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Fig A. Fertilization probability with co-rotation. Fertilization probability Pfert(α) as in Fig 3
but with simulations taking into account co-rotation (green triangles): Previous experimental data ([20],
Fig. 5c) for red abalone H. rufescens with and without chemotaxis (filled gray triangles: with
chemotaxis, open gray triangles: inhibited chemotaxis) and our corresponding simulations (filled green
triangles: with chemotaxis, open green triangles: without chemotaxis; mean ± SD), using fertilizability
pf = 60% in Eq. (5) as single fit parameter. Experiment and simulation again agree reasonably except for
the data point without flow α = 0 s−1, which corresponds to a different experimental protocol. While
the simulations with co-rotation overestimate the reduction of Pfert at high shear rate α > 6 s−1, these
high shear rates are less relevant for the spawning habitat of H. rufescens.

A Shear flow around freely-rotating egg and minimal case of ballistic swim-
mer

For all simulations (except Fig 1A), we use a simple shear flow αy ex as idealized paradigm for small-scale
turbulence. At the relevant shear rates α and typical egg radii regg ∼ 100 µm, the Reynolds number
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Fig B. Calibration of fertilizability without flow (α = 0). Fertilization probability Pfert as
function of the ratio ρsperm/ρegg of sperm and egg density in the absence of flow α = 0 s−1 from
experiments with sea urchin S. purpuratus ([25], Fig. 4) (filled gray triangles) and fit of fertilization
kinetics Eq. (5) (red). From the fit, we obtain pfPsperm:egg ≈ 9% for the product of fertilizability pf and
encounter probability Psperm:egg. Assuming a ballistic swimmer that is captured at the egg surface
(Eq. (5) with Psperm:egg(tmax) = 1− exp(−qtmax) and rate q = πr2

eggvhρegg = 0.02 s−1), we find pf ≈ 10%

for exposure time tmax = 120 s and ρegg = 1.5 · 104 ml−1. This value pf is used in Fig 4 and Fig C.

Re = αr2
egg/ν ≤ 0.1 is sufficiently small to justify the use of the analytical Stokes equation for viscous

flow vext(r). Throughout, we consider the co-moving frame of the egg allowing us to assume that the egg
is at the origin r = 0. We introduce dimensionless coordinates r̂ = r/regg and the dimensionless flow

field v̂ext (r̂) = 2vext(r)
αregg

. The components of this flow field read ([4], Eq. (12))

v̂ext,x = 2ŷ −ŷ
([

1 + Ω̂
]
r̂−3 + r̂−5

)
− 5x̂2ŷ

(
r̂−5 − r̂−7

)
v̂ext,y = x̂

([
1 + Ω̂

]
r̂−3 − r̂−5

)
− 5x̂ŷ2

(
r̂−5 − r̂−7

)
v̂ext,z = − 5x̂ŷẑ

(
r̂−5 − r̂−7

) (S1)

where no-slip boundary conditions on the surface |̂r| = 1 of the freely-rotating spherical egg are assumed.
The egg rotates according to the undisturbed flow vorticity with the dimensionless rotation rate Ω̂ = −1,
corresponding to an rotation of the egg with angular velocity Ω = −α2 ez.

It is instructive to consider a ballistic swimmer in the above flow field vext as a reference for the
analysis of more complicated cases, such as swimmers performing chemotaxis. For instance, without
flow or chemotaxis, sperm cells are considered to swim along a straight helix with helix radius r0 much
smaller than the egg radius. These sperm trajectories are well approximated by a ballistic swimmer
moving along the helix axis h with net swimming speed vh. If the ballistic swimmers and the target eggs
(with density ρegg) are uniformly distributed, the steady-state rate q at which a swimmer hits an egg
is given by q = π(regg + r0)2vhρegg ≈ πr2

eggvhρegg. If ballistic swimmers become trapped at the egg on
encounter, this corresponds to the encounter probability Psperm:egg(t) = 1− exp(−qt) (and fertilization
probability Pfert according to fertilization kinetics, see Eq. (5)). If ballistic swimmers are additionally
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Fig C. Fertilization probability with co-rotation. Fertilization probability Pfert(α) as in Fig 4
but with simulations taking into account co-rotation of sperm cells (open green triangles): Previous
measurements of fertilization probability Pfert(ε) for sea urchin S. purpuratus at strong turbulence,
characterized by density-normalized dissipation rate ε (filled gray triangles) [1, 25] and our corresponding
simulations Pfert(α) as function of shear rate α (open green triangles, mean ± SD) match well, using a
single fit parameter a = 0.023 that relates dissipation rate ε and typical shear rate α (with the known
relationship α(ε) = a

√
ε/ν [2,3]). Analogous to Fig 4, the case of low shear rates is well described by the

limit case of a ballistic swimmer in the absence of flow α = 0 s−1 (dotted horizontal line, Eq. (5) with
Psperm:egg(t) = 1− exp(−qt) and rate q = πr2

eggvhρegg). The fertilizability pf = 10% is obtained from an
independent experiment [25], see Fig B. From the experimental protocol, we estimate a high background
concentration cbg = 500− 4000 nM of chemoattractant, which renders sperm chemotaxis ineffective.

convected by an external fluid flow field vext, we can characterize q (and thus Psperm:egg and Pfert) in
terms of an universal curve: We introduce the dimensionless parameter f =

αregg
2vh

, which compares shear
rate to net swimming speed. The combined velocity field of active swimming and fluid flow is now

vext (r) + vhh = vh (f v̂ext (r̂) + h) = vhû (r̂, f,h) . (S2)

Note that without co-rotation, h does not change. Thus, for any h, all possible velocity fields û are given
by a single one-parameter family parametrized by f . For each of these fields, the dimensionless rate of
swimmers q̂ (f,h) reaching the egg from |̂r| � 1 specifies the actual rate q for any set of parameters
α, regg, vh, ρegg with the same parameter f by

q (α, regg, vh,h) = q̂ (f,h) r2
eggvhρegg . (S3)

We obtain a universal curve for q by computing q̂(f,h) numerically for all f and h and average
q̂(f) = 〈q̂(f,h)〉h over all directions h, see Fig 4 for corresponding Pfert. A prominent feature of the
universal rate is that it vanishes at large shear rates q̂ (f →∞)→ 0. In the absence of flow α = 0, we
have q̂ (f = 0) = π.
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We compute the universal rate q̂ efficiently by integrating a uniform grid of initial conditions on the
surface of the egg, with |̂r| = 1 at t̂ = 0, backwards in time according to the velocity field û. Each initial
condition is integrated until it either returns to the egg |̂r| (t̂) = 1 (fail) or leaves the outer boundaries
r̂(t̂) = r̂max (success) with r̂max � 1. As the flow is volume conserving, the results are independent
of the choice of the outer boundary r̂max, as long as r̂max is sufficiently large to ensure the absence
of closed orbits beyond it. We choose r̂max = 4 as numerics show that the in- and outflow on this
sphere differs only by 4% between the Stokes flow around the freely-rotating sphere and the undisturbed
simple shear flow, for which it is known no closed orbits exist. Based on the intersections with the
outer boundary, the flow reaching the egg is interpolated. This is done for a grid of swim directions
h. For efficiency, we exploit the symmetries of the Stokes flow v̂ext (x̂, ŷ, ẑ) · (hxex + hyey + hzez) =
v̂ext (x̂, ŷ,−ẑ) · (hxex + hyey − hzez) = v̂ext (−x̂,−ŷ, ẑ) · (−hxex − hyey + hzez); thus, it is sufficient to
consider hz ≥ 0 and hy ≥ 0, respectively.

