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Supplementary Note 1. Light field tomography (LIFT) image formation 

 

 
Supplementary Figure 1: Image formation modeling of LIFT. a, Two-plane parameterization of light 

field. b, Image formation of LIFT modeled by a three-step decomposition. The inset depicts an 

experimentally calibrated PSF for a cylindrical lenslet, showing a small vignette at the extreme ends of 

the PSF. 

 

      We analyze in detail the working principle of LIFT here. Although relay systems are usually 

added for different applications, light field acquisition by a cylindrical lenslet array remains the 

same for all embodiments. We use two-plane parameterization for light field analysis and do not 

consider occlusions here. For clarity, only four lenslets are shown in Supplementary Figure 1a, 

where the spatial axis (x) coincides with the sensor plane, and the angular axis (u) resides on the 

lenslet-array plane. Each lenslet is also assigned with a local coordinate 𝑥𝑙 (in green), whose origin 

is the image of a point source located at infinity (indicated by the dashed blue lines). 

      The image formation onto a 1D sensor by a cylindrical lenslet is artificially decomposed into 

three steps here: (1) pin-hole image formation, (2) PSF substitution, and (3) resampled projection. 
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Step 1: pin-hole image formation model.  

This is the classical imaging process. Consider a point source located at [𝑥 ,     ], the pin-hole 

model predicts its local coordinates on a sub-image as:  

{
 𝑥𝑙 =

𝑎

𝑑
(𝑢 − 𝑥 )       (𝑎)

  𝑙 = −
𝑎

𝑑
                 (𝑏)

 ,      (1) 

 

Step 2: PSF convolution 

A cylindrical lenslet differs from a perfect spherical lens in lacking optical power along one axis, 

which we referred to as the invariant axis. For a point source, it forms a finite line along the 

invariant axis at the image plane. The line length is determined by the image magnification 𝑚 =
 𝑎⁄  of the system and the lenslet size as 𝑙 = (1 + 1 𝑚⁄ )𝑞, where 𝑞 is the lenslet diameter. Such a 

line-shaped PSF disperses each point in the image space onto a pixel on a 1D sensor, as illustrated 

by the transition from step 1 to step 2 in Supplementary Figure 1b. Therefore, an individual pixel 

integrates the image along the PSF-line, and a parallel beam projection of the image is obtained 

on the 1D sensor along the angle of the invariant axis. 

 

Step 3: Resampled projection 

For a fixed 1D sensor, the projection along different angles is acquired by rotating the cylindrical 

lenslet. As a result, the 1D sensor is generally not perpendicular to the projection direction. This 

is illustrated in step 3 of Supplementary Figure 1b, where solid black lines indicate the projection 

direction and the green  𝑥𝑙  axis represents the 1D sensor. To relate the unknown image to the 

acquired projection data via Fourier slice theorem, it is necessary to make the projection 

perpendicular to the 1D sensor. This can be done by a computational resampling process. Denoting 

the angle between the projection and the   𝑙 axis as  , one can establish a local coordinate [𝑥𝑙
′,  ′

𝑙
], 

shown in red dashed lines, to obtain a virtual sensor line 𝑥𝑙
′ that is perpendicular to the projection 

direction. These two local coordinates are related by a rotation matrix: 

[
𝑥 
  
] = 𝑅𝜃 [

𝑥
 ] = [

𝑐𝑜𝑠 −𝑠𝑖𝑛 
𝑠𝑖𝑛 𝑐𝑜𝑠 

] [
𝑥
 ] .              (2) 

Combining Supplementary Equation (1) and (2), the image point in the auxiliary coordinate system 

is obtained as: 

{
𝑥𝑙
′ =

1

𝑚
(𝑢 − 𝑥 ) 𝑐𝑜𝑠 − 

1

𝑚
  𝑠𝑖𝑛    (𝑎)

 𝑙
′ =

1

𝑚
  𝑠𝑖𝑛 + 

1

𝑚
  𝑐𝑜𝑠                 (𝑏)

 .        (3) 

The projection onto the virtual line sensor is done by simply dropping the y component:  

{
𝑥𝑙
′ =

1

𝑚
[−𝑥 −   𝑡𝑎𝑛  + 𝑢]𝑐𝑜𝑠    (𝑎)

 𝑙
′ = 0                                                      (𝑏)

.          (4) 

Substituting the result back into Supplementary Equation (2), the experimentally recorded 

projection data is obtained as 𝑥𝑙 = 𝑥 𝑙/𝑐𝑜𝑠 . We dub the 𝑐𝑜𝑠  term as the resampling factor: it 

resamples the experimentally recorded projection data (on the sensor line 𝑥𝑙) onto the desired 

recording line 𝑥 𝑙. In other words, each cylindrical lenslet performs a resampled projection onto 

the 1D sensor 𝑥𝑙 . Ultimately, the LIFT imaging acquisition can be summarized into a single 

equation: 

𝑥′𝑙 =
1

𝑚
[−𝑥 −   𝑡𝑎𝑛  +  𝑢]𝑐𝑜𝑠 .                           (5) 
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The first two terms describe the projection process and the third term is the light field component 

contributed by different lenslets, which enables post-capture refocusing and depth retrieval as 

discussed in Supplementary Note 3.  

