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1. Supplementary Methods 

Imaging Acquisition and Processing  

Hoechst/Calcein/Lysotracker Red image processing 

Image segmentation to distinguish between different cells was done using the Hoechst 

channel where cells were identified using their Hoechst stain (Method-B, Common 

threshold=0.2, Area > 30µM, Split factor=7, individual threshold=0.5, contrast>0.1). Once nuclei 

were selected, the Calcein stained cytoplasm was defined in segmented cells using the 

CalceinAM channel (Method A, individual threshold=0.1). Calcein mean signal intensity was 

determined using the Calculate Intensity Properties function following selected parameters 

(region of interest (ROI) population: nuclei, ROI region: cytoplasm). To exclude cells that were 

not unstained for Calcein the select population function was used (ROI population: nuclei 

selected, Method: Filter by property, Filter F1: Intensity Cytoplasm CalceinAM mean>1000). 

The numbers of lysosome spots stained with Lysotracker Red were determined from the nuclei 

selected population; the number of spots were located in segmented cells using the Lysotracker 

channel (ROI population=nuclei selected, ROI region=cell, Method A, relative spot 

intensity>0.075, splitting coefficient=1, calculate spot properties). The maximum intensity of 

lysosome staining was calculated using the Lysotracker Red Channel (ROI population: spots, 

ROI region: spot maximum), using exclusion criteria to remove outliers (ROI population: spots 

Method: Filter by property, Filter F1: Intensity spot maximum Lysotracker Red mean <20,000, 

Filter F2: spot area (px2)<200). The output value for numbers of lysosome spots was divided by 

the numbers of nuclei to obtain the numbers of spots/cell.  

Hoechst/MitoTracker Green/MitoTracker Red image processing 
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Image segmentation to distinguish between different cells was done using the Hoechst 

channel where cells were identified using their Hoechst stain (Method-B, Common 

threshold=0.4, Area > 30µM, Split factor=16.5, individual threshold=0.2, contrast>0.1; Hoechst 

Intensity- ROI population: nuclei, ROI region=nucleus, method- standard mean; Nuclei selected 

population- ROI population: nuclei, Method: Filter by property, Filter F1: intensity nucleus 

Hoechst <10,000 to remove outliers), Calculate Morphology Properties function (Nucleus 

Output= ROI population: nuclei, ROI region: nucleus, mean: standard-area roundness; Cell 

Output= ROI population: nuclei selected, ROI region: cell, method= standard- area roundness). 

Total mitochondrial intensity was determined by defining the image region (Channel: 

MitoTracker Green, ROI population: nuclei selected, ROI region: cell, Method: common 

threshold, threshold=0.35, split into objects, output population: Mitogreen, output region: 

mitochondria) followed by Calculate Intensity Properties function (Channel: MitoTracker Green, 

ROI population: Mitogreen, ROI region: mitochondria, Method-standard-mean). The intensity of 

active mitochondria was determined by Calculate Intensity Properties function (Channel: 

MitoTracker Red, ROI population: Mitogreen, ROI region: mitochondria, Method-standard-

mean). Active mitochondria relative to total mitochondria were determined by dividing the 

MitoTracker Red Intensity with that for MitoTracker Green.  

Hoechst/Nile Red/CellMask DeepRed image processing 

Image segmentation to distinguish between different cells was done using the Hoechst 

channel where cells were identified using their Hoechst stain (Method-B, Common 

threshold=0.4, Area > 30µM, Split factor=16.5, individual threshold=0.2, contrast>0.1; Hoechst 

Intensity- ROI population: nuclei, ROI region=nucleus, method- standard mean; Nuclei selected 

population- ROI population: nuclei, Method: Filter by property, Filter F1: intensity nucleus 
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Hoechst <20,000 to remove outliers) and defining the cytoplasm (Channel: CellMask Deep, 

nuclei, Method A: individual threshold=0.05). Lipid droplets were detected using the Finding 

Spots function (Channel: Nile Red, ROI population: nuclei selected, ROI region: cell, Method A: 

relative spot intensity>0.08, splitting coefficient=1, calculate spot properties) and nuclei 

selection was used to determine total lipid droplet spot areas and numbers/cell.  