B Equations of motion for navigating sperm cells

We simulate the swimming path r(t) of a sperm cell in a concentration field c(r) of chemoattractant in
the presence of an external fluid flow field vext(r). For this, we extend a previous theory of chemotaxis
of marine sperm cells along helical paths [5–8] by incorporating convection and co-rotation by flow: The
sperm cell is described in terms of the time-dependent center position r(t), averaged over one flagellar
beat cycle, and the set of ortho-normal vectors e1(t), e2(t), e3(t) of the co-moving coordinate frame, where
the vector e1(t) points in the direction of active swimming with speed v0. The equations of motion read

ṙ = v0e1 + vext(r(t)) ,

ėi = (Ωh + Ωf)× ei i = 1, 2, 3 ,
(S4)

The two angular velocities, Ωh and Ωf, describe the rotation of the coordinate frame due to helical
chemotaxis and external flow, respectively. For Eq. (S4) a constant swim speed is assumed and motility
noise is neglected; the persistence length of sperm swimming paths in the absence of chemoattractant
cues was estimated as 3− 25 mm [9] which validates this assumption. Note that Eq. (S4) is also valid for
time-dependent concentration and flow fields. Note further that the quantitative comparison of the two
angular velocities in Eq. (S4) already suggests that the rotation due to external flow is negligible, as the
rate of change due to external flow Ωf ∼ α = 0− 1 s−1 (see Eq. (S8)) is always smaller than due to the
helical motion Ωh ∼ τ0v0 = 3− 13 s−1 (see Eq. (S5) and parameters in Table A).

Without external flow or chemotaxis, cells swim along a helical path with constant path curvature
κ(t) = κ0 and torsion τ(t) = τ0. The angular velocity Ωh is defined by the Frenet-Serret equations

Ωh(t) = v0 [τ(t)e1(t) + κ(t)e3(t)] , (S5)

where the coordinate frame e1, e2, e3 corresponds to the Frenet-Serret frame of r(t), i.e., tangent, normal
and bi-normal vector. During chemotactic steering, sperm cells dynamically regulate curvature κ(t) and
torsion τ(t) of active swimming according to the output a(t) of a chemotactic signaling system

κ(t) = κ0 − ρκ0(a− 1) ,

τ(t) = τ0 + ρτ0(a− 1) .
(S6)

Here, the sensori-motor gain factor ρ characterizes the amplitude of chemotactic steering responses. The
chemotactic signaling system takes as input the local concentration c(r(t)) at the position of the cell

µȧ = p [cb + c(r(t))]− a ,
µṗ = p (1− a) .

(S7)

This minimal signaling system comprises sensory adaption with sensitivity threshold cb and relaxation
with time scale µ to a rest state a = 1 for any constant stimulus c(r(t)) = c0. The variable p describes
an dynamic sensitivity which is regulated down when the stimulus is high, or regulated up when the
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stimulus is low (a loose analogy would be that p corresponds to the opening of our eye’s pupils as adaption
to brightness). In principle, p and a could have different time-scales [5]. However, equal time-scales
automatically ensure that the phase-lag between small-amplitude oscillations of the input signal c(r(t))
and resulting oscillation of the output signal a(t) attains the value π/2 optimal for helical chemotaxis [6].
This special case is sufficient for the purpose of a minimal model. The gain factor ρ sets the rate of
chemotactic steering. While ρ could depend on the chemotactic signal by a feedback mechanism [10],
we assume here a constant gain factor ρ = 5 for simplicity. The values of all parameters are listed and
discussed in Sec G.

We approximate the angular velocity Ωf for co-rotation by external flow using the Jeffery equation
for a small prolate spheroid with major axis along e1 [11, 12]

Ωf(r) =
1

2
ω(r) +Ge1 × [E(r) · e1] ,

ω(r) = ∇× vext(r) ,

E(r) =
1

2

[
∇⊗ vext(r) + (∇⊗ vext(r))

T
] (S8)

with the flow vorticity ω, the strain rate tensor E, and a geometric factor G = g2−1
g2+1 , which depends

on the aspect ratio g ≥ 1 of major to minor axis of the spheroid. Together with Eq. (S4), Eq. (S8)
describes the cell rotation due the flow, i.e., The first term in the first line of Eq. (S8) describes rotation
of a spherical body due to flow vorticity and the second term the correction for non-sperical bodies
that can be approximated as spheroids. For a swimming sperm cell, we take the swim direction e1 as
effective major axis, and employ an effective aspect ratio, g = 5, reflecting the ratio of the length of the
flagellum and a typical beat amplitude [13]. Note that in general instead of e1, the major axis could be
any co-moving vector.

We numerically integrate the equations of motion, i.e., Eqs. (S4,S7), using an Euler scheme with
fixed small time step dt. For efficient computation, Rodrigues rotation formula [14] with respect to the
co-moving coordinate frame is used to integrate e1, e2, e3, resulting in faster computation compared to
the algorithm used in [10].

C Analysis of concentration filaments

Turbulent flows cause turbulent mixing of diffusing chemicals and generate filamentous concentration
fields. As a minimal model, we simplify the turbulent flow and the filamentous concentration field
by the case of a simple shear flow. We consider a spherical egg located at the origin r = 0 releasing
chemoattractant with diffusion coefficient D at a constant rate Q̇ in the presence of shear flow vext(r) given
by Eq. (S1). We compute the time-dependent concentration field c(r, t) of chemoattractant numerically
using Lagrangian particle tracking, see Sec G. We empirically find that the far-field at distances r � regg

is well approximated by a generic profile, see Fig 1B for illustration,

c(r, t) = c0 exp (−k |x|) exp

(
− (y − y0)

2
/a2
y + z2

2σ2

)
, (S9)

which describes a concentration filament with time-dependent parameters c0(t), k(t), ay, as well as time-
and position-dependent variance and midline profiles σ(x, t) and y0(x, t), respectively. This formula
for the concentration filament is consistent with results obtained using the analytic solution for an
instantaneous point source in a shear flow αy ex, see below. We present and discuss scaling laws for
the parameters in the following. While these dependencies are not explicitly required for our theory,
they demonstrate the universality of our theory. Finally, we use these scaling laws to quantify how the
filaments become longer and thinner with increasing shear rate α.