 

 
Supplementary Figure 2. LIFT data sampling analysis in the Fourier domain. a, Illustration for 

Fourier slice theorem and the limited view problem. b-c, Experimental images captured by the current 

LIFT camera for a fiber oriented at horizontal and vertical directions.  d, Projection angle and field of 

view tradeoff for recording projection data at different angles on a 1D sensor by rotating a cylindrical 

lenslet. e, LIFT implementation using a Dove prism to span the projection angular range to [0, 180], 

eliminating the limited view problem. Four lenslets are shown for illustration purposes. f-g, Rotation of a 

LIFT camera or a LIFT camera array eliminates the limited view problem and enriches the number of 

projections and light field data. Only three lenslet are shown in the 1D camera for simplicity. 

 

 

Supplementary Note 2. LIFT sampling requirement and limited view problem 

2.1 Sampling: The Fourier slice theorem1 is illustrated in Supplementary Figure 2a: the Fourier 

transform of the resampled projection is a slice of the two dimension Fourier transform (k-space) 

of the original image. For image reconstruction, therefore, it is necessary to fill the complete k-

space by acquiring projection data at a sufficient number of angles spanning the range of [0o, 180o]. 

A rule of thumb for this criterion states that to reconstruct an 𝑁 ×𝑁 image, 𝑁 projections with 

~ 𝑁 pixels resolution are needed. Using 1D sensors with a limited pixel count (several thousands) 

for an image resolution over 100 × 100, practical implementation of LIFT usually restricts the 

number of projections on the order of ten. This casts LIFT as a sparse view CT problem. Using 𝑛 

lenslets, the compression factor in LIFT for sampling an 𝑁 × 𝑁 image is therefore 𝑁 𝑛⁄ , which is 

on the order of ten for most implementations. To minimize the correlations in the projection data 

in LIFT and therefore maximize information content for reconstruction, it is also beneficial to 

arrange the projection angle uniformly.  
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2.2 Limited view Problem. With a 1D sensor being fixed, the practical angular range of projection 

is also limited if only rotating the cylindrical lenslet. This is illustrated in Supplementary Figure 

2b, where the line-shaped PSF is finite in length (𝑙 as predicted in Supplementary Note 1). The 

maximum height for a point detectable by the 1D sensor is thence limited to ℎ = 𝑙𝑐𝑜𝑠 2⁄ . This 

implies the achievable field of view is 2ℎ =  𝑙𝑐𝑜𝑠 . As a result, one must strike a balance between 

the FOV and angular range. In practical implementations, the angular range is limited to [ 1  2], 
leading to a missing cone in the k-space as indicated by the gray area in Supplementary Figure 2a. 

Tomographic reconstruction in this case results in degraded image quality, which is referred to as 

the limited view problem. Our current LIFT implementation suffers from a limited view problem 

since the angular range of projection is about [-45o, 45o] with respect to the y axis. Supplementary 

Figure 2b-c show respectively two experimentally acquired images of a fiber oriented at vertical 

and horizontal directions: due to the limited view problem, the horizontal fiber shows about 2~3 

times lower resolution. 

 

2.3 Remedy limited view problem. There are several methods for mitigating this problem. One way 

resorts to deep learning: by training a neural network for the system with enough data that is 

afflicted by the limited view problem, the network can learn the pattern (or statistical distribution) 

of imperfections in the reconstructed image and corrects them thereafter. This solution is system-

specific and can substantially mitigate, but not eliminate, the limited view problem. The second 

method is to insert a Dove prism after a relay lens, which projects the image of the original object 

to infinity, as diagrammed in Supplementary Figure 2e. The Dove prism is rotated by 45 degrees 

so that the image passing through it is rotated by 90 degrees, allowing the cylindrical lenslet behind 

it to fill in the missing cone and thus eliminating the limited view problem. The downside of using 

a Dove prism is that it introduces astigmatism for non-collimated light and chromatic aberrations 

for broadband scenes, compromising the 3D imaging performance of LIFT. Another practical 

method is to rotate the camera or equivalently, build a camera array as shown in Supplementary 

Figure 2f-g. This requires the camera to be compact and, if using rotation, the intended applications 

to be repeatable, such as NLOS imaging using compact SPAD cameras. For instance, rotating a 

LIFT camera with 7 lenslets by 3 times will not only enrich the projections to 21 for eliminating 

the limited view problem but also extend the light field to 2D. A similar gain can be obtained by 

camera array implementation. Because the deep learning method has the advantage of simplicity 

and faster image reconstruction, it is the method of choice for current demonstration. 

 

 

Supplementary Note 3. LIFT light field imaging capabilities 

3.1 Refocusing. As depicted in Supplementary Figure 3a, to focus on a different plane  2, the 1D 

sensor needs to be moved by ∆𝑎. The light field at the new virtual sensor plane is calculated as: 

𝑥𝑙2 = (1 +
∆𝑎 

𝑎
) 𝑥𝑙  −

∆𝑎 

𝑎
𝑢 = (1 +

∆𝑎 

𝑎
) [𝑥𝑙 + 𝑠𝑢]                         (6) 

where 𝑠 =  −∆𝑎 (∆𝑎 + 𝑎)⁄ . Ignoring the magnification factor (1 +
∆𝑎 

𝑎
) , which is constant across 

the whole image area when computationally refocusing, one can rewrite Supplementary Equation (6) 

as: 

𝑥𝑙2 = 𝑥𝑙 + 𝑠𝑢.                      (7) 

This is exactly the same refocusing formula in the ray space for light field cameras2 except that 

LIFT captures only the angular information along one axis (𝑢) instead of two. Hence, refocusing 

onto different depths can be achieved in LIFT by shearing-and-reconstructing: shear the acquired 
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projection data and then perform image reconstruction. This is also clear from Supplementary 

Equation (5), which describes the light field at plane   when the nominal focal plane is at infinity.  