Hoechst/CellRox/Calcein image processing 

Image segmentation to distinguish between different cells was done using the Hoechst 

channel where cells were identified using their Hoechst stain (Method-B, Common 

threshold=0.2-0.4, Area > 30µM, Split factor=7, individual threshold=0.4, contrast>0.1; Hoechst 

Intensity- ROI population: nuclei, ROI region=nucleus, method- standard mean; Nuclei selected 

population- ROI population: nuclei, Method: Filter by property, Filter F1: intensity nucleus 

Hoechst <10,000 to remove outliers) and defining the cytoplasm (Channel: Calcein, ROI 

population: nuclei selected, Method A: individual threshold=0.15; Finding Surrounding Region 

for background: Channel: Calcein, ROI population: nuclei selected, ROI region: cell, Method A: 

individual threshold=0.15). Calculate Intensity Properties function was used to calculate both 

Cellrox intensity (Channel: CellRox, ROI population: nuclei selected, ROI region: cell) as well 

as background (Channel: CellRox, ROI population: nuclei selected, ROI region: background) to 

determine corrected values (Calculate Properties: ROI population: nuclei selected, Formula A-B, 

A=intensity of Cellrox, B=intensity background Cellrox).  

Final readouts of all values from the Columbus processing and analyses system were 

mean values/well. Values were averaged between replicates to determine mean 

values/condition/experiment.  
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2. Supplementary data  

 

Supplementary data Table 1: Live-cell dyes used during high-content imaging analyses. 

Dye Endpoint Assessed Dilution Source 

CalceinAM cell viability 1:1,000 Invitrogen 

Hoechst 33342 nuclear morphology 1:2,000 Invitrogen 

MitotrackerGreen FM mitochondria quantification 1:2,000 Invitrogen 

MitotrackerRedCMXRos mitochondria activity 1:2,500 Invitrogen 

LysotrackerDND99 lysosome quantification 1:6,666 Invitrogen 

Nile red lipid droplet quantification 1:100 Invitrogen 

CellRox Deep Red oxidative stress 1:2,500 Invitrogen 

CellMask plasma membrane 1:1,000 Invitrogen 
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Supplementary data Table 2: High-Throughput Toxicokinetics modeling parameters. 

Acronym1 CASRN Human.Clint Human.Funbound.plasma logP MW Css 
BPA 80-05-7 28.61155556 0.0881 3.4237 228.28634 13.75 
BPAF 1478-61-1 37.13131313 0.06454 4.5085 336.2291192 5.58 
BPF 620-92-8 29.10169127 0.110349398 2.6886 200.2332 11.70 
BPS 80-09-1 9.437737374 0.15853 3.0114 250.2704 126.54 

BPM 
13595-25-
0 317.5133591 0.032901504 5.7496 346.462 4.27 

BPTMC 
129188-9-
4 119.6474045 0.04336738 5.2301 310.4299 17.81 

 

1BPA, BPAF, and BPS already had data available in HTTK and therefore, no input data was 
required.  
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Supplementary data Figure 1 

Chemical concentrations at which no cytotoxicity was observed were used for the analyses of 

phenotypic endpoints using BMDExpress 2.2 (green boxes; grey boxes=significant cytotoxicity 

determined using Dunnett’s test with Minitab19). 
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Supplementary data Figure 2 

BMC models (significant-upregulated: yellow box, down-regulated: purple box; non-significant-

grey) that were generated to observe the effects of bisphenols on various phenotypic endpoints. 
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Supplementary data Figure 3 

Comparison of bisphenol analog cell viability data from the literature (circles) with the BMC 

values reported here for C18-4, MA-10 and KGN cells (triangles). The y-axis depicts the lowest 

concentrations at which decreases were observed.   
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