From numerical simulations, we empirically find the following scaling laws of the parameters from
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Eq. (S9)

k (t) ∼ t−δk , δk = 1.5 – 1.6 (S10)

c0 (t) ∼ t−δc0 , δc0 = 1.6 – 1.8 (S10b)

σ2 (x, t) = 2D t0 (x, t) , t0 ∼ t (S10c)

t0 (x, t) = p0,t0 (t) + p1,t0 (t) |x|+ p2,t0 (t) |x|2 , (S10d)

y0 (x, t) = sgn (x) p0,y0 (t) + p1,y0t
−δy0x , δy0 = 0.9 – 1.0 (S10e)

p1,y0 = (1 – 1.4)α−δy0 , ay = 0.5 – 0.6 (S10f)

where all parameters except p2,t0 are positive. Note that in a turbulent flow the time t in which the
filament is formed may scale with the Kolmogorov time t ∼ τKol; in this case σ would scale as the
Batchelor length σ ∼ √DτKol. We also found power-law dependencies for the coefficients p0,t0(t), p1,t0(t),
and p2,t0(t). The factor ay appears to be constant for sufficiently large t. These numerical observations
become plausible by analysis of a point source in shear flow. The Fokker-Planck equation for this case
can be written in dimensionless form

∂tc = −αy ∂xc+D4 c + Q̇ δ(r)⇒ ∂ťč = −y̌ ∂x̌č+4č + δ(ř) (S11)

by using the Batchelor scale
√
DτKol ∼

√
D/α to re-scale to dimensionless coordinates

x̌ = x

√
α

D
, y̌ = y

√
α

D
, ť = tα , č = c

√
D3

α

1

Q̇
(S12)

with shear rate α, and release rate Q̇ of the source (i.e.
∫∫∫∞
−∞ d3r c(r, t) = Q̇ t). Consequently, the

solution č
(
ř, ť
)

of this equation can be re-scaled to the solution c(r, t) for any set of parameters α,D, Q̇.
For the above form of the far-field of the filament, this implies that the parameters δk, δc0 , p1,y0 and
p2,t0 are universal as they are invariant under the re-scaling Eq. (S12). The analytical solution for the
dimensionless concentration č reads ([15], Eq. (18))

č
(
ř, ť
)

=

ť∫
0

dš Ǧ(ř, š) (S13)

with Greens function Ǧ, i.e., the solution for an instantaneous source at the origin ([16], Eq. (26))

Ǧ(ř, ť) =

exp

[
− (x̌− 1

2 y̌ť)
2

4ť(1+ 1
12 ť

2)
− y̌2+ž2

4ť

]
(
4πť
) 3

2

√
1 + 1

12 ť
2

. (S14)

While the integral Eq. (S13) cannot be solved analytically, it explains the empirical scaling for the
parameters in Eq. (S9) heuristically: It is reasonable to assume that for any x̌, the parameter y̌0(ť) is
close to the point y̌max of the maximal concentration of Ǧ(ř, ť). From ∂y̌Ǧ(x̌, y̌, ž = 0, ť)|y̌=y̌max = 0, it
follows (for ť >

√
3)

y̌0(x̌, ť) ≈ y̌max(x̌, ť) =
3ťx̌

2(ť2 + 3)
⇒ p1,y0 ≈

3

2
ť−1 (S15)

in accordance with the fitted power-law.
The power law c0(t) ∼ t−

3
2 , as suggested by numerics, is plausible since Ǧ (0, š� 1) ∼ š−

5
2 , which

implies č
(
0, ť� 1

)
∼
∫ ť

0
dš š−

5
2 ∼ ť− 3

2 .

We introduce the concentration čmax at the centerline of the filament čmax

(
x̌, ť
)

= č
(
x̌, y̌0

(
x̌, ť
)
, ž = 0

)
.

We make the ansatz čmax

(
x̌, ť
)

= č0(ť) exp
(
−ǩ
(
ť
)
|x̌|
)

and derive a power-law for ǩ(ť) in the following.
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We expect that čmax scales proportional to the summed contributions of the Greens functions at the time-
dependent centerline, hence we estimate (assuming ť� 1, we approximate ť2 + 3→ ť2, 1 + ť2/12→ ť2/12
in Ǧ)

čmax

(
x̌, ť
)
∼

ť∫
0

dš Ǧ(x̌, y̌0(x̌, š), ž = 0, š) ∼
erfc

(√
3

4ť3
x̌
)

6πx̌
. (S16)

We are interested in the shape of the concentration filament up to a maximal distance x̌max at which the
concentration at the centerline decayed to a fraction ι of č0, čmax(x̌max, ť) = ιc0(ť). Any asymptotic tails
beyond this distance will likely not be relevant for chemotaxis. Since the decay of čmax as function of x̌
is dominated by the numerator in Eq. (S16), the distance x̌max has a time-dependency x̌max

(
ť
)
∼ ť

3
2

according to the argument of the complementary error-function erfc. Using Eq. (S16), we estimate the
time-dependency of ǩ(ť) from

−ǩ(ť)x̌ = ln

(
čmax(x̌)

č0

)
∼ ln

(
erfca

a

)
∼ ln erfc (a) ∼ −a , (S17)

where we introduced a(x̌, ť) =
√

3/4 ť−
3
2 x̌. The crucial point is that for 0 ≤ x̌ ≤ x̌max(ť), the variable

a varies only in a finite interval 0 ≤ a ≤ amax with upper bound amax = a(x̌max(ť), ť) ∼ ť−
3
2 x̌max(ť)

independent of time ť. This allows us to approximate ln erfc (a) by its Taylor expansion for small a� 1

in the last step of Eq. (S17). We conclude ǩ
(
ť
)
∼ amax/x̌max(ť) ∼ ť− 3

2 , as suggested by numerics.
From the above considerations follows that for a constant exposure time tmax the filaments become

longer and thinner with increasing shear rate α: From Eq. (S12) follows for the dimensionless exposure time

ťmax = tmaxα and thus the exponent ǩ of the dimensionless version of Eq. (S9) scales with ǩ ∼ (tmaxα)−
3
2 ,

which implies according to ǩx̌ = kx a scaling of the effective decay length

1/k ∼ α
√
Dt3max . (S18)

This means that for constant exposure time tmax the effective length of the filament increases with shear

rate α. Analogously, from σ̌ ∼ √tmaxα and č0 ∼ (tmaxα)
− 3

2 follows with the re-scaling Eq. (S12) for the
effective decay length σ away from the center of the filament and the base concentration c0

σ ∼
√
Dtmax

c0 ∼
Q̇

α (Dtmax)
3
2

.
(S19)

The combination of the effective decay length σ being independent of α and the base concentration c0
decreasing with increasing α means that the effective width of the filament decreases with increasing α.

