{N408SAAASTAASTAASLV}{P408SAAASTAASLV} \frac{Ves}{P415} \frac{1.0 \pm 0.076 (3)}{P415A} \frac{N4118 + P415A + E416A}{P408SAAASTAASLV} \frac{Ves}{P415} \frac{0.74 \pm 0.036 (3)}{P415A} \frac{Ves}{P403} \frac{0.74 \pm 0.036 (3)}{P403SAA} \frac{Ves}{P415} \frac{0.74 \pm 0.036 (3)}{P415A} \frac{P408NFVEAVSKDFA}{P408SAA} \frac{Ves}{P415} \frac{0.74 \pm 0.033 (3)}{P403SA} \frac{Ves}{P415} \frac{0.72 \pm 0.033 (3)}{P403SA} \frac{Ves}{P415} \frac{Ves}{P415} \frac{0.72 \pm 0.033 (3)}{P403SA} \frac{Ves}{P415} \frac{0.72 \pm 0.033 (3)}{P403SA} \frac{Ves}{P415} \frac{Ves}{P415} \frac{Ves}{P415} \frac{Ves}{P415} \frac{Ves}{P415} \frac{Ves}{P415} \frac{Ves}{P415} \frac{Ves}{P403S} \frac{Ves}{P415} \frac{Ves}{P403S} \frac{Ves}{P415} \frac{Ves}{P403S} \frac{Ves}{P415} \frac{Ves}{P403S} \frac{Ves}{P415} \frac{Ves}{P415} \frac{Ves}{P403S} \frac{Ves}{P403S} \frac{Ves}{P403S} \frac{Ves}{P415} \frac{Ves}{P403S} \frac{Ves}{P415} \frac{Ves}{P403S} \frac{Ves}{P403S} \frac{Ves}{P403S} \frac{Ves}{$	N-terminus of M1 F ²³⁰ SYY	Y232A + Y233A	F ²³⁰ S <u>AA</u>	Yes	0.78 ± 0.055 (4)
	M2–M3 linker L ²⁸⁴ PPVSYVK	P285A + P286A + S288A + V290A	L ²⁸⁴ <u>AA</u> V <u>A</u> Y <u>A</u> K	Yes	0.53 ± 0.056 (4)
$ \begin{array}{c} \textbf{M2-M3 linker} \\ L^{284} PPVSYVK \\ \hline \end{tabular}{llet} \\ L^{284} PPVSYVK \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + G266C \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + G266C \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + T274S \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + T274S \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + T274S \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + T274S \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + T274S \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + T274S \\ \hline \end{tabular}{llet} \\ P285A + P286A + S288A + V290A \\ + T274S \\ \hline \end{tabular}{llet} \\ P408SANASTPESLV \\ \hline \end{tabular}{llet} \\ P4015A \\ \hline \e$		α 7-AChR M2–M3 linker	M ²⁸⁴ PATSDSV	No	1.5 ± 0.10 (4)
$ \begin{array}{c} L^{284} PPVSYVK & \begin{array}{c} P285A + P286A + S288A + V290A \\ + G266C & \begin{array}{c} L^{284}\underline{AAV}\underline{AY}\underline{AK} \text{ and } M2 \ G4'C & Yes & 0.99 \pm 0.075 \ (4) \\ \end{array} \\ \hline P285A + P286A + S288A + V290A \\ + T274S & \begin{array}{c} L^{284}\underline{AAV}\underline{AY}\underline{AK} \text{ and } M2 \ T12'S & Yes & 0.14 \pm 0.014 \ (4) \\ \end{array} \\ \hline P285A + P286A + S288A + V290A \\ + T274S & \begin{array}{c} M^{408}SA\underline{A}STPESLV & Yes & 1.2 \pm 0.056 \ (3) \\ \hline P415A & M^{408}SANAST\underline{A}ESLV & Yes & 1.4 \pm 0.13 \ (3) \\ \hline P415A & M^{408}SANAST\underline{A}ESLV & Yes & 1.0 \pm 0.10 \ (3) \\ \hline N411A + P415A + E416A & M^{408}SA\underline{A}AST\underline{A}SLV & Yes & 1.1 \pm 0.076 \ (3) \\ \hline N411stop & M^{408}SA & Yes & 0.74 \pm 0.036 \ (3) \\ \hline \alpha7 - AChR C - terminal tail \\ \hline P408NFVEAVSKDFA & Yes & 0.27 \pm 0.033 \ (3) \end{array} $		α7-AChR M2–M3 linker + D289K	<u>M²⁸⁴PATSKSV</u>	No	2.0 ± 0.083 (4)
