
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This is an interesting paper which presents a class of codes which outperforms the surface code in 

particular when the noise is biased. This kind of improvement in code performance is important 

with the possible arrival of noise-bias preserving gates, it also stimulates the development of such 

gates. I think this paper merits publication in Nature Comm, but I also believe that the authors 

should clarify and sharpen several aspects of this paper before it can be published. 

 

 

Hashing Bound: the authors make many references to the hashing bound ("surprising effect, 

nonadditivity of coherent information") and what it means that the numerical data go beyond it, 

without stating what this bound says or what its proof is (although a protocol can be found on 

Wikipedia). 

I believe the authors might have a misunderstanding concerning the "applicabiliity of this bound". 

The authors consider the encoding of a single qubit into d^2 qubits and at what depolarising 

probability p it is possible to retrieve the qubit after passing through the channel with logical error 

going to 0 as a function of d. 

 

However in order for a channel to have any capacity, we have to send k qubits through n channels 

such that k/n > 0 and the logical error goes to zero. The hashing bound shows that this rate k/n 

can be 1-H(p) by an explicit protocol using random stabiliser codes where p is the depol. error 

rate. 

 

For the XZZX code when we encode k logical qubits, we use n=d^2 k qubits and in order for the 

logical error rate to vanish, d should become large, so the rate k/n goes to zero. Thus the fact that 

the XZZX code can handle depol noise beyond p set by 1-H(p)=0, does not seem to have a 

relation to "nonadditivity of coherent information" or hashing bounds. This code is not a way to 

achieve some finite capacity at all (maybe generalisations of the code to finite rate homological 

codes such as hyperbolic surface codes are, but the XZZX version of these codes is not 

immediately obvious). 

 

Of course the authors are free to compare their data with the hashing bound, but the implication 

of 'going beyond this' are not clear besides just showing that the code performance is quite good. 

In fact, is it correct that there are no other LDPC stabiliser codes which go beyond this hashing 

bound? 

 

line 266 "we weight each edge" -> we weigh each edge. Same sentence: if the probability is zero, 

then weight is -\infinity according to your definition, so if you want to minimise weight, you match, 

which does not seem to be what you want (it is also different from Eq. (B1)) 

 

Sentence "We regard a given sample...code deformation" is not clear. An error string, a mix of 

qubit and measurement errors occurs, the decoder determines a matching which gives the 

inference where qubit and where measurement errors happened. Then one checks whether 

whether all qubits errors, those which actually occurred and the inferred correction give rise to a 

logical error. I am not sure why it is necessary to say 'one has to check for temporal errors', errors 

are spatial-temporal pieces of strings. I presume the last round of QEC is error free as is 

commonly done? 

 

The authors write in line 287 that they simulate the XZZX code with periodic boundaries. To me it 

is not clear that this code has the same performance as the code with open boundaries. For 

example, in the case of infinite noise bias they write that one decodes along diagonals 

"independent repetition codes" which become separate diagonal sheets in 3D, but if we have 

periodic boundaries in space, don't these diagonals merge and wrap around (what am I missing 



here)? Did the authors consider or have data for open boundaries or can argue that they expect 

the performance to be similar (not based on similarity in performance for the surface code versus 

the toric code). 

 

Line 357. Why are the prefactors N_h.r and N_l.r exponential rather than polynomial in d and d^2. 

 

Section VI. It is nice to show that lattice code surgery can go through with this code. However, 

given that the stabiliser subspace of the code is some Hadamard rotations away from that of the 

regular surface code (when qubits are on edges, one does Hadamards on all horizontal edges to go 

from the Levin-Wen model to Kitaev's toric code), can one not just take all lattice code surgery 

moves for the surface code and add on these Hadamards in the parity check circuits and one is 

done. The fact that the XZZX code is a bunch of Hadamards away from the regular surface code 

may be useful to mention anyhow. 