D Chemotactic navigation within filament

We derive an effective equation of motion for chemotactic navigation within a typical concentration
filament. For simplicity, we initially ignore interaction with the flow and assume that the motion is
effectively two-dimensional, i.e., in the xy-plane. Additionally, we employ a two-dimensional version of
Eq. (S9) for the concentration filament, setting ay = 1,

c(x, y, t) = c0 exp (−k |x|) exp

(
− (y − y0)2

2σ2

)
. (S20)

We introduce the centerline rh(t) = (x(t), y(t), 0) of the helical swimming path r(t), with ṙh = vhh. From
a previously established equation for rh [5, 6], we have

ẋ = vh cos (ϕ) , ẏ = vh sin (ϕ) ,

ϕ̇ = −vϕ
|∇c|
c+ cb

sin Ψ , Ψ = ^ (∇c,h) ,
(S21)
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describing the alignment of the helix axis h with the local gradient ∇c(rh(t)) of a concentration field
c(r). The first equation corresponds to ballistic motion along the helix axis h(ϕ) = cosϕ ex + sinϕ ey
with net swimming speed vh = v0τ0/

√
κ2

0 + τ2
0 . The second equation describes chemotactic turning of

the orientation angle ϕ, where Ψ denotes the angle enclosed by h and the local gradient ∇c(rh(t)). Here,
cb denotes the adaption threshold and vϕ the chemotactic turning speed, vϕ = ρvhκ

2
0/
(
κ2

0 + τ2
0

)
, vϕ > 0,

with the gain factor ρ and helix parameters κ0, τ0. We apply this general theory, Eq. (S21), to the
filamentous profile Eq. (S20) and obtain a single dimensionless ODE

Ÿ =
(
−Ẋ2Y︸ ︷︷ ︸
∼oscillator

+ sgn (X) γẊẎ︸ ︷︷ ︸
∼damping

) c

c+ cb︸ ︷︷ ︸
∼dimmer switch

(S22)

with Ẋ2 + Ẏ 2 = 1, Ẋ 6= 0 and a single dimensionless parameter

γ = kσ

√
vϕ
vh

= kσ

√
ρκ2

0

κ2
0 + τ2

0

. (S23)

Here, we introduce a characteristic time-scale τ ,

τ =

√
σ

vϕ
· σ
vh

, (S24)

as well as re-scaled coordinates Y (T ) = (y(t)− y0) /L, X(T ) = x(t)/L, L = vhτ . Dots denote differentia-
tion with respect to re-scaled time T = t/τ , e.g., Ẏ = dY /dT . The time scale τ is the geometric mean
of a characteristic time-scale σ/vϕ of chemotactic steering and a typical time σ/vh for traversing the
cross-sectional width σ of the filament if steering was absent. We have an equation for X analogous to
Eq. (S22) (which requires Ẏ 6= 0 and covers the case Ẋ = 0),

Ẍ =
(
ẊẎ Y − sgn (X) γẎ 2

) c

c+ cb
. (S25)

The factor c/(c+ cb) in the effective equations of motion, Eqs. (S22, S25), represents a ‘dimmer switch’
that attenuates chemotactic navigation at low concentration c. Thus, it is reasonable to define the
filament as the region where c(r) ≥ cb. In the following, we focus on the dynamics within the filament
and approximate c/(c+ cb) ≈ 1.

The effective equation of motion, Eq. (S22), describes a damped, non-linear oscillator: The first term
Ẋ2Y originates from the perpendicular component ∇⊥c = (ey ·∇c) ey of the concentration filament
and governs the observed oscillations of sperm cells around the centerline Y = 0 of the filament.
Heuristically, these oscillations result from sperm cells slowly aligning their helix axis h parallel to ∇⊥c
while approaching Y = 0. At Y = 0, ∇⊥c changes its direction, yet sperm cells overshoot due to their
finite chemotactic turning speed vϕ < ∞, before they eventually make a ‘U-turn’. The second term

sgn (X) γẊẎ in Eq. (S22) originates from the exponential decay of concentration along the centerline of

the filament and changes the amplitude of the oscillation. In particular, for sgn
(
XẊ

)
< 0, i.e., sperm

cells surfing towards the egg, the oscillation is damped, whereas for sgn
(
XẊ

)
> 0, i.e., sperm cells

surfing away from the egg, it is amplified. This increase in amplitude can cause sperm cells that are
surfing away from the egg to eventually turn around, redirecting them towards the egg. A linear stability

analysis of Eq. (S22) around the case of a non-oscillating trajectory
(
Y, Ẏ

)
= (0, 0) yields the eigenvalues

ω1,2 of the Jacobian of the linearization,

ω1,2 = ζ ± i
√

1− ζ2 , ζ = sgn
(
XẊ

) γ
2
, (S26)

which define a harmonic oscillator with dimensionless damping ratio ζ and dimensionless oscillation
frequency

√
1− ζ2. This analytic result agrees with full simulations of helical chemotaxis in three-

dimensional space, see Fig D.
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Note that the predicted exponential decay of oscillation amplitude, exp (ζT ) = exp (γ/2 · t/τ), is
independent of x since γ/τ is independent of σ2(x). Interestingly, both for Eq. (S22) and full simulations,
the angle at which trajectories intersect the centerline Y = 0 of the concentration filament is essentially
independent of the angle at which they first entered the filament at Y (c = cb), provided Y (c = cb) is
sufficiently large: For smaller Y (c = cb), i.e., outer and thus thinner parts of the filament, trajectories
will simply pass through the filament, unable to execute a successful turn before they have left the
filament again. As the width of the filament decreases away from the egg, this implies that filament
surfing will be operative, at most, up to a maximal distance from the egg (which depends on the entry
angle), characterized by pin. If we account for convection by shear flow vext = αy ex, Eq. (S25) changes
to Ẋ → Ẋ + ατ(Y + y0(X)/L). Note that due to sgn (y0(x)) = sgn (x), sperm cells that surf within the
filament towards the egg swim on average against the external flow.
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Fig D. Surfing along filaments can be described as damped oscillation. Distance
d =

√
(y − y0)2 + z2 from the centerline of concentration filament Eq. (S9) superimposed for n = 9

sperm trajectories simulated according to Sec B (black). Trajectories are shown after they entered the
surface of the concentration filament, defined by c(r(t)) = cb, and shifted in time to align the first
oscillation peak at t0 = 0. Remarkably, all trajectories display stereotypic oscillations that overlap
perfectly, despite the fact that trajectories entered the filament at different x-positions and initial
direction angles. The observed damped oscillation are well reproduced by a minimal analytical theory for
the centerline of the helical swimming path, which predicts damping ratio and oscillation period (dashed
red line, see Eq. (S26)). Parameters as in Fig 1B, corresponding to A. punctuala.