      Two points on light field characteristic of LIFT are in order. The first is on the dimensionality 

of the angular information. While the angular information can be extended to 2D as shown in 

Supplementary Note 2, our current implementation records a 1D light field: there is no angular 

component (or disparity) along the other axis. However, LIFT still produces a 2D, rather than the 

1D blurring effect in conventional 1D light field cameras (inset of Supplementary Figure 3b). This 

is attributed to the tomographic reconstruction nature of LIFT. We illustrate in Supplementary 

Figure 3b the back-projection reconstruction of a point source with three projection data. For the 

in-focus point, the three projections intersect at a single point and reconstruct the point correctly. 

When the projection data is sheared to refocus on a different plane, the three back-projected data 

intersect on three points that spread on a 2D area instead of falling on the same line (otherwise, 

the three projection directions are collinear). The second point is the generation of ghost images 

when an image part is heavily defocused. Due to the sparse-view acquisition, the three points in 

Supplementary Figure 3b are clustered together for small defocus but get well separated under 

heavy defocus. With more projections (views), there will be more intersection points that 

ultimately fill the voids in between, producing a blurring bokeh as in conventional photography. 

This is validated by a simulation of LIFT imaging of a point source using 7 and 127 views under 

heavy defocus (7 pixels disk size for a 128×128 image), where the convergence of ghost parts to 

a defocus blur is clearly observed. Such a behavior is not peculiar to LIFT: light field cameras with 

low angular resolution will also produce ghost images when refocusing far away from an image’s 

actual focal plane3. A 2D angular information will benefit LIFT with an enhanced 2D 

reconstruction as it yields a larger number of projections and, consequently, improve 3D 

reconstruction as well. 
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Supplementary Figure 3. Light field imaging process for LIFT. a, Light field propagation through 

different planes for refocusing. b, Illustration of ghost image generation in LIFT reconstruction. Defocus 

leads to ghost image generation in sparse view tomographic reconstruction. However, with more views, it 

eventually converges to a blurring bokeh as in conventional imaging methods. c, Processing pipeline for 

2D (x, y) and 3D (x, y, z) imaging in LIFT. For 4D (x, y, z, t) imaging, the 3D image processing is 

individually applied at each time instance. d, Experimental lenslet arrangement for the depth-of-field and 

depth-sense version of LIFT, with black solid line representing the invariant axis of the cylindrical lenslet. 

The angles underneath each lenslet is w.r.t the y axis (counterclockwise being the positive direction) and 

listed with an accuracy of 1 degree for clarity. 

      

3.2 Computationally extending depth of field. To extend the depth of field in LIFT, the 

measurement data is processed to reconstruct an image set computationally refocused on all 

different depths. Next, the sharpest feature around a region of interest (ROI) for each pixel is 

identified across the image set, and an all-in-focus image is subsequently assembled by combining 

the sharpest parts via graph cut algorithms4. Such an extended depth of field is obtained at the 

expense of processing time. Also, it requires the image to show enough features. The depth-of-

field version of LIFT described below sidesteps these two drawbacks all together. 

 

3.3 Lenslet arrangement. LIFT can achieve an extended depth of field without resorting to 

computational refocusing: by arranging the cylindrical lenslet judiciously, an all-in-focus image 

can be automatically obtained. Adding a shearing term to Supplementary Equation (5) for 

refocusing, one obtains: 
𝑥′𝑙
𝑐𝑜𝑠 

= −
1

𝑚
[𝑥 +    𝑡𝑎𝑛 − 𝑢] + 𝑠𝑢 
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                   = −
1

𝑚
[𝑥 − 𝑢] −

1

𝑚
[  𝑡𝑎𝑛 − 𝑚𝑠𝑢]   

                          = −
1

𝑚
[𝑥 − 𝑢] −

1

𝑚
[  −

𝑚

𝑡𝑎𝑛𝜃
𝑠𝑢] 𝑡𝑎𝑛   

                                               = −
1

𝑚
[𝑥 − 𝑢] −

1

𝑚
[  − ∆ ]𝑡𝑎𝑛   ,                 (8) 

where ∆ =
𝑚

𝑡𝑎𝑛𝜃
𝑠𝑢  is the shift in the object space due to refocusing. Notably, there is an 

interaction between the lenslet projection angle   and the angular component 𝑢 of the light field. 

If the cylindrical lenslets are arranged in such a manner that the angle   as a function of the angular 

𝑢 axis satisfying: 

𝑡𝑎𝑛  ≈   𝑢                      (9) 

then ∆ =
𝑚

𝑘
𝑠 will be a constant independent of the angular variable 𝑢, meaning no blurring in the 

resultant image because all lenslets contribute the same shift for a specific object plane (indexed 

by 𝑠). The object plane at different depths is indeed shifted from the nominal center by an amount 

determined by its defocus distance, but each plane is well focused. This makes the reconstructed 

image automatically all-in-focus. This configuration is dubbed as the depth-of-field version 

(Supplementary Figure 3d). Still, it is feasible to undo this automatic all-in-focus imaging effect 

and computationally defocus by changing the shearing term s from a constant to a lenslet-specific 

number 𝑠 × 𝑡𝑎𝑛 . 