 

In Appendix B the authors explain the details regarding their implementation of the MWPM decoder 

for the XZZX code. There the authors initially consider the case at infinite bias, in this case 

towards Z-type errors. For such a noise model Z-type errors lead to defects along the diagonal of 

the code, which the authors also identify as the symmetry of the code. However, when considering 

the case where the noise exhibits a finite bias (such that is a finite probability of X-type and Y-type 

errors occurring) this symmetry is broken and matching is allowed along either diagonal of the 

code. On one hand this should mean that one has to perform the minimum-weight perfect 

matching using the full syndrome volume. This can be compared to the case of the CSS surface 

code, where the MWPM decoding can be done separately for the X-type and Z-type syndromes. It 

would be nice to have a comment on how this would affect the decoder runtime. More importantly, 

the two diagonals that are considered for the pairing of the defects correspond to either Z-type or 

X-type errors. It would be nice to make more explicit that for this decoder, the correlations 

between errors resulting from Pauli-Y errors are also not taken into account and that this leads to 

the suboptimal performance of the decoder. This is especially because in section II they mentioned 

that pauli-Y errors can be decoded as done in a previous work from the authors (in which case 

they consider decoding along a different symmetry), but it isn't made clear that these symmetries 

are mutually exclusive. 

 

 

 

Reviewer #2: 

None 

 

Reviewer #3: 

Remarks to the Author: 

Referee Report - The XZZX surface code 

 

Summary 

……………. 

 

In this work the authors present results to show that the XZZX surface code achieves impressive 

performance when subject to biased noise. For uniform depolarising noise, the results show that 

the performance of the XZZX code matches that of the standard CSS surface code. For all other 

biased noise channels, the code significantly outperforms previous decoding numerics for the 

surface code. Surprisingly, in the high-bias regime, the authors claim the XZZX code achieves 

performance that exceeds the Hashing bound. 

 

The paper contains numerical decoding results for the ZXXZ code for both the code capacity case 

and the phenomenological noise model with noisy syndrome readout. In both settings, the authors 

find improved performance over the standard CSS surface code. There is also a section that 

explains how the advantages of the ZXXZ surface code can be maintained when performing fault 



tolerant quantum computation on the encoded states. 

 

The XZZX surface code is a variant of the standard CSS surface code and was first proposed by 

Xiao-Gang Wen in 2002. To our knowledge, the paper we are reviewing today is the first practical 

numerical study of the ZXXZ code in the context of quantum computing. 

 

In our opinion this paper contains novel results of timely and topical interest to the quantum 

computing research community. Quantum computing experiments have now matured to the extent 

at which implementing error correction is a practical possibility. Error correction protocols that can 

be tailored to the specifics of a device’s error model, such as the one presented in this paper, will 

play an important role in helping current and near-future quantum devices reach their full 

potential. As such, we recommend that this paper is accepted for publication in Nature 

Communications. 

 

Below, we make various comments to the authors that we believe will improve the readability of 

the paper. We recommend that they make these changes before submitting a final manuscript for 

publication. 

 

General Comments to the authors 

……………. 

 

Section II 

 

Our primary concern is that the introductory material is not sufficiently self-contained for the 

reader to properly understand the construction of the XZZX code. We recommend that you expand 

this section, or write a more detailed appendix with explicit examples of the code construction. As 

a minimum, the following questions should be addressed: 

 

1) What are the code parameters? Does this code encode a single logical qubit as is the case with 

the CSS version of the surface code? 

 

2) How are the logical operators defined? In Section V, you claim the Pauli-Z distance is d(d+1) for 

a d x (d+1) lattice. However, it is not clear how these logical operators arise. What about the 

distance for X and Y errors? These questions should be addressed in Section II. 

 

3)The XZZX code on a dxd lattice and on a dxd+1 lattice have different distances. For lattices of 

sizes mxn, m and n coprime, the code has distance mn for one of the errors. Your simulations are 

run on different lattice sizes and this influences the results (see lines 289 and 397). Why was it not 

possible to run the simulations for both the fault tolerant threshold and sub-threshold scaling on 

the same lattice. Could you explain this decision in the text? 

 

Perhaps the best way of illustrating how the logical operators are defined is to draw the smallest 

example of a XZZX code, and directly show how the logical operators and stabilisers arise. In 

addition, it would be useful if you could release your code for generating the ZXXZ code parity 

check matrices. This would help interested readers build the codes and verify your results. 

 

 

Section II - The Hashing Bound 

 

1) The Hashing bound should be defined at least qualitatively in the introductory material. A more 

detailed definition should also be included in Section III. 

 

2) You claim that the results could potentially provide evidence of the superadditivity of coherent 

quantum information. Could you expand upon this point? 

 



3) In the limit of infinite bias, the X- and Z- decoding problems amount to classical decoding of 

repetition codes. Could it be that the Hashing Bound is exceeded in this regime because the error 

channel under consideration is a classical channel rather than a quantum one? Could a better 

bound be the classical Shannon Capacity, as this would not be exceeded by repetition code 

decoding? 

 

Section IV 

 

Line 325 - “It follows that by extending the syndrome along the temporal direction to account for 

the phenomenological noise model with infinite bias, we effectively decode decoupled copies of the 

two-dimensional surface code. With the minimum-weight perfect matching decoder we therefore 

expect a fault-tolerant threshold ∼ 10.3% [14].” 

 

-- It took several passes to understand exactly how the 2D surface code arises when you decode 

along the temporal axis. We think this could be explained more clearly, perhaps using a figure. 

 

Minor comments to the authors 

……………………. 

 

Line 167 - “It follows that, for a noise model described by independent Pauli-Z errors, this code 

has a threshold error rate of 50%.” 

-- Are we again in the rectangular lattice settings where d=N and therefore the code has correction 

capability d/2? 

 

Line 317. 

-- What are hook errors? 

 

 

Fig 5. 

-- Is it possible to have, in addition, a complete plot i.e. Logical failure rate at high bias / Logical 

failure rate at modest bias? 

What about including the same plot for both cases: i.e. distance-logical failure rate and physical 

error rate - logical failure rate? 

 

Line 740. 

-- E_s, should it be E_{u, v} ? 

 

Best Wishes 

Joschka Roffe & Armanda Ottaviano Quintavalle 

University of Sheffield, UK 

 

 



Sydney Nanoscience Hub,
University of Sydney,
NSW 2006,
Australia

February 4, 2021

Dear Referees,

Many thanks for your positive reviews, and for your constructive comments. They have certainly helped
us to improve the presentation of our work. We hope you agree that with the changes we have made
that our work is suitable for publication in Nature Communications.

In response to Reviewer #1

Many thanks for your detailed, constructive comments. We have made the following changes accordingly.

• “The implications of ‘going beyond [the hashing bound]’ are not clear besides just showing that
the code performance is quite good. In fact, is it correct that there are no other LDPC stabilizer
codes which go beyond this hashing bound.”

Reviewer #3 also asks to expand on this point.

RESPONSE: Indeed, we know of no quantum LDPC codes that go beyond the hashing bound.
As such, the magnitude of the thresholds we have obtained are surprisingly high.
In regards to the nonadditivity of coherent information - In fact, such a result implies that one can
produce a code that can send quantum information at finite rate where physical qubits experience
an error rate above the hashing bound, even if the code has a vanishing rate. This can be achieved
by concatenation. Let’s assume we have a code with R = k/n > 0 that has a finite threshold.
Such codes are demonstrated, for instance, in Ref. 66 or 69. Then we can concatenate this code
with constant sized XZZX code qubits constructed with physical qubits with error rate phashing <

p < pthreshold. Let’s assume that each XZZX code requires a constant N qubits to find a logical
error rate below the threshold of a finite rate code, then we obtain a new code with finite rate
R′ = k/nN > 0 for constant N using qubits with p > phashing.

We have added this discussion in the paragraph starting on line 242.

• Typos “We weight each edge” and “if the probability is zero then the weight is −∞. . . ”

RESPONSE: Thanks for identifying these two points. We have fixed these two sentences.

• “I am not sure why it is necessary to say ‘one has to check for temporal errors’.”

RESPONSE: In a simulation as you have described, temporal logical errors have no effect. How-
ever, in general, temporal logical errors can affect the logical state of a code deformation. As such,
a threshold calculation should account for this possibility. This is discussed in Vuillot et al. 2019.
We have added this reference at the end of the following sentence explaining the need to check for
temporal errors.
“It is important to check for temporal errors, as they can cause logical errors when we perform
fault-tolerant logic gates by code deformation [46].”



See line 317.
To make it possible to introduce a temporal logical error, we make our simulation periodic in the
time direction. This approach is also common in the literature; it was adopted in early works by
Raussendorf and coworkers on topological fault-tolerant quantum computation, for instance. Of
course, as the system size diverges, the choice of boundary conditions should be negligible on the
threshold error rates.

• “The authors write that they simulate the XZZX code with periodic boundary conditions. To me
it is not clear that this code has the same performance as the code with open boundaries.”
Here we also respond to the point of reviewer #3 who asks:
“Why was it not possible to run the simulations for both the fault tolerant threshold and sub-
threshold scaling on the same lattice. Could you explain this decision in the text?”