E Minimal theory for sperm-egg-encounter probability

We provide an estimate for the encounter probability Psperm:egg, building on the effective equation of
motion of the helix axis derived in Sec D. The fertilization probability Pfert is obtained then from
Psperm:egg using fertilization kinetics, Eq. (5). For Psperm:egg, we decompose the search problem for the
egg into an outer search problem of finding the concentration filament and an inner search problem of
surfing along the filament. We obtain (exploiting the symmetry between the two branches of the filament
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for x < 0 and x > 0)

Psperm:egg ≈ 2

rmax∫
0

dx pin(x, tmax)
[
A(x)ρegg + S(x)jouttout(x, tmax)

]
. (S27)

Here, we introduce the following quantities:

• the cross-sectional area A(x) at the position x of the filament, which is defined by c(r) ≥ cb,
i.e., A(x) =

∫∫∞
−∞ dy dzΘ(c(x, y, z) − cb), with the Heavyside-function Θ (Θ(c > 0) = 1 and

Θ(c ≤ 0) = 0),

• the circumference S(x) corresponding to the cross-section,

• the average probability pin(x, tmax) that a trajectory entering the filament at x > 0 will surf along
it and reach the egg within exposure time tmax,

• the mean steady-state flux jout of trajectories arriving at the surface of the filament, and

• the time limit tout for the outer search problem.

These quantities are explained in detail below. The first term in Eq. (S27) accounts for sperm cells found
inside the concentration filament already at t = 0, assuming a random uniform distribution of initial
positions. The second term in Eq. (S27) accounts for trajectories, which first search for the filament and,
after encountering the filament, surf along it towards the egg.

We compute the probability pin(x, tmax) of successful inner search numerically using the effective
equation of motion for the helix axis Eq. (S22) as function of entry position x and exposure time tmax.
Specifically, we average over simulations of Eq. (S22) with uniformly distributed initial entry points
and isotropic initial directions, i.e., entry angles. In order to account for the ellipsoidal cross-section
of the concentration filament with σy = σay, σz = σ, we average results for σy and σz. From the
successful trajectories, we also obtain the mean travel time tin within the filament, which represents a
conditional mean first passage time. Accordingly, we set the maximal time tout allowed for the outer
search tout(x, tmax) = tmax − tin(x, tmax) if pin > 0 and tout = 0 else.

Note that the first term in Eq. (S27) can be written as Veffρegg with an effective volume Veff =
2
∫∞

0
dxA(x)pin(x, tmax) of the concentration filament, weighted by the probability pin of successful

chemotaxis to the egg. This contribution is negligible compared to the second term for long exposure
times tmax and low egg densities ρegg.

The flux jout of trajectories arriving at the surface of the concentration filament can be determined
by a fit to Psperm:egg(α) from simulations at different shear rates α. Alternatively, we can estimate
jout by treating sperm cells outside of the filament as ballistic swimmers with net swimming speed
vh and uniformly distributed random positions r and orientations h with probability distribution

psperm(r,h) =
(

4
3π(r3

max − r3
egg)

)−1
(4π)

−1 ≈ ρegg (4π)
−1

. Assuming that the filament is convex, each
point on its surface is reached at time t from initial conditions on a surface of a half-sphere with radius
vht. The flux of trajectories with direction h into the filament at r0 is jout(r0,h) = −n · vhhpsperm(r0,h)
for n · h < 0 and jout(r0,h) = 0 else, where n denotes the outer surface normal vector at r0. For
the constant density psperm(r0,h) = psperm the total flux of sperm cells into the filament is jout =∫ 2π

0
dϕ
∫ π/2

0
dθ sin θjout(r0,h(ϕ, θ)) = pspermπvh, where we use spherical coordinates ϕ, θ with ez = n to

express h. Note that an isotropic distribution of orientations h is a simplification, since co-rotation by
flow alters this distribution, see Sec F.

Despite the simplifications made, Eq. (S27) can quantitatively account for the encounter probability in
full simulations, see Fig 2. In particular, we find that the numerical fit for jout = 0.063 m−2s−1 is close to
our simple estimate for a ballistic swimmer jout = ρeggvh/4 = 0.04 m−2s−1. Of course, our simple theory
has limitations: First, trajectories are three-dimensional, not two-dimensional, and are characterized by
oscillations both in y- and z-direction. As a result, sperm trajectories are super-helical, which reduces the
effective speed along the filament. Second, our theory does not account for the fact that some sperm cells
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may miss the egg on the first attempt, and find it only after reversing their motion in x-direction, which
increases the mean time tin to find the egg. Preliminary simulations suggest that the difference between
simulations and theory in Fig 2 indeed originate from this effect. Finally, co-rotation is neglected in the
simple theory. However, this is justified for α� τ−1, see Eq. (S24), i.e., when rotation due to navigation
is much faster than co-rotation due to flow. Note that simulations with neither convection nor co-rotation
exhibit also an optimal shear rate α∗, but at higher shear rate and different encounter probability. The
reason is that convection implies a flow opposing surfing towards the egg, which increases tin compared
to the case without convection. Thus, Psperm:egg increases for large α when convection is not included,
resulting in a shift of α∗.

For the experiment of Zimmer and Riffell (data reproduced in Fig 3 and Fig A), we estimate a
high background concentration of chemotattractant cbg ∼ 4 nM, see Sec G. Adding a background
concentration c→ c+ cbg in Eq. (S20) leads to an effective, higher threshold cb,eff = cb + cbg in Eq. (S22).
Consequently, the volume of the filament with sufficiently high concentration c(r) ≥ cb,eff is situated only
in the vicinity of the egg. While our far-field theory of filament surfing does not apply directly to this
special near-field case, we can make a simple estimate: We assume that sperm cells always swim directly
towards the egg within the concentration plume defined by c(r) ≥ cb,eff due to the close-to-spherical
shape of the plume. Thus, sperm cells entering the plume at x0 = 0 approach it with net radial speed vh,
as the external flow only convects the sperm cells parallel to the egg surface, see Eq. (S1). A second,
alternative calculation applies if sperm cells enter the plume at x0 � regg: In this case, we can estimate
the net speed towards the egg by ẋ = αy0(x) − vh. This yields for the distance x(t) from the egg,
x(t) = vh

αb +
(
x0 − vh

αb

)
exp (αbt) (using y0(x) ≈ bx, see Sec C). We use these two limit cases to compute

pin and tout for Eq. (S27) and obtain similar fertilization probabilities Pfert(α) in both cases. For these
limit cases, Pfert(α) displays a similar decay as function of α as the simulation results without co-rotation,
see Fig 3. In particular, the fitted flux jout = 4.8 · 103 m−2s−1 is consistent with the theoretical value
jout = ρeggvh/4 = 7.5 · 103 m−2s−1.