$\frac{P285A + P286A + S288A + V290A}{+ T274S} L^{284}\underline{AAVAYAK} and M2 T12'S Yes 0.14 \pm 0.014 (4)$ + T274S Yes 0.14 \pm 0.014 (4) $\frac{N411A}{P415A} = \frac{M^{408}SAAASTPESLV}{M^{408}SAAASTPESLV} Yes 1.2 \pm 0.056 (3)$ + 1.4 \pm 0.13 (3) $\frac{P415A}{P415A} = \frac{M^{408}SANASTAESLV}{M^{408}SAAASTPASLV} Yes 1.0 \pm 0.10 (3)$ + 1.1 \pm 0.076 (3) + 1.1 \pm 0.036 (3) + 1.1 \pm 0.03		P285A + P286A + S288A + V290A + G266C	L ²⁸⁴ AAVAYAK and M2 G4'C	Yes	0.99 ± 0.075 (4)
$ \begin{array}{c c} \mbox{N411A} & \mbox{M408SAAASTPESLV} & \mbox{Yes} & 1.2 \pm 0.056 (3) \\ \hline \mbox{P415A} & \mbox{M408SANASTAESLV} & \mbox{Yes} & 1.4 \pm 0.13 (3) \\ \hline \mbox{P415A} & \mbox{M408SANASTPASLV} & \mbox{Yes} & 1.0 \pm 0.10 (3) \\ \hline \mbox{M408SANASTPESLV} & \mbox{N411A} + \mbox{P415A} + \mbox{E416A} & \mbox{M408SAAASTAASLV} & \mbox{Yes} & 1.1 \pm 0.076 (3) \\ \hline \mbox{N411A} + \mbox{P415A} + \mbox{E416A} & \mbox{M408SAAASTAASLV} & \mbox{Yes} & \mbox{1.1} \pm 0.076 (3) \\ \hline \mbox{N411A} + \mbox{P415A} + \mbox{E416A} & \mbox{M408SAA} & \mbox{Yes} & \mbox{0.74} \pm 0.036 (3) \\ \hline \mbox{N411stop} & \mbox{M408SA} & \mbox{Yes} & \mbox{0.74} \pm 0.036 (3) \\ \hline \mbox{\alpha7-AChR C-terminal tail} & \mbox{P408NFVEAVSKDFA} & \mbox{Yes} & \mbox{0.27} \pm 0.033 (3) \\ \hline \end{array} $		P285A + P286A + S288A + V290A + T274S	L ²⁸⁴ <u>AA</u> V <u>A</u> Y <u>A</u> K and M2 T12'S	Yes	0.14 ± 0.014 (4)
P415A M ⁴⁰⁸ SANAST <u>A</u> ESLV Yes 1.4 ± 0.13 (3) C-terminal tail E416A M ⁴⁰⁸ SANASTP <u>A</u> SLV Yes 1.0 ± 0.10 (3) M ⁴⁰⁸ SANASTPESLV N411A + P415A + E416A M ⁴⁰⁸ SA <u>A</u> AST <u>A</u> SLV Yes 1.1 ± 0.076 (3) N411stop M ⁴⁰⁸ SA Yes 0.74 ± 0.036 (3) α 7-AChR C-terminal tail P ⁴⁰⁸ NFVEAVSKDFA Yes 0.27 ± 0.033 (3)	C-terminal tail M ⁴⁰⁸ SANASTPESLV	N411A	M ⁴⁰⁸ SA <u>A</u> ASTPESLV	Yes	1.2 ± 0.056 (3)
$ \begin{array}{c c} \textbf{C-terminal tail} \\ M^{408} \text{SANASTPESLV} & Fes \\ M^{408} \text{SANASTPESLV} & 1.0 \pm 0.10 (3) \\ \hline M^{408} \text{SANASTPESLV} & 1.1 \pm 0.076 (3) \\ \hline M^{408} \text{SANASTPESLV} & Yes \\ \hline M^{411} \text{stop} & M^{408} \text{SA} & Yes \\ \hline M^{408} \text{SA} & Yes \\ \hline M^{7-A} \text{ChR C-terminal tail} & \underline{P^{408} \text{NFVEAVSKDFA}} & Yes \\ \hline 0.27 \pm 0.033 (3) \\ \hline \end{array} $		P415A	M ⁴⁰⁸ SANAST <u>A</u> ESLV	Yes	1.4 ± 0.13 (3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		E416A	M ⁴⁰⁸ SANASTP <u>A</u> SLV	Yes	1.0 ± 0.10 (3)
N411stop M ⁴⁰⁸ SA Yes 0.74 ± 0.036 (3) α7-AChR C-terminal tail P ⁴⁰⁸ NFVEAVSKDFA Yes 0.27 ± 0.033 (3)		N411A + P415A + E416A	M ⁴⁰⁸ SA <u>A</u> AST <u>AA</u> SLV	Yes	1.1 ± 0.076 (3)
α 7-AChR C-terminal tail P ⁴⁰⁸ NFVEAVSKDFA Yes 0.27 ± 0.033 (3)		N411stop	M ⁴⁰⁸ SA	Yes	0.74 ± 0.036 (3)
		α 7-AChR C-terminal tail	P ⁴⁰⁸ NFVEAVSKDFA	Yes	0.27 ± 0.033 (3)

Table S1. Characterization of α 7-AChR- β -GluCl CS-chimera mutations

*Mutated residues are underlined.

⁺For some mutants, poor expression on the plasma membrane may underlie the failure to observe currents in response to ACh applications.