      The cost of this arrangement is a degraded depth retrieval accuracy because only residual 

defocus errors are left, which are contributed by the approximation error in Supplementary 

Equation (9). To optimize lenslet configuration for 3D imaging, we expand 𝑡𝑎𝑛   as a function of 

𝑢 into a Taylor series: 

𝑡𝑎𝑛  = 𝑓(𝑢) = 𝑚1𝑢 +𝑚2𝑢
2 +  …  .                     (10) 

Substituting into ∆ , it becomes evident that maximizing the first-order coefficient 𝑚1 leads to the 

depth-of-field lenslet configuration, whereas minimizing it to zero will maximize the defocus error 

and hence optimize depth retrieval. It is straightforward to perform a search over the permutations 

of pre-determined set of projection angles to find the near-optimum configuration for depth 

retrieval. The resultant configuration is dubbed as the depth-sense version (Supplementary Figure 

3d).  

      Supplementary Figure 4 demonstrates experimentally that refocusing in the depth-of-field 

version of LIFT camera only induces an image shift. When computationally sweeping the focus 

from near (a) to far (d), the reconstructed helical fiber is shifted upwards from left to right. 

However, the helical fiber structure is well resolved in all the cases despite of its large depth range. 

 
Supplementary Figure 4. Automatically extended depth of field via lenslet arrangement. a-d, The 

image is refocused at different depths from near to far. Except for a shift in the y direction, the image is 

almost identical. The last image falls slightly out of FOV, cropping its top parts. 
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3.4 Depth retrieval. LIFT can extract depths via the depth-from-focus (DfF) method5, thereby 

yielding a 3D image at each time instance. In DfF, the camera captures a sequence of images of 

the scene at different focal settings, producing a focal stack. To infer depth, a focus measure (sum 

of modified Laplacian6) is computed for each pixel of the image, and the focal setting giving rise 

to the maximum focus measure is identified, which can be mapped to a depth value. For light field 

cameras like LIFT, the focal stack is captured with a single snapshot and produced computationally 

by refocusing the image at different depths.  

      The processing pipeline of LIFT for reconstructing multi-dimensional images (2D, 3D, and 

4D) is summarized in Supplementary Figure 3c. Each 1D measurement data is ordered into a 

sinogram (the projection data (𝑥  )), which can be directly reconstructed into a 2D (x, y) image 

or go through a shear-and-reconstruct process to refocus on different depths, producing a focal 

stack. Afterwards, the focal stack is co-registered because the refocusing can induce image shifts, 

as explained in the previous Supplementary Note. The denoising algorithm VBM3D is then 

applied to attenuate the refocusing artefacts in the focal stack, which substantially improves the 

robustness of depth retrieval. Finally, the focus measure is computed for each pixel, and a quick 

sorting algorithm identifies the correct focal setting and map that pixel to the corresponding depth, 

yielding the 3D image (x, y, z). Owing to the decoupled space-time acquisition in LIFT, the 2D 

and 3D images processing are independently performed at each time instance to produce the final 

3D (x, y, t) or 4D (x, y, z, t) results. 

      The focus-to-depth mapping for LIFT is illustrated in Supplementary Figure 5a, where the 

image relay system is not included. A relay system with a magnification of 𝑀 changes the depth 

retrieval accuracy by 𝑀2. For a plane at [0, 0,  ], the distance between the leftmost and rightmost 

sub-images is: 

𝐿 =  
𝑑+𝑎

𝑑
𝐷                        (11) 

where 𝐷 is the baseline length of the lenslet array and 𝑎 is its distance to the sensor. To connect 

depth   with refocusing parameter 𝑠 , it is noted that the distance 𝐿  at infinity is 𝐿∞ = 𝐷  and 

refocusing from infinity onto depth   involves shearing the light field, which leads to 𝐿∞ = 𝐿 +
𝑠(𝑢𝑙 − 𝑢𝑟) =  𝐿 + 𝑠𝐷, where 𝑢𝑙 and 𝑢𝑟 indicates the leftmost and rightmost angular components, 

respectively. Solving above equation yields  =
𝑎

𝑠
 .  

      The depth retrieval accuracy ∆  is the minimum depth change that causes a one-pixel variation 

in the distance 𝐿. Given a linear sensor with 𝑁   pixels across the baseline, a one-pixel change is 

∆𝐿 = 𝐷 𝑁 ⁄ . Taking the derivative of Supplementary Equation (11) with respect to d, one obtains 

∆ =  
𝑑2

𝐷𝑎
∆𝐿 =

𝑑2

𝑁𝑥𝑎
= 

𝑚2𝑎

𝑁𝑥
. As 𝑎  equals approximately to the lenslet focal length 𝑓 , the depth 

retrieval accuracy can be estimated as ∆ =  
𝑚2𝑓

𝑁𝑥
. 

      Supplementary Figure 5b-e demonstrated an example of 3D imaging of a slanted plane that 

displays a grid of points. With an imaging magnification ~18, a focal length of 8 mm and 𝑁  

~1200, ∆  is estimated to be ~2 mm, which agrees well with the inferred value from the calibration 

curve. 
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Supplementary Figure 5. LIFT depth-retrieval.  a, Schematic for LIFT camera depth retrieval 

accuracy analysis. b, Calibrated d-L curve for an imaging magnification ~18. Fitting data with 

Supplementary Equation (11) can extract parameters a and D. c-e, Computationally generated focal stack, 

extracted depth map, and 3D rendering of a slanted plane displaying a grid pattern of dots. The slanted 

shape of the plane is well reproduced. It is also noted that defocus causes the dots to become dimmer in 

the focal stack as energy gets spread onto a larger area. 

 

 

Supplementary Note 4. Modeling of non-ideal effects in LIFT system 

In practical system implementations, there will be some misalignments between the 1D sensor and 

the individual cylindrical lenslets, which will affect image quality if not accounted for. As the 

misalignment of a lenslet shifts the image from its ideal position by a vector 𝑟, it can be modeled 

as a convolution operation with a shifted Dirac delta function 𝛿(𝑥 − 𝑟). The forward model in 

LIFT can then incorporate the non-ideal effect as: 

 = 𝐴𝐵𝑥 = 𝐴𝑥′                                 (12) 

where 𝑥  is the uncorrected image vector, and 𝐵 is the convolutional matrix: 

𝐵 = [

𝑃1
𝑃2
⋮
𝑃𝑛

] ,                                             (13) 

with 𝑃𝑖  being the block Toeplitz matrix of point spread function of lenslet i. By calibrating with an 

arbitrary point source, indicated as vector 𝑒𝑘, one can reconstruct the point spread function of the 

non-ideal system as 𝑥′ = 𝑃𝑆𝐹 = 𝐵𝑒𝑘, which recovers the matrix 𝐵. The true image 𝑥 can then be 

recovered by deconvolving 𝑥  with the calibrated 𝑃𝑆𝐹  using the Richard-Lucy algorithm. 

     Supplementary Figure 6 illustrates experimentally the benefits of modeling non-ideal effect in 

LIFT. The calibrated point spread function and the iteratively reconstructed image of the helical 

fiber without and with applying deconvolution are shown in Supplementary Figure 6a-c 

respectively. Supplementary Figure 6d-e depict the DANN reconstruction results. In both iterative 
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and DANN reconstructions, the image resolution is improved by approximately two folds after 

deconvolution, despite of some amplified noises. 

 

 
Supplementary Figure 6. Modeling non-ideal effects for image reconstruction. a, Calibrated system 

point spread function. b and c: reconstructed images of the helical fiber without and with deconvolution 

for the iterative methods using FISTA algorithm. d and e reconstructed images of the helical fiber without 

and with deconvolution by DANN. 

 

 

Supplementary Note 5. LIFT imaging quality 

The image quality of LIFT depends on both the compression factor, or equivalently, the number 

of projections, and the signal to noise ratio of the measurement data. 

 

5.1 Compression factor. The sampling analysis in the previous Supplementary Note indicates that 

a larger number of projections will fill the k-space more densely and therefore lead to better 

reconstruction quality in LIFT due to the reduced compression factor. This is illustrated in 

Supplementary Figure 7, which shows the recovered images for a Shepp-Logan phantom and a 

cluttered camera-man photograph using different number of projections at a resolution of 128×128. 

The sampling angular range is [0o, 180o] and the transform function 𝜑(𝑔)  is chosen as total 

variation (TV) to encourage sparsity in image gradient. Sampled at the Nyquist rate, the images 

recovered with a projection number of 128 serves as the ground truth reference for calculating the 

peak signal to noise ratio (PSNR) of other reconstructed images. It is noted that, as the compression 

factor gets larger (i.e., fewer projections), the PSNR of the reconstructed images becomes smaller 

and fine image details gradually get washed out. Moreover, the cluttered camera-man photograph 

renders a smaller PSNR than that of the Shepp-Logan phantom when employing the same 

compression factor. Therefore, the number of projections must be appropriately scaled to 

accommodate scenes of different complexity. This is expected and conforms to the general 

observations in sparse view CT reconstruction. 
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Supplementary Figure 7. LIFT image reconstruction using different number of projections for a, Shepp-

Logan phantom and b, the cluttered camera-man photograph, both at a resolution of 128×128. The 

compression factor varies from ~18 to 1 (Nyquist rate) when the projection number changes from 7 to 

128. c and d, The PSNR of the reconstructed images versus the compression factor (1 not included as it 

corresponds to the reference image) for the phantom and camera-man photograph, respectively.  

 

5.2 Noise robustness. As ultrafast imaging with picoseconds resolution is usually shot-noise 

limited, we study the noise robustness of LIFT by varying the average number of photons (K) in 

the recorded projection data. The images are then reconstructed using 7 projections spanning an 

angular range of [0o, 180o] by the FISTA algorithm. For comparison, the ground truth images are 

also simulated using the same average number of photons K in the image. Supplementary Figure 

8a-b shows, respectively, the reconstructed and ground truth images of the Shepp-Logan phantom 

when the average number of photons varies from 4 to 256. With a few photons, fine details are 

generally masked out even in the ground truth images, and only a rough structure of the image can 

be recovered by LIFT. However, with the photon count reaching over 100, the recovered image in 

LIFT begins to converge to the ideal reconstruction results.  

 

 
Supplementary Figure 8. LIFT image reconstruction under different noise levels. a, Reconstructed 

images by LIFT. b, Ground truth images. 
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      Both data fidelity and regularization terms in the optimization-based formulation contribute to 

the improved noise robustness for LIFT reconstruction over filtered backprojection. The data 

fidelity is a least square term that tends to suppress noises at the expense of resolution. The 

regularization term is critical for noise attenuation as it denoises intermediate reconstructions in 

each iteration, which is particularly evident under the framework of regularization by denoising 

(RED) for inverse problems. 

 

 

Supplementary Note 6. NLOS imaging via LIFT 

6.1 Experimental setup. We summarize below the equipments used in LIFT system. 

1. Streak camera: C13410-01A (Hamamatsu Photonics), 10000:1 dynamic imaging range, 

effective image resolution: 1314 (slit direction) × 1016 (time direction), frame rate: 100 Hz (storing 

or transferring). Observation window: variable from 500 ps to 1 millisecond long.  

2. Cylindrical lenslet: plano-convex, custom-made, 2 mm diameter, 8 mm focal length.  

3. Ultrafast photodiode: 818-BB-45 (Newport Inc.), 500 nm~ 890 nm, rise time ~30 ps. 

4. Picosecond laser: Spark Sirius (Spark-Lasers Inc.), 532 nm, 6 ps pulse width, 2 mW average 

power at 100 Hz repetition rate.  

5. Video camera: Hero4 Silver (GoPro Inc.), 1080p at 60 Hz maximum. 

 

  
Supplementary Figure 9. NLOS imaging experimental setup. A picosecond laser is collimated onto 

the central region of the diffusing wall. The FOV on the wall is about 600 mm × 800 mm for both static 

and dynamic NLOS imaging. The observation time window is adjusted for imaging at different scales.  

 

6.2 Compressibility of the NLOS (x, y, t) datacube. Mediated by a relay wall, NLOS imaging shows 

drastically different characteristics from natural photographs: the instantaneous (and steady state) 

images on the wall are generally smooth and highly compressible, even for complex hidden scenes.  

We show the instantaneous images on the wall for hidden scenes of different complexity, which 

were simulated by a transient render7 on publicly accessible datasets8. For these synthetic datasets, 

the time bin is 10 ps, and the laser incident point is at the center of the wall. The camera (point 

scanning or parallel detectors) samples the wall at a resolution fixed at 128×128, regardless of the 

grid size. To simulate the recoverable (x, y ,t) datacube by the LIFT camera, we employed a two-

step process: 1) changing the PSF of the camera in the synthetic dataset to line-shaped PSFs to 

model the LIFT camera, and 2) reconstructing the datacube by the iterative FISTA algorithm, 

owing to its greater flexibility to handle LIFT models using different number of projections. As 

NLOS imaging typically employs compact SPAD sensors and does not require to record the 
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complete (x, y ,t) datacube with a single laser shot, we synthesize the LIFT camera model A to 

encompass up to tens projections that sample uniformly the complete angular range of [0o, 180o]. 

This can be easily achieved by a few rotations of a 1D SPAD based LIFT camera as discussed in 

Supplementary Figure 2d. The hidden scenes are reconstructed at a volumetric resolution of 

128×128×128 using the extended phasor-field method. 

      Supplementary Figure 10a depicts the instantaneous images on the wall at several 

representative time instants for a hidden resolution target, which is placed 0.5 m away from the 

wall (grid size: 1 m × 1 m). The recovered instantaneous images using different number of 

projections are shown in the second to fourth row. The (x, t) slices at different y of the datacube 

and reconstructed hidden scene (maximum intensity projection along the depth direction) are 

compared in a tabular format in Supplementary Figure 10b and c, respectively. It is noted that the 

instantaneous images are highly structured and smooth. As a result, LIFT can recover well both 

the instantaneous images and the hidden scene using only 14 projections, corresponding to ~10% 

of the data load in the point-scanning method. Compared with the ground truth images, LIFT 

results tend to be smoother, particularly for the cases using a small number of projections. This is 

attributed to the LIFT’s radial sampling pattern in k-space: high spatial frequencies are more 

sparsely sampled, as indicated in Supplementary Figure 2a. Nonetheless, LIFT using 7 to 14 

projections can still detect, though not resolve, the smallest strips in the resolution target. The 

reconstruction by LIFT using 7 projections rendered the main shapes of the resolution target 

despite of some artefacts. 

  
Supplementary Figure 10. Compressibility of NLOS imaging for the hidden scenes of a resolution 

target. a, (x, y) images— the instantaneous images on the wall, acquired by point-scanning (ground truth) 

and the LIFT camera using different number of projections. b, (x, t) slices at different y of the 

corresponding spatiotemporal data cube on the wall. c, The reconstructed hidden scene. PS: point-

scanning data acquisition. LIFT-N: LIFT data acquisition using N projections. Scale bar: 140 mm. 

       

      Supplementary Figure 11 shows the results for a complex bookshelf scene ~2 m away from 

the wall (grid size 1.8 m × 1.8 m). The same observations can be made: LIFT using only 14 

projections can recover the hidden scene decently although there is a slight resolution degradation 

and an increase in artefacts/noises. Using 7 projections (compression factor ~20) for data 

acquisition, LIFT can recover the main shapes of the scene despite of some background noises.  
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Supplementary Figure 11. Compressibility of NLOS imaging for the complex bookshelf scenes. a, 

The (x, y) images on the wall at different time instants. b (x, t) slice of the spatiotemporal data cube at 

different y on the wall. c, The reconstructed hidden scene. PS: point scanning data acquisition. LIFT-N: 

LIFT data acquisition using N projections. Scale bar: 280 mm. 

 

6.3 Noise robustness. The robustness to noises was studied for the bookshelf scene that suffers 

from strong inter-reflections. The globally maximum photon count in the data cube is varied as in 

previous works9. For LIFT, the maximum photon counts are in the projection measurement rather 

than the reconstructed (x, y, t) datacube. Supplementary Figure 12a shows, in a tabular 

arrangement, the reconstructed bookshelf using a maximum photon count ranging from 2000 to 

only 50 along the row direction and a varying number of projections in the column dimension. The 

reconstruction results by the phasor-field method using point-scanning are given in Supplementary 

Figure 12b as references, whose maximum photon counts are varied from 200 to 5. While the 

point-scanning method recovers the bookshelf with a maximum photon count of 10, LIFT using 

21 projections need 100 counts to recover the main shapes of the bookshelf. This indicates that 

LIFT using 21 projections is about 10 times nosier than the point-scanning method. Less 

projections in LIFT requires more photons to recover the hidden scene and tends to produce 

smoother results. This is expected as less projections will produce stronger reconstruction artefacts 

and noises.  
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Supplementary Figure 12. Noise robustness of LIFT camera for NLOS imaging of a complex 

hidden scene. a, reconstruction of the bookshelf by LIFT using various photon counts and different 

number of projections, b, reconstruction of the bookshelf by the point scanning method using different 

photon counts. Scale bar: 280 mm. 
 

      However, LIFT can readily compensate for its noisier reconstruction by allowing longer 

exposure time while still maintaining 30 Hz video rate. With 7 projections in a 1D SPAD camera, 

LIFT can acquire 21 projections using only three rotations, leading to an exposure time of 10 ms 

at each rotation for imaging at 30 Hz. In contrast, point scanning10 at 32×32 resolution is still ~ ten 

times away from 30 Hz, even using an exposure time as short as ~250 µs. Scanning a 1D SPAD 

array along one spatial axis can reach 30 Hz at a resolution of 100×100 but only at an exposure 

time of 300 µs (30 ms/100) for each line, which is 30 times shorter than that of LIFT. Compared 

with 2D SPAD cameras, LIFT using 1D SPAD array benefits from ~10 times larger fill factor, 

which currently floats around 10% in state-of-the-art 2D designs. Therefore, LIFT can collect over 

ten times more photons to compensate for its higher noise level while offering unique advantages: 

compressive data acquisition and full-fledged light field capabilities. Given an (x, y, t) datacube of 

128×128×1000, acquired with 8 bit precision, the resultant data load is 16 Megabytes, more than 

twice of that in 4K ultra high definition camera. Streaming such data at 30 Hz reliably typically 

requires nontrivial compression algorithms. Instead, LIFT with 21 projections reduced the data 

load during acquisition more than six times. Moreover, the light field capability of LIFT is 

inherently challenging to implement in scanning-based methods or 2D SPAD cameras without 

incurring a substantial increase in system complexity and data load. 
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      Lastly, we summarize the photon counts used in the simulation. For the bookshelf scene, the 

time bin is 10 ps, and the global maximum photon count is 100 for LIFT reconstruction, leading 

to an average of ~20 photons per time bin in the window of [0, 24 ns]. This corresponds to 

reconstruction in the point-scanning method using a maximum of 10 photons (1.2 average photons 

per bin in the same time window). After accounting for the time bin difference, this is on par with 

previous experimental data of a complex hidden scene that has a maximum of 6 photons with a 4 

ps time bin, acquired using 1 ms exposure9. This validates that LIFT using 1D SPAD cameras 

holds promise for large scale NLOS imaging at 30 Hz video rate. 

 

6.4 Resolution of NLOS imaging. The resolution of NLOS imaging is primarily determined by the 

camera temporal resolution τ (with system jitter if temporal scanning/averaging is employed) and 

wall size 𝑤11 . For current NLOS demonstration, the temporal resolution τ (jitter-limited) is about 

60 ps, leading to an axial resolution of ∆𝑧 =
𝑐τ

2
 ≅ 9 mm. The theoretical lateral resolution is 

derived by O’Toole et al.11 as ∆x = 𝑐τ 
√(𝑤/2)2+𝑧2

𝑤
, with z being the distance of the hidden scene to 

the wall. A similar resolution bound is also found by Liu et al.9 However, LIFT reconstruction 

through either iterative methods or deep adjoint neural network does not achieve a perfect recovery 

of the ground truth images, particularly for the high-frequency details as shown in Supplementary 

Figure 10-11. Also, the image reconstruction of LIFT tends to render worse resolution in scenarios 

with noisy measurement data (see Supplementary Note 5). These factors degraded the lateral 

resolution of LIFT for NLOS imaging in practice.  

      Supplementary Figure 13 shows the characterization of the NLOS imaging resolution using 

measurement data with a low SNR. The hidden scene consists of two 20 mm wide strips separated 

by 100 mm, placed ~ 250 mm away from the wall. The raw temporal signals with maximum 

intensity in each lenslet (Supplementary Figure 13a) show large noises, causing the reconstruction 

to suffer from artefacts and a worse resolution. As 20 mm is smaller than practical lateral 

resolution, the strip image renders the line spread function of the system. The resolution is then 

estimated to be ~40 mm by averaging the two strips’ full width half magnitude (FWHM) in 

Supplementary Figure 13c. The theoretical lateral resolution is ~18 mm in this case, with an 

effective wall size (containing NLOS signals) being ~400 mm while the camera FOV on the wall 

is ~600 mm. The resolution can be improved by using more projections (by camera rotation or 

camera array) and a higher laser power for an improved SNR. 

 
Supplementary Figure 13. NLOS imaging resolution with LIFT. a, Maximum measured temporal 

signal in the sub-image of each lenslet. The signal is advanced here with respect to the true time zero. 