F Analytic solution of Jeffery equation in shear flow

As shear flow is a fundamental paradigm for small-scale turbulence, we present here the analytic solution
to the Jeffery equation, Eq. (S8), for particles suspended in simple shear flow. The application to helical
swimmers is discussed. The results provide the distribution of helix orientations h on the periodic
boundary used in the simulations, i.e., psperm in Eq. (6). In particular, the results quantify the common
notion that non-spherical swimmers align their major axis parallel to the flow direction. In fact, these
swimmers rotate all the time, but with non-constant rotation rate, causing these swimmers to spend
more time aligned with the flow axis. Consequently, the time-average of the orientation vector is not
zero, but aligned with the flow axis. Note that analytic results for Poiseuille flow can be found in [17,18].

For simple shear flow vext = αy ex, the dynamics of the unit vector e along the major axis of a prolate
spheroid, i.e., ė = Ωf × e with Ωf given by Eq. (S8), can be rewritten in terms of spherical coordinates
0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π of e = (sin θ cosϕ, sin θ sinϕ, cos θ)

θ̇ =
αG

4
sin 2θ sin 2ϕ ,

ϕ̇ =
α

2
[G cos 2ϕ− 1] .

(S28)

The range 1 ≤ g <∞ of the aspect ratio g (with g = 0 for a sphere and g →∞ for an infinitesimal thin
rod) implies 0 ≤ G < 1 for the geometric factor G. The dynamics of the polar angle ϕ(t) is independent
of the azimuthal angle θ(t). By integration, we find

ϕ(t) = arctan

[
G− 1√
1−G2

tan (Ψ(t))

]
(S29)
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with short-hand

Ψ(t) =
αt

2

√
1−G2 + arctan

[√
1−G2

G− 1
tanϕ0

]
(S30)

and initial condition ϕ(0) = ϕ0. Note that ϕ̇ ≤ 0, i.e., −α2 (1 +G) ≤ ϕ̇ ≤ −α2 (1−G). Hence, the polar
angle ϕ(t) rotates clockwise with period

T =
4π

α
√

1−G2
(S31)

with T ≥ 4π/α. Substituting Eq. (S29) for ϕ(t) into Eq. (S28), we find

θ(t) = arccot

[
cot (θ0)

√
1 +G cos [2Ψ(0)]

1 +G cos [2Ψ(t)]

]
(S32)

with initial condition θ(0) = θ0.
We also compute the density ρe(θ, ϕ) of directions for an ensemble of ballistic microswimmers obeying

Eq. (S28). The distribution of polar angles ρϕ(ϕ) is proportional to 1/ |ϕ̇|

ρϕ(ϕ) =

√
1−G2

4π
[
1−G

(
1− 2 sin2 ϕ

)] . (S33)

This density has two maxima, at ϕ+ = 0 and ϕ+ = π, and two minima at ϕ− = ±π/2, resulting in a

density range ρϕ(ϕ−) ≤ ρϕ ≤ ρϕ(ϕ+) with ρϕ(ϕ±) = (4π)
−1

[(1 +G)/(1−G)]
±1/2

.
In order to derive the full density ρe(θ, ϕ), we use an alternative scheme to solve the continuity

equation, inspired by the method of characteristics. Effectively, an ordinary differential equation (ODE)
and a system of ODEs are solved instead of one partial differential equation (PDE). The dynamics of
e correspond to a flow w(e) on the unit sphere. The continuity equation for a density ρe(e, t) in an
arbitrary flow field w(e, t) reads

∂tρe(e, t) = −∇ · [ρe(e, t)w(e, t)] . (S34)

Instead of solving directly for the density ρe(e, t) in the laboratory frame, we can first solve for the
density ρ̆e (t; e0) in a co-moving frame

ρe(e, t) = ρ̆e (t; ĕ(−t, e)) , (S35)

where ĕ(t; e0) is the trajectory starting at ĕ(0; e0) = e0 and following the flow ˙̆e = w(ĕ, t). We obtain
ρ̆e (t; e0) from the rewritten continuity equation

˙̆ρe (t; e0) = −ρ̆e (t; e0)∇ ·w (ĕ(t; e0), t) . (S36)

Applying this scheme to Eq. (S28) with flow w(θ, ϕ) = θ̇eθ + sin θϕ̇eϕ on the unit sphere and using the
solutions θ(t), ϕ(t) from Eqs. (S29,S32) yields

ρ̆e(t; θ0, ϕ0) = C0(θ0, ϕ0)
[
cot2 (θ0) (1 +G cos [2Ψ(0)]) + (1 +G cos [2Ψ(t)])

] 3
2 , (S37)

where the pre-factor C0(θ0, ϕ0) is defined by the initial conditions. For our simulations, we use an

initially uniform distribution such that ρ̆e(0, θ0, ϕ0) = (4π)
−1

. Switching notation to θ̆(t, θ0, ϕ0) = θ(t)
and ϕ̆(t, ϕ0) = ϕ(t), the density ρe follows

ρe(θ, ϕ, t) = ρ̆e

(
t; θ̆(−t, θ, ϕ), ϕ̆(−t, ϕ)

)
. (S38)
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While ρe is periodic in time with period T by Eq. (S31), we can compute a time-average over one period,
starting with a uniform distribution of directions e at t = 0. The time-averaged density displays a
maximum at the axis of flow e = ±ex and a minimum at the shear axis e = ±ey. These extrema vanish
for a sphere (G = 0) and become more pronounced with increasing G.

While the above results are derived for the case of a suspended particle, numerical simulations show
that they also approximately apply to the centerline rh(t) of a helical swimmer with helix axis h (without
chemotaxis) if we use an effective aspect ratio geff. Specifically, the dynamics of the helix axis h resembles
the above solutions with a smaller aspect ratio 1 ≤ geff ≤ g. This approximation is valid for small times t
and at small α, i.e., as long as the helix period is much smaller than the period T (g). For instance, we fit
geff = 1.3± 0.1 (Geff = 0.26) for the sea urchin helix parameters and g = 5 (G = 0.92). This effective
parameter is a result of averaging the instantaneous co-rotation for the swimming direction e1 with
parameter G over one period of helical swimming. Generally, geff depends on the angle between h and
e1. For larger α, complicated behavior of h is observed with limit cycles and stable fixed points, which is
consistent with recent results for Jeffery equation in perturbed shear flow [19]. We use the value geff in
all simulations to determine the periodic boundary conditions at the boundary of the simulation domain.

G Choice of parameters

Parameters used throughout the three simulation scenarios (Arabacia punctuala for Fig 1B, Fig 2, Fig D,
Strongylocentrotus purpuratus from [1, 21, 22, 25] for Fig 4, Fig C and Fig B, Haliotis rufescens from
[13,20] for Fig 3 and Fig A) are listed in Table A and discussed in the following.

