1	The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death
2	and defense response
3	Kai Bi et, al
4	Supplementary Figures
5	

6 Supplementary Fig. 1. Phylogenetic and multiple sequence alignment of B. cinerea Crh family proteins. a Schematic 7 presentation of predicted signal peptide (green) and GH16 domain (blue) of BcCrh proteins. Multiple sequence alignment 8 (MSA) analysis of B. cinerea Crh proteins and their homologues from other species was generated by Clustal Omega online 9 tool. Due to the C-terminus residues with low sequence identity, amino acid residues 1-277 of BcCrh1 were used for alignment. 10 **b** Neighbor-joining tree of Crh proteins was generated based on the MSA result. The four *B. cinerea* proteins are marked by 11 stars. c MSA results reformatted by Mview. Two highly conserved Cys residues are marked by red stars. Other conserved 12 residues are color shaded. The conserved catalytic activity motif and the acceptor sugar binding motif are boxed by red 13 rectangle. Af – Aspergillus fumigatus, Sc – Sccharomyces cerevisiae, Ca – Candida albincas.

Supplementary Fig. 2. 3D structural models prediction of BcCrh1. HHpred was used for modeling template search against 16 17 the PDB database. The Crh5 transglycosylase from Aspergillus fumigatus (PDB entry 6IBW, UniProt entry Q8J0P4) was 18 identified as the best template for modelling with 48% sequence identity to BcCrh1 (Probability 100%, E-value 1.1e-32). The 19 ConSurf webserver was used to collect homologues from the clean UniProt database, the pairwise alignment of B1084 (later 20 called BcCrh1) and the template was deduced from the multiple sequence alignment. 100 different models were generated by 21 MODELLER-9.18 with default parameters, and following a short energy minimization using GROMACS-5.1 and the 22 AMBER99SB-ILDN force field, the model with the predicted lowest energy was chosen. a The model structure of BcCrh1 23 monomer colored based on evolutionary conservation with turquoise-through-maroon representing variable-through-24 conserved residues respectively. The C26 and C33 at the N-terminus (highlighted in colored-spheres) form a disulfide bond 25 and are both highly conserved among Crh protein members. b-g Predicted potential dimerization interfaces of BcCrh1 colored 26 as in **a**. The PISA webserver (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) and the crystal structure of 6IBW were used to 27 test potential dimerization interfaces of BcCrh1. Two different topologies of the dimer were predicted based on the analysis. 28 Schematic ribbon diagram of dimerized BcCrh1 model are shown (the top view, bottom view and dimerization interface). b, 29 c and f: "head-to-head" topology of the dimer. d, e and g: "head-to-tail" topology of the dimer.

30

Supplementary Fig. 3. Induction of plant cell death by BcCrh1. a *N. benthamiana* leaves were infiltrated with
 Agrobacterium harbors construct encoding GFP (35S:GFP), native (35S:BcCrh1) or the enzymatic inactive (35S:MBcCrh1)
 BcCrh1. Images were taken five days after agroinfiltration. b Cell death inducing activity of the BcCrh1^{C26AC33A} mutant protein
 was tested by agroinfiltration assay of *N. benthamiana* leaves. Representative pictures of *N. benthamiana* were taken at 5 d
 after infiltration. c Representative *N. benthamiana* leaves five days after agroinfiltration with constructs expressing BcCrh1²¹⁻³⁹¹
 GBL1n-BcCrh1²¹⁻³⁹¹ (Myristoylation signal), NLS-BcCrh1²¹⁻³⁹¹ (Nuclear localization signal) and nls-BcCrh1²¹⁻³⁹¹ (Mutant
 form of nuclear localization signal).

39 Supplementary Fig. 4. Induction of cell death by BcCrh1 in different plant species. a Response of N. benthamiana leaves 40 to different concentrations of purified BcCrh1 and MBcCrh1 protein. Pictures were taken two days after treatment. b 41 Infiltration assay of Tomato, A. thaliana and maize leaves. Leaves were infiltrated with 11 µM of purified protein, pictures of 42 representative leaves were taken two days after treatment. White dash line shows the boundary of infiltration area.

Supplementary Fig. 5. Quantification of necrosis induced by different parts of the BcCrh1 protein. a *N. benthamiana* leaves were Agroinfiltrated with the indicated BcCrh1 fragments, leaf samples were collected after five days and stained with trypan blue. b Relative staining intensity was measured by ImageJ. For each treatment, 10 samples from three independent biological replications were used for statistical analysis. Center lines of box plots represent the medians, box edges show the 25th and 75th percentiles; whiskers extend to minimum and maximum values from the 25th and 75th percentiles; all present data are indicated as black dots. Different letters indicate statistically significant differences ($P \le 0.01$, one-way ANOVA).

52 Supplementary Fig. 6. Complementation assay of Crh-deficient S. cerevisiae strain. S. cerevisiae $crh1\Delta crh2\Delta$ cells, 53 which are completely deficient of Crh activity and hypersensitive to Congo red were transformed with BcCrh1, MBcCrh1 or 54 BcCrh1^{C26AC33A}. a Cells of the different strains were grown to mid-log phase at 24°C in SD-Ura overnight, cultures were 55 diluted to 3×10⁶ cells ml⁻¹ and then further five 1:5 serial dilutions. Five microliters of cell suspension were spotted onto YPD 56 solid medium (control) or YPD supplemented with 50 µg/mL, 100 µg/mL, 150 µg/mL and 200 µg/mL Congo red and then 57 plates were incubated for three days at 30°C. **b** Protein expression. Total proteins were extracts from exponential cultures and 58 subjected to 10% SDS/PAGE and Western blot analysis using anti-c-myc monoclonal antibody (top). Total protein loading 59 was evaluated by coomassie brilliant blue staining (Bottom).

- 61 62 Supplementary Fig. 7. *bccrh1* gene expression during saprophytic and pathogenic development. *bccrh1* expression
- 63 levels were evaluated by qRT-PCR with the *bcgpdh* as a reference gene for normalization. Mean and standard deviations were
- 64 calculated from three biological replications. The relative expression levels were calculated using the comparative Ct method.
- 65 Expression level of *bccrh1* at 0 h was set as 1.

- Supplementary Fig. 8. Secretion of Bccrh1 during plant infection. Onion epidermis was inoculated with spore suspension
 of a *B. cinerea* strain that expresses BcCrh1-GFP fusion protein. Samples were scanned by a confocal microscope. Images
 show continuous z-series of different infection states. a, b Protein localization to hyphal tips in early rime points (12, 21 hpi,
 arrowhead); c Protein localization secretion in infection structures (36 hpi, asterisks). Bar = 20 µm. The experiments were
- 72 repeated three times with similar results obtained.

- 94 Supplementary Fig. 10. PCR validation of *B. cinerea* mutant strains. a Analysis of *bccrh1* deletion strains ΔBcCrh1-2 and
- 95 ΔBcCrh1-9. **b-c** RT-PCR analysis of *bccrh1* expression in different over-expression strains. The *bcactin* gene was used as
- 96 normalizer. d Confirmation of BiFC expression cassettes. Genomic DNA was extracted from the different strains (N'GFP-
- 97 BcCrh1/C'GFP-BcCrh1, N'GFP-BcCrh1^{C26AC33A}/C'GFP-BcCrh1^{C26AC33A} and N'GFP/C'GFP-BcCrh1) and presence of the
- 98 BiFC cassette was verified by PCR. NTC no template control, ddH₂O was used as negative control. Images are from a single
- 99 experiment that was repeated twice with similar results.
- 100

102 Supplementary Fig. 11. Expression of recombinant proteins. a-GFP antibody and a-His antibody were used to detect 103 protein expression by Western blot analysis. **a1-a5** Protein fused with GFP tag that were extracted from *N. benthamiana* 104 leaves following Agroinfilration. b Proteins isolated from A. thaliana transgenic lines expressing the BcCrh1-GFP protein 105 (Line1 and Line2) and the empty vector (EV). c1 Proteins fused with GFP tag that were produced in E. coli. c2 Coomassie 106 blue staining and Western blots with α-His antibody of proteins with His tag that were produced in E. coli. Black arrows 107 indicate the expected products with nonspecific bands. Images are from a single experiment that was repeated twice with 108 similar results.

111 Supplementary Tables

112

113 Supplemental Table 1. List of Oligonucleotides used in this study.

Primer purpose	Primer name and sequence (5'- 3')
BcCrh1 transient expression with	BcCrh1-TE F:
native SP	ccatttacgaacgatagcatctagaATGCGTTCCTCAACAATATC BcCrh1-TE R:
<i>BcCrh1</i> transient expression without SP	cccgggggtaccgtcgacggatccCATAACGAGATAACCTAATCC <i>BcCrh1</i> ²¹⁻³⁹¹ -TE F:
r	ccatttacgaacgatagcatctagaATGCAAACATTCACTGATTGCAA BcCrh1 ²¹⁻³⁹¹ -TE R:
BcCrh1 transient expression with	cccgggggtaccgtcgacggatccCATAACGAGATAACCTAATCC SP(PR3)-BcCrh1 ²¹⁻³⁹¹ -TE F:
plant SP (PR3)	ccatttacgaacgatagcatctagaATGAAGACTAATCTTTTTCTCT SP(PR3)-BcCrh1 ²¹⁻³⁹¹ -TE R:
<i>BcCrh1</i> ¹⁻²⁸⁴ transient expression	cccgggggtaccgtcgacggatccCATAACGAGATAACCTAATCC BcCrh1 ¹⁻²⁸⁴ -TE F:
	ccatttacgaacgatagcatctagaATGCGTTCCTCAACAATATC BcCrh1 ¹⁻²⁸⁴ -TE R:
<i>BcCrh1</i> ¹⁻²¹⁴ transient expression	ctcccccgggggtaccgtcgacggatccAGCTGATCCGTCGGCGCTGCA BcCrh1 ¹⁻²¹⁴ -TE F:
	ccatttacgaacgatagcatctagaATGCGTTCCTCAACAATATC BcCrh1 ¹⁻²¹⁴ -TE R:
BcCrh1 ¹⁻¹⁴⁴ transient expression	ctcccccgggggtaccgtcgacggatccGGCACATCCGATCCAGCTTC BcCrh1 ¹⁻¹⁴⁴ -TE F:
	ccatttacgaacgatagcatctagaATGCGTTCCTCAACAATATC BcCrh1 ¹⁻¹⁴⁴ -TE R:
<i>BcCrh1</i> ¹⁻⁷⁴ transient expression	ctcccccgggggtaccgtcgacggatccCGTCGTGTTTCCCTTTCCGA BcCrh1 ¹⁻⁷⁴ -TE F:
	ccatttacgaacgatagcatctagaATGCGTTCCTCAACAATATC BcCrh1 ¹⁻⁷⁴ -TE R:
<i>BcCrh1</i> ²¹⁻⁷⁴ transient expression	ctcccccgggggtaccgtcgacggatccGACGAATTGGGCACCGAGG BcCrh1 ²¹⁻⁷⁴ -TE F:
	ccatttacgaacgatagcatctagaATGCAAACATTCACTGATTGCAA BcCrh1 ²¹⁻⁷⁴ -TE R:
<i>BcCrh1</i> ⁷⁵⁻¹⁴⁴ transient expression	ctcccccgggggtaccgtcgacggatccGACGAATTGGGCACCGAGG BcCrh1 ⁷⁵⁻¹⁴⁴ -TE F:
	ccatttacgaacgatagcatctATGATTAGCACAGCAACCGATGCAC BcCrh1 ⁷⁵⁻¹⁴⁴ -TE R:
<i>BcCrh1</i> ¹⁴⁵⁻³⁹¹ transient expression	ctcccccgggggtaccgtcgacggatccCGTCGTGTTTCCCTTTCCGA BcCrh1 ⁷⁵⁻³⁹¹ -TE F:
	ccatttacgaacgatagcatctATGACCTATGACCGTGCTCAATAC

	<i>BcCrh1</i> ⁷⁵⁻³⁹¹ -TE R:
	cccgggggtaccgtcgacggatccCATAACGAGATAACCTAATCC
BcCrh175-144 transient expression with	SP (PR3) <i>BcCrh1</i> ⁷⁵⁻¹⁴⁴ -TE F:
plant SP (PR3)	ccatttacgaacgatagcatctagaATGAAGACTAATCTTTTTCTCT
	<i>BcCrh1</i> ⁷⁵⁻¹⁴⁴ -TE R:
	ctcccccgggggtaccgtcgacggatccCGTCGTGTTTCCCTTTCCGA
BcCrh1 ⁷⁵⁻¹⁰⁹ transient expression	<i>BcCrh1</i> ⁷⁵⁻¹⁰⁹ -TE F:
	ccatttacgaacgatagcatctATGATTAGCACAGