Supporting Information

Production of structurally defined chito-oligosaccharides with a single *N*acetylation at their reducing end using a newly discovered chitinase from *Paenibacillus pabuli*

Jing Li^{a,b,c}, Damao Wang^{b,d}, Shu-Chieh Chang^b, Pi-Hui Liang^e, Vaibhav Srivastava^b, Shih-Yun Guu^f, Jiun-Jie Shie^g, Kay-Hooi Khoo^f, Vincent Bulone^{b,h}, Yves S. Y. Hsieh^{*b,c,i}

 ^aCollege of Life Sciences, Shanghai Normal University, Shanghai 220234, PR China
^bDivision of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, SE10691, Sweden
^cSchool of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
^dCollege of Food Science, Southwest University, Chongqing, 400715, PR China
^eSchool of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
^fInstitute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
^gInstitute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
^hSchool of Agriculture, Food and Wine, The University of Adelaide, Urrbrae 5064, Australia
ⁱGenomics Research Center, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan

GGAAGTGCTCCACTACCCAAGAAAATTATAGCGTATGTTGCGGGTTGGGCAAACTGGACC AATGGCAAGGCGACTATCACCAACAGCGACCGCACCAAACTGCAAATGATGGTTGGCCTG AAGAGCCGTAATCCGGACCTGAAAGTGCTGCTCTCTGTGGGCGGTTGGGGTGCGAACGGC TTTAGCGACGCAGCGCTGACAGATGCGTCCCGCACGACGTTTGCAGATAGCATTGTCCAG TTGGTGACCTCGAATAACCTGGACGGCGTGGACCTCGACTGGGAGTACCCGACGAACCCG GCAGCTGGCACCACCGCGCGCCGCAAGATAAACAGAATTTTACCCAGCTGCTGTCGAAG GTACGTGAAAAGTTGAACGCGCAAGGTCAGATCAACGGGAAACAATACCTGCTGACCATT GCAGCGGGCGCTAGCTCCTCCTACCTGAACGGCGTGGAAATTAACAACATTACCCCGCTG TTGGACTGGATTAACCTGATGACCTACGACTTCCACGGCACCTGGGATGCCACCACGGGT CATCATACCAATCTGAGCGGTCGCGATATCAGCGTCACCTCCGCTGTGAACCTGTTCCGC ACCGGCGTTCAGAACTCTAATAACGGCCTGGACCGTCCGGGATCTGGTGGTTTCGAACCG GACTACAACCATCGTTTCTCAGTACCTCAACAAGAACGGTTATACTCGTTACTGGGAC AGCTCCGCACAAGCTCCGTATTTGTTCAACGGCAATACCTTTATCTCTTACGATGATCCG CAGTCTCTGAGCCTGAAGGTGCAATACGTTAAGAACAGCAACCTTGGTGGTATTATGTTT TGGGAGTATTCCAACGACCGTTCCGGTGCATTGCTGCAAGCGGTCTATTCGGAAGTTACC GGCGGCGGAACGGTTCAGCCTCCGAATCCAAGCGGTTACAACTATTTGGTAGCGCAGGCG AATCAGCAGATCGTGAGCGCGGATAATCAAGGTAATGATCAGCTGGTGGCGAACCGTACC ACGGCCGGTGATTGGGAGCTGTTCGAGTGGATCACCAACAGCGACGGTACGGTTTCCTTG AAAAGCAAAATCAACAACAAATACGTCACTGCGGATGTGAATCTGGGTGGTGCTCTGATC GCTAAAGCCACCACCATCCAGCAATGGGAGAAATTCAATCGTGTTGACCTGGGCGATGGC ACTATTGCCCTGCAAGCGTTAGCAAACAACCTTTATGTTACGTGCGATTTGAATAATGGC GGCAAGTTGGTCGCGAGCAGAAACAGCGTTGGTGGCGCTTGGGAGGCATTTCGCGTGAAC AAGCTGGAA

Figure S1: PpChi codon-optimized nucleotide sequence

Figure S2: Sequence alignment of PpChi and other characterized chitinases

Figure S4: Catalytic domain alignment of *Pp*Chi and other fully characterized chitinases (catalytic amino acids are marked with red asterisks).

Figure S5: SDS-PAGE analysis of the purified recombinant *Pp*Chi protein: Lane M, protein markers; Lane 1, purified *Pp*Chi protein using a Ni-NTA column.

Protein sequence coverage: 79%

GSAPLPKKIIAYVAGWANWTANDIKAEQLSHINYSFALISNGKATITNSDRTKLQLMV GLKSRNPDLKVILSVGGWGANGFSDAALTDASRTTFADSIVQLVTSNNLDGVDLDWE YPTNPAAGTTARPQDKQNFTQLLSKVREKLNAQGQMNGKQYLLTIAAGASSSYLNGV EINNITPLLDWINLMTYDFHGTWDATTGHHTNLSGRDISVTSAVNLFRNSGVPANKLV IGGAFYGRAWTGVQNSNNGLDRPGSGGFEPDYNTIVSQYLNKNGYTRYWDSSAQAP YLFNGNTFISYDDPQSLSLKVQYVKNSNLGGIMFWEYSNDRSGALLQAVYSEVTGGG TVQPPNPSGYNYLVAQANQQIVSAENQGNDQLVANRTTAGDWELFEWITNSDGTVSL KSKINNKYVTADVNVGGALIAKATTIQQWEKFNRVDLGDGTIALQALANNLYVTCDL NNGGKLVASRNSVGGAWEAFRVNKLE

Figure S6: Peptides identified by mass spectrometric analysis of the recombinant *Pp*Chi protein (red).

Figure S7: Mass spectra of: A) products released by *Tv*Chi incubated for 1 h in the presence of chitosan with a da of 48%; and B) and C), products released by *Pp*Chi after 1-h treatment with chitin (90% da) and chitosan (10% da), respectively

Figure S8: HPAEC-PAD chromatogram of purified DP3 (DDA) and DP4 (DDDA).

Figure S9: Lineweaver–Burk plots of *Pp*Chi in the presence of chitin with a da of A) 90%, B) 48%, and C) 10%.

Figure S10: Mass spectra of products released by *Pp*Chi after 48h incubation in the presence of chitin with a da of A) 90%, B) 48%, and C) 10%. Sodiated molecular ion $[M+Na]^+$ of GlcNGlcNAc *m/z* = 405; GlcNAcGlcNAc *m/z* = 447; GlcN₂GlcNAc *m/z* = 566; GlcN₃GlcNAc *m/z* = 727.

Figure S11: Mass spectrum of chito-oligosaccharide products released by *Pp*Chi after 24 h treatment of the lobster shell preparation pretreated with *Ff*AA11.

Table S1 Gradients and eluents of HPAEC-PAD (Dionex, Sunnyvale, CA)

Column: PA 200 Flow rate: 0.5ml/min Injection volumn: 10 uL Column temperature: 30 °C

Retention time (min)	300mM NaOH	1 M NaOAc	H ₂ O
0	7%	0%	93%
25	7%	0%	93%
30	7%	50%	43%

Table S2 Hydrolysis of lobster shell samples in different conditions

	 Reducing sugar (μΜ)			
Time (h)	Lobster	Lobster shell + <i>Ff</i> AA11	FfAA11 pretreated lobster	
	shell+ <i>Pp</i> Chi	+ <i>Pp</i> Chi	shell+ <i>Pp</i> Chi	
2	1.00±0.17	1.14±0.09	6.19±1.59	
4	2.88±0.45	4.51±0.84	18.24±3.80	
8	7.85±0.91	10.41±2.07	43.01±8.25	
24	9.39±1.18	17.07±3.94	63.85±7.48	
48	16.38±2.30	24.40±4.87	104.68±13.59	
72	17.79±3.51	24.10±4.16	110.24±10.96	