RESPONSE: We thank the referees for identifying this point. Firstly, we note that we do not
expect the threshold will be affected very much by the choice of boundary conditions, because the
threshold is defined in the thermodynamic limit.
The choice of boundary conditions can however have a significant affect on the logical failure rates
below threshold, and, specifically, the mechanisms that cause logical failures. This was noticed
in Ref. [8] with infinite biased codes with coprime lattice dimension where the effective distance
of the code against the infinitely biased noise model was much higher than the actual distance of
the code. Our goal here was to probe what such properties mean at finite noise bias. The XZZX
code has permitted us to study this physics using our high-speed, practical MWPM decoder as a
toy model to evaluate its behaviour. To do so, we chose the XZZX code with periodic boundary
conditions with lattice dimensionality of d× d+ 1 to obtain a code with these properties. We have
motivated this study over the first three paragraphs of the sub-threshold scaling subsection, and
conclude by finding that in general, P lin is the dominant scaling.
On reflection, our introductory paragraphs on the sub threshold scaling section were not well writ-
ten, and this has clearly led to confusion. We have updated the introduction to this section to
make it clearer why we are making this choice. Please see the new motivating paragraphs starting
at line 382.

• “Line 357 - Why are the prefactors exponential?”

RESPONSE: This is a well-studied term when evaluating logical failure rates. See for instance
Dennis et al., or Beverland et al. Ref. [49]. It counts the ways that ∼ w/2 errors can be configured
over the support of a weight w logical operator. Using Stirling’s approximation we obtain that (w
choose w/2) ∼ 2w. Indeed, while one can include a polynomial term in Nl.r., this is subleading,
and negligible compared to the exponential terms. We have therefore omitted it. To help make
this a little more explicit, we have written
“where Nh.r. ∼ 2d

2

is the number of configurations that d2/2 Pauli-Z errors can take on the
support of the weight-d2 logical operator to cause a failure.”
below Eqn. (2). We also give reference to Beverland et al. to explain the exponential term for Nl.r..

• “It is nice to show that lattice surgery can go through with this code.” and “. . . The fact that the
XZZX code is a bunch of Hadamards away from the regular surface code may be useful to mention
anyhow.”

RESPONSE: Thanks for this comment. Despite the simple relationship using local rotations, it
was not obvious that the high thresholds that come from structured noise can carry through to
quantum computation.
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• “In Appendix B: (1) It would be nice to have a comment on how this would affect the decoder
runtime. (2) That correlations between errors resulting from Pauli-Y errors are also not taken into
account. (3) Especially given we mentioned that Pauli-Y errors can be decoded as done in previous
work.”

RESPONSE: (1) Indeed, the decoding runtime is O(V 3) in the general case where V is the num-
ber of vertices for the input graph for minimum-weight perfect matching, and V = O(pd2) for the
case with ideal stabilizer measurements and V = O(pd3) for the phenomenological noise model. In
the first paragraph of this methods section we have written

“The runtime of the minimum-weight perfect matching algorithm can scale like O(V 3) where V is
the number of vertices of the input graph [44], and the typical number of vertices is V = O(pd2)
for the case where measurements always give the correct outcomes and V = O(pd3) for the case
where measurements are unreliable.”

(2) We have explicitly added that the minimum-weight perfect-matching decoder is suboptimal.
See line 290.

(3) Finally, we also made it explicit on page 2 that we are only proposing to use the decoder from
our previous paper to decode Pauli-Y errors in the limit that the noise model is highly biased
towards Pauli-Y errors. We have amended the statement to read:

“We therefore see that the high-performance decoders presented in Refs. [7,8,10] are readily
adapted for the XZZX code in the limit that error model is highly likely to introduce Pauli-Y
errors.”

In response to Reviewer # 3

We are grateful for your suggestions. We have made the following changes in response.

Primary comments

• “What are the code parameters? Does this code encode a single logical qubit as is the case with
the CSS version of the surface code?”

RESPONSE: We have elaborated on the description of the XZZX code to include the code pa-
rameters; line 122.

“They differ by a Hadamard rotation on alternate qubits Ref. [33,34]. The code parameters of
the surface code are invariant under this rotation. The XZZX code therefore encodes k = O(1)
logical qubits using n = O(d2) physical qubits where the code distance is d. Constant factors in
these values are determined by details such as the orientation of the square-lattice geometry and
boundary conditions. See Fig. 1 and its caption for a description.”

We address the following two referee comments together:

• “How are the logical operators defined? In Section V you claim the Pauli-Z distance is d(d + 1)
for a d× (d+ 1) lattice. However it is not clear how these logical operators arise. What about the
distance for X and Y errors? These questions should be addressed in Section II”

and

• “Perhaps the best way of illustrating how the logical operators are defined is to draw the smallest
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example of a XZZX code”

RESPONSE: We have added an illustration of a logical operator to Figure 1. Our preference is
to show a logical operator on a larger lattice so the reader can see how the distance scales with
system size. As we have already addressed in the first point, the code distance for general Pauli
operators is O(d).
We have also offered some intuition for how the high-weight Pauli-Z logical operators arise on the
d× (d + 1) periodic lattice on line 398.

“Note we can regard this single logical-Z operator as a string that coils around the torus many
times such that it is supported on all n qubits.”

• “Why was it not possible to run the simulations for both the fault tolerant threshold and sub-
threshold scaling on the same lattice. Could you explain this decision in the text?”

RESPONSE: Reviewer #1 has asked a question relating to this point. We have addressed it
above together with the comment of Reviewer #1; please see our response above. In brief: It is
possible to run both of these simulations for both lattices. However, in both situations we study
different effects.

• “In addition, it would be useful if you could release your code for generating the ZXXZ code parity
check matrices. This would help interested readers build the codes and verify your results.”

RESPONSE: We have made our code and data available in a public repository under an OSI-
approved licence and referenced the repository in the Data and Code Availability sections of the
paper.

Section II

• “The hashing bound should be defined at least qualitatively in the introductory material. A more
detailed definition should be included in section III.”

RESPONSE: We agree. We have added a qualitative definition for the hashing bound in the
caption of Fig. 2. In addition, in the introduction we have written on line 63:

“. . . , matching what is known to be achievable with random coding according to the hashing
bound.”

This identifies the hashing bound qualitatively as the bound obtained by studying the rate that
information can be sent by random codes.

• “You claim that the results could potentially provide evidence of the super additivity of coherent
quantum information. Could you expand on this point?”

RESPONSE: Indeed, we have given this point some more consideration since our first submis-
sion. A similar question was also raised by Reviewer #1. We have addressed these together which
meant expanding on this point. Please see our response to Reviewer #1 on this point.

• “In the limit of infinite bias, the X- and Z- decoding problems amount to classical decoding of
repetition codes. Could it be that the hashing bound is exceeded in this regime because the error
channel under consideration is classical rather than a quantum one? Could a better bound by the
classical Shannon capacity?”
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RESPONSE: Thanks for this comment. We think these questions are beyond the scope of the
paper, nevertheless, we can be a little more speculative in our response here. We don’t think this
is a purely classical phenomenon. Classically, the hashing bound is an equality and, in fact, we
don’t exceed the 50 percent threshold in the infinite bias (classical) limit. We only beat hashing at
high, finite bias as we approach the infinite bias limit. In the quantum setting codes have degen-
eracy that mean the quantum version of the hashing argument is a lower bound. Other examples
before our work have been found that marginally exceed the hashing bound, see Refs. [17-23] in
our manuscript. The only upper bound we have on threshold is the no-cloning bound that limits
the threshold against depolarising noise to p= 25 percent. See [PRA 54, 3824 (1996)] and [JMP
49, 102014 (2008); page 14 theorem 7].

Section IV

• “It took us several passes to understand exactly how the 2D surface code arises when you decode
along the temporal axis.”

RESPONSE: We have added a figure on the left hand side of what is now Fig.4. Its explanation
is given in the caption.

Minor comments

• “this code has a threshold error rate of 50 percent [for independent Pauli-Z errors]? - Are we again
in the rectangular lattice setting?”

RESPONSE: This is a generic statement that is true independent of the boundary conditions.

• “What are hook errors?”

RESPONSE: Hook errors are correlated errors that result from errors that occur midway through
a stabilizer readout circuit. We do not model them with our phenomenological simulation. They
appear when stabilizer readout circuits are modelled. We have given reference to the original work
where they were seriously considered in decoding algorithms; these are Fowler et al. 2011 (Ref.
[47]) as well as a comprehensive study of circuit noise by Ashley Stephens (Ref. [48]). We have
also slightly reworded the sentence (line 341) to give a passing definition of a hook error. It now
reads:

“We also remark that hook errors, i.e., correlated errors [47,48] that are introduced by this readout
circuit, are low-rate events as the control qubit of entangling gates commute with the high-rate
Pauli-Z errors, and so high-rate errors are not spread to the code.”

• “Is it possible to have, in addition, a complete plot i.e., logical failure rate at high bias/ logical
failure rate at modest bias?”

RESPONSE: The data we have presented reflects the physics of the whole system, and the graphs
we have presented accentuates the behaviour of the different scaling regimes we have predicted.
Let us explain our choice to present the plots we have. We have proposed two regimes; that where
P lin dominates, and that were Pquad dominates. The behaviour of the system moving over this

transition is very difficult to model in general. However, by collecting data in some more extremal
limits of the phase space where numerics are tractable, our numerics show that our hypothesis is
correct, as our numerics agree with the model we propose for our data. The intermediate regimes
simply interpolate between the quadratic and linear scaling regime.
In general, when either p vanishes, or when system size diverges, P lin dominates. It is in these
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regimes where we expect to operate a large scale quantum computer. In this sense we really have
modelled the general behaviour of the system within system parameters that are tractable for
numerical simulations. We have demonstrated our decoder performs as we expect in this regime
on the right hand side of Figure 6, as we find our data agrees with our ansatz. Increasing the bias
takes us out of this regime we are studying and moves us towards the quadratic scaling regime.
Likewise, it is important to demonstrate the quadratic scaling regime in the context of earlier
literature. This was identified in earlier work, Tuckett et al. 2019 PRX (2019), in the infinite bias
limit. Indeed, the left hand side of Figure 6 demonstrates the behaviour we expect. We find the
quadratic scaling diminishes as we decrease the error rate as we begin transitioning into the linear
scaling regime.

• “Es, should it be Eu,v?”

RESPONSE: Absolutely. Thank you for spotting this mistake, which we have now corrected.

An additional change

We have collected additional thresholds for the rectangular variant of the XZZX code. Remarkably, we
found that the MWPM decoder was also able to exceed the hashing bound in this simulation. We have
included this data in Fig. 4.

We look forward to your response.

With kind regards,

Benjamin J. Brown, on behalf of the
authors
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have clarified several points in the paper: they have adequately addressed my 

previous points and I support publication. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The revisions make the discussion of the hashing bound and the scaling of the logical failure rate 

easier to follow. The new paragraph on page 3 is especially helpful. As a point of curiosity, I 

wonder about the branching from the twist that is used to measure Pauli-Y in Fig 7c. Do you 

expect to achieve the same scaling of logical failure rate across different biases since the twist may 

introduce new nontrivial cycles and hook errors? 

 

This article addresses a topic that is highly relevant given recent experimental developments and 

is exciting and well written. I recommend publishing it in Nature Communications. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

We are satisfied with the changes the authors have made to the manuscript. 

 

 



In response to Reviewer #2

• “As a point of curiosity, I wonder about the branching from the twist that is used to measure
Pauli-Y in Fig 7c. Do you expect to achieve the same scaling of logical failure rate across different
biases since the twist may introduce new nontrivial cycles and hook errors?”

RESPONSE: In this code, twists add new nontrivial cycles that are used to encode and ma-
nipulate quantum information. In our construction, we maintain the one-dimensional symmetries
of the code when we introduce twist defects, up to the specific location of the twist defect where
the one-dimensional symmetries branch. We expect that we can still exploit this slightly modified
structure to obtain very low logical failure rates with a relatively small resource overhead provided
all of the twists remain suitably well separated.
In regards to hook errors; indeed, this is an important concern. The details of the circuits that
would be used to measure the stabilizers of twists go beyond the scope of this work, as it is closely
tied to the specific implementation. Nevertheless, there are works that have considered these
details, see e.g. Ref.[64] where the authors look for ways of minimising the errors introduced by
stabilizer readout circuits. We do not expect hook errors to affect our system any more so than
any other generic implementation of the surface code with twists.
Additionally, in the examples we have considered, we have found that we can propose stabilizer
readout circuits in some suitable choice of basis such that hook errors are low-rate events. Likewise,
we expect that one can find readout circuits that minimise the effect of hook errors at the location
of the twist stabilizer.
Of course, we are not concerned if this turns out to be an insurmountable problem as we know
of methods of universal quantum computation where we do not use twist defects and, instead, we
distil eigenstates of the Pauli-Y operator as a resource for S gates. In which case the circuits we
have discussed in the manuscript will suffice to complete a universal set of fault-tolerant quantum
computational operations
Thank you once again for your time and effort in reviewing our manuscript.
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