Mean path curvature κ0 = 0.065 µm−1 and mean path torsion τ0 = 0.067 µm−1 of the helical paths
are set according to three-dimensional tracking of A. punctuala sperm cells [8]. Three-dimensional
tracking for S. purpuratus give similar values [23], though with larger error intervals. Moreover, the sperm
morphology for A. punctuala [8, 10], S. purpuratus [24], and H. rufescens [26] is similar, which justifies
the use of the same helix parameters for all three species. Likewise, the effective aspect ratio g = 5
between major and minor axis of a sperm cell, i.e., length of flagellum divided by typical beat amplitude,
suggested for H. rufescens [13] is employed for all three species in the Jeffery equation Eq. (S8). We
observe that simulation results are largely independent of the precise value of g. The signaling time-scale

µ = 1/
(
v0

√
κ2

0 + τ2
0

)
is chosen to ensure the optimal phase-lag between concentration input c(r(t)) and

motor response a(t) [5,27], see Eq. (S7), consistent with experimental observations [8]. For all three species,
the gain factor is set as ρ = 5, corresponding to the mean of the values used in [10]. This value reproduces
typical bending rates of helical swimming paths as observed in experiments [8]. The threshold of sensory
adaption cb = 10 pM is chosen as suggested in [28]. At the concentration cb, about 20 chemoattractant
molecules would diffuse to a sperm cell during one helical turn. Note that sea urchin sperm cells respond
to single chemoattractant molecules [29]; the change in intra-cellular calcium concentration caused by
the binding of chemoattractant molecules as function of stimulus strength becomes sub-linear already
for chemoattractant concentrations on the order of cb [28]. For A. punctuala, other parameters were
also tested, i.e., ρ = 2 and cb = 1 pM, which yielded qualitatively similar simulation results and again
agreement of theory and simulations. Note that the experimental protocol used in [20] for H. rufescens
results in a substantial background concentration of chemoattractant, which we estimate as cbg ∼ 4 nM
(experiments are conducted 10− 30 min after spawning at a high density of eggs ρegg = 103 ml−1 with

the known release rate Q̇ = 0.18 fmol min−1 of chemoattractant [30]). According to our theory, such a
background concentration causes effectively a higher sensitivity threshold cb,eff = cb + cbg (see Sec E),
which may the be reason for the higher behavioral threshold 300 pM observed in [20]. In the case of S.
purpuratus, we estimate an even higher background concentration, cbg ∼ 500− 4000 nM, which renders
chemotaxis ineffective. For this estimate, we use that experiments were conducted 1− 8 h after spawning
at a high egg density ρegg = 1.5 · 104 ml−1 [21, 25] and assume a release rate Q̇ = 0.46 fmol min−1 of
chemoattractant as for A. punctuala [28].

For the swimming speed v0 of sperm cells along helical paths for both sea urchin species, we use
the measured value v0 = 200 µm s−1 from [8]. Note that some experiments effectively measure the net
swimming speed along the helix axis vh = v0τ0/

√
κ2

0 + τ2
0 , which is smaller than v0. For H. rufescens, we
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use the speed vh measured during the same experiment [20]. Note that this experiment also indicated
chemokinesis, i.e., higher swimming speeds at elevated chemoattractant concentration, an effect which we
neglect here for simplicity.

For A. punctuala, we use the diffusion coefficientD = 239 µm2s−1 and release rate Q̇ = 0.46 fmol min−1

of chemoattractant [28]. For this simulation, we assume a low egg density ρegg = 10−3 ml−1, which
yields the radius rmax = 6 · 104 µm of the outer boundary centered around the egg according to

ρegg =
(
4πr3

max/3
)−1

. For this reference case, the filament is completely included inside the simulation
domain for all considered shear rates α. The exposure time tmax = 360 s is chosen comparable to
the experiment in [25], where tmax = 120 s. While for this work the exposure time tmax is set by the
protocol of the considered experiment, in a generic turbulent flow tmax corresponds to the time-scale of
flow changes, i.e. scale with the Kolmogorov time tmax ∼ τKol. For comparison with the experiments
with S. purpuratus and H. rufescens, the radius rmax is computed directly from the stated egg density

ρegg =
(
4πr3

max/3
)−1

. From the 5 vol% solution with regg = 40− 55 µm ([21], pg. 161), we infer a range

ρegg = 0.9 − 3.4 · 104 ml−1 for the experiments with S. purpuratus. This estimate already takes into
account that, according to the experimental protocol, the above egg solution is mixed 9 : 1 with sperm
solution [21,25]. Likewise, from the range of sperm densities ρsperm = 1.9− 3.1 · 106 ml−1 in Fig. 4 of
[25] and the estimate ρsperm = 4 · 106 ml−1 from pg. 59 of [21], both before 9 : 1-dilution, we infer a final
concentration ρsperm = 3.9 · 105 ml−1. We use the kinematic viscosity ν = 10−6 m2s−1 of sea water at
room temperature.

H Numerical Simulation

The equations of motion are integrated using an Euler scheme with fixed time step dt . For all time
integrations, a time step dt = 10−3 s is used. Integration with smaller dt = 10−4 s for some test cases
gave consistent results. The number Nsperm of sperm cells simulated in each case is 105, except for S.
purpuratus, where Nsperm = 104 is used.

The concentration field is computed from Lagrangian particle tracking with Euler-Maruyama method
for the Fokker-Planck equation

∂tc = −∇ · vext c+D4 c (S39)

with vext from Eq. (S1). Test particles were released at random points of the surface of sphere of
radius regg located at the origin. In total, we used 4 · 106 test particles, which corresponds effectively to
1.6 · 107 particles by exploiting symmetries of the flow field. Concentrations are evaluated on a cubic
50× 50× 50 grid, spanning in each dimension from −rmax to rmax, and then interpolated by a spline
interpolation of order 3. This grid is sufficiently fine to resolve the details of the concentration filaments.
The rapid convergence to a near-steady state allows to use a static concentration field corresponding to
exposure time tmax for each simulation. We checked for test cases that full simulations with time-varying
concentration field do not yield different results.

The implementation of an unsteady shear flow for a shear rate α used as illustration in Fig 1A is
inspired by [31]: We use the flow field vext(r, t) = α′(r, t)

[
r · e′y(t)

]
e′x(t), where the shear axis e′y(t)

and the flow axis e′x(t) are subject to a three-dimensional random walk on the unit sphere with rotational
diffusion coefficient Drot = πα. The shear rate profile is given by α′(r, t) =

√
2 α sin (2πt/Tα) h(r).

The shear rate α′(r, t) decays as h(r) with distance r away from the center. This decay h(r) mimics
the decay of velocity from the center of a vortex. We use the decay of an Lamb-Oseen vortex h(r) =(
rcore
r

)2(
1− exp

[
−
(

r
rcore

)2
])

, employing the Burger radius rB of a Burger vortex as core radius

rcore = rB, where rB = KηKol ≈ K
√

ν
α with K = 7.1 [3, 32, 33]. The shear rate α′(r, t) oscillates in time

with root-mean-square amplitude

√
1
Tα

Tα∫
0

dt α′(r, t)2 = h(r)α and period Tα =
r2B
2ν , corresponding to the

time scale of decay of a Burger vortex.
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Parameter Sea urchin [8]
(A. punctuala)

Fig 1, Fig 2,
Fig D

Sea urchin
[1, 21,22,25]

(S. purpuratus)
Fig 4, Fig B, Fig C

Red
abalone [13,20]
(H. rufescens)
Fig 3, Fig A

path curvature κ0

[
µm−1

]
0.065

path torsion τ0
[
µm−1

]
0.067

helix radius r0 [µm] κ0/
(
κ2

0 + τ2
0

)
≈ 7

gain factor ρ 5
threshold of sensory
adaption

cb [pM] 10

signaling time-scale µ [s]
(
v0

√
κ2

0 + τ2
0

)−1

sperm aspect ratio g 5
swimming speed v0

[
µm s−1

]
200 42

net speed along helix axis vh
[
µm s−1

]
145 30

chemoattractant release
rate

Q̇
[
fmol min−1

]
0.46 0.18

diffusion coefficient D
[
µm2s−1

]
239 660

egg radius regg [µm] 100 50 108

egg density ρegg

[
ml−1

]
10−3 1.5 · 104 103

boundary radius rmax [µm] 6 · 104 240 620

sperm density ρsperm

[
ml−1

]
– 3.9 · 105 104

exposure time tmax [s] 360 120 15
background concentra-
tion

cbg [nM] – 500− 4000 4

fertilizability (fit) pf – 10% 60%

Table A. List of parameters used or obtained for the three scenarios. See text for discussion
and further parameters.
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I Parameter study

In order to demonstrate the sensitivity of the quantitative results, shown in Fig 2 of the main text,
on the parameters, we computed the encounter probability Psperm:egg(α) for a range of exposure times
tmax , egg densities ρegg expressed in terms of boundary radii rmax, threshold of sensory adaption cb,
and gain factors ρ as shown in Fig E, Fig F, Fig G, and Fig H, respectively. In all cases, there is a
pronounced optimum present at some intermediate shear rate α∗, where the position of the optimum
α∗ is only slightly affected by the parameter variations. The parameters mostly affect the height of
the optimum, in particular tmax and rmax, and its ratio to the flow-less α = 0 case, see Table B. This
suggests that the existence of an optimum is quite insensitive to parameter variations, i.e., regardless
of how the parameters are adapted, fertilization is optimal at an intermediate shear flow for a broad
physiological range of parameter values.

For each parameter study all parameters but one are kept constant on the values reported for A.
punctuala in Table A. The only exception are tmax and rmax whose base values are lowered to tmax = 90 s
and rmax = 15 mm for numerical efficiency, i.e., the blue dots in Fig E, Fig F, Fig H, and Fig G correspond
always to the same parameters. The increase of the exposure time tmax in Fig E from 45 to 90 s causes
only a slight decrease of the optimal shear rate α∗ from 0.3 to 0.1 s−1, but increases the absolute encounter
probability Psperm:egg(α∗) by an order of magnitude. Such an increase of Psperm:egg(α∗) is also observed
for the increase of the egg density, i.e., the decrease of the boundary radius from 30 to 10 mm in Fig F.
These increases are in accordance with the simple argument that longer search time or smaller search
volume increases the chances of finding the egg. The advantage of the optimum to the flow-less case
Psperm:egg(α∗)/Psperm:egg(α = 0) varies for both parameters between a factor 2 and 14, see Table B. In
contrast, the variation of cb and ρ hardly affects the optimum in terms of α∗ and Psperm:egg(α∗) but rather
alters the probability in the absence of flow: Increasing cb or decreasing ρ increases Psperm:egg(α = 0 s−1).
This is probably an effect of signal-noise, originating from the computed concentration field which, due to
the very nature of Lagrangian particle tracking, can exhibit low signal-to-noise ratio at low concentrations,
i.e. at the surface of the concentration plume. (Note that our model does not explicitely account for
sensing noise [34].) This noise results in an effective reflection of incoming sperm trajectories at the
surface of the plume for increasing sensitivity of the concentration measurement, expressed by cb, or
increasing reaction to signal stimulus, expressed by ρ, see also discussion in [10,35]. The effect is expected
to be much smaller for concentration filaments at α > 0 s−1 as the concentration gradient towards the
center of the filament is higher and thus the signal-to-noise ratio generally higher as for a concentration
plume solely established by diffusion in the flow-less case.
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Fig E. Flow-dependent sperm-egg encounter probability for different exposure times
tmax. Encounter probabilities Psperm:egg(α) as function of external shear rate α for three values of
sperm-egg exposure time tmax obtained from simulations with co-rotation. (symbols according to legend,
mean ± SD; flow-less results Psperm:egg(α = 0 s−1) displayed by dashed horizontal lines in respective
color). Parameters taken for A. punctuala, see Table A, except boundary radius rmax = 15 mm for
numerical efficiency.
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Fig F. Flow-dependent sperm-egg encounter probability for different egg densities ρegg.
Analogous to Fig E, yet for three different values of boundary radius rmax, corresponding to three

different egg densities ρegg according to ρegg =
(
4πr3

max/3
)−1

. (For all three curves tmax = 90 s, thus
blue curve identical to blue curve in Fig E.)
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Fig G. Flow-dependent sperm-egg encounter probability for different thresholds of
sensory adaption cb. Analogous to Fig E, yet for three different values of threshold cb. (For all three
curves tmax = 90 s and rmax = 15 mm, thus blue curve identical to blue curve in Fig E.)
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Fig H. Flow-dependent sperm-egg encounter probability for different gain factors ρ.
Analogous to Fig E, yet for three different values of gain factor ρ. (For all three curves tmax = 90 s and
rmax = 15 mm, thus blue curve identical to blue curve in Fig E.)
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Parameter Psperm:egg(α∗)/Psperm:egg(α = 0)

Sperm-egg exposure time:
tmax = 45 s, 90 s, 180 s 4.6 13.6 8.7

Boundary radius setting egg density:
rmax = 10 mm, 15 mm, 30 mm 5.2 13.6 2.3

Threshold of sensory adaptation:
cb = 1 pM, 10 pM, 100 pM 18.3 13.6 2.6

Chemotactic gain factor:
ρ = 2, 5, 10 3.8 13.6 18.6

Table B. Relative amplitude of optimum in sperm-egg encounter probability. Ratios of
encounter probability Psperm:egg(α = α∗) at optimal shear rate α∗ normalized by encounter probability
Psperm:egg(α = 0) in the absence of flow for parameter study displayed in Fig E, Fig F, Fig G, and Fig H.
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