Note that all the signals show large variances, indicating relatively low signal to noise ratios. b, 

Maximum intensity projection of the reconstructed two strips. c, Line profiles of the image as indicated in 

b. The resolution is estimated by the FWHM. d, Top view of the reconstruction. 
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Supplementary Note 7. Benchmark LIFT against state-of-the-art transient and NLOS 

imaging methods  

To better understand the strengths and limitations of LIFT for transient imaging in general and 

NLOS imaging in particular, we compare it with other ultrafast cameras (Supplementary Table 1) 

and NLOS imaging methods (Supplementary Table 2) below. It is noted that, given the same signal 

to noise ratio, image acquisition at/over the Nyquist sampling rate generally represents an upper 

bound on the imaging quality (contrast, spatiotemporal resolution), a condition that compressive 

imaging methods asymptotically approach. While LIFT image acquisition is scalable in the 

compression factor and can attain up to the Nyquist sampling rate (as discussed in Supplementary 

Note 2.2), its practical implementations mostly fall into the compressive regime. As a result, we 

only compare the imaging metrics based on our current compressive LIFT camera.  

       

Supplementary Table 1 Comparison of transient imaging performance by various methods 
Methods Resolution Temporal 

resolution 

Sequence 

depth 

Compression 

factor 

Light 

field 

Active 

illumination 

Scanning 

STEAM12 50×50 > 10 ns Continuous NA No Yes No 

STAMP13 450×450 ~ 230 fs 6 NA No Yes No 

FRAME14 512×512 ~ 125 fs 4 NA No Yes No 

CUP15 150×150 ~ 10 ps 350 ~ 100 No No No 

LIFT 128×128 < 10 ps > 1000 ~ 18 Yes No No 

SPAD16 320×240 ~ 300 ps ~ 300 NA No No Yes (64 s) 

SPAD17 256×250 ~ 300 ps > 1000 NA No No Yes (1 s) 

 

      For NLOS imaging, the comparison excludes imaging metrics obtained using retro-reflective 

objects since they are less common and typically render orders of magnitude stronger signals than 

diffusive targets. Also, the camera’s spatial resolution on the wall is in lieu of 100×100 (except for 

the edge-resolved transient imaging (ERTI) that only involves a one-dimensional angular 

scanning). Since the spatial resolution of NLOS imaging degrades linearly with the distance to the 

wall, the listed resolution is accompanied with the distance at which it was evaluated. One notable 

exception is ERTI, which has a constant angular resolution that makes its lateral resolution, which 

equals to the angular resolution times the distance to the wall, degrades at a faster rate as in phase 

array radar imaging.  

      LIFT features unique light field capability with the deepest sequence yet manages to use a 

small compression factor for snapshot 2D transient imaging with a resolution over 120×120. While 

SPAD cameras16,17 can acquire high-resolution images at the Nyquist rate and, therefore, 

accommodate cluttered natural scenes better, the need of spatial scanning and repeated 

illuminations leads to prolonged acquisition. Interestingly, the transient images at each time instant 

obtained by SPAD cameras16,17 also show notable compressibility—they are far simpler than the 

static photograph of the cluttered scene, which will be accentuated with a higher temporal 

resolution. The snapshot acquisition enables LIFT to achieve drastically faster NLOS imaging with 

a resolution and quality close to those in dense point-scanning methods, allowing a low laser power 

to be used for imaging over 1 m scale. By scaling according to the r4 photon decay law in NLOS 

imaging, LIFT is expected to reach an imaging volume around 3 m × 3 m × 3 m with an average 

laser power of 160 mW. Its light field capabilities will also be an important ingredient towards 

translating NLOS imaging to field deployment.  
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Supplementary Table 2 Benchmark of NLOS imaging performance 
Methods Resolution Speed Quality Power Scale Light 

field 

Full 3D 

imaging 

Confocal point 

scanning10 

20 mm (0.4 m) > 20 s to 

hours 

Excellent 1 W ~ 3 m No Yes 

Non-confocal 

point scanning9 

20 mm (0.4 m) > 20 s to 

hours 

Excellent 1 W ~ 3 m No Yes 

ERTI18 2.4~4.8 degrees > 900 s Good 120 mW ~ 3 m NA No 

LIFT ~ 40 mm (~0.3 

m), scalable 

Snapshot 

to 1 s 

Good ~ 

excellent 

2 mW ~ 1.2 m Yes Yes 

 

 

 

Supplementary Note 8. Deep adjoint neural network reconstruction  

 

 
Supplementary Figure 14. Deep adjoint neural network structure for LIFT image reconstruction. 

The acquired LIFT sensor data is arranged into a sinogram and passed to the system adjoint operator 𝐴𝑇 

before being fed to the deep neural network, which is a U-net19 with skip connections20,21. For training 

data acquisition, the LIFT camera captures (without temporal deflection) the training images streamed on 

a high-resolution monitor in a synchronized manner. The whole training dataset contains 48000 images 

selected from MNIST and FashionMNIST datasets and it took about three hours to complete acquisition. 

To test the reconstruction performance of the DANN network, a test dataset consisting of 1000 images 

(not contained in the training dataset) was created from the two datasets as well. It is noted that the test 

dataset is also composed with images afflicted with limited view problem. The DANN network was 

trained with Adam algorithm for five epochs with a batch size of 16. conv.: convolution; BN: batch 

normalization; ReLU: rectified linear unit. 
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Supplementary Figure 15. Reconstruction results of a test data set afflicted by limited view problem 

by DANN and iterative methods. a, ground truth image. b and c, DANN and iterative reconstruction 

respectively. The DANN reconstruction recovers the image with better fidelity and significantly less 

limited view problem, which manifest as dimmer signals and lower resolution in the iterative 

reconstruction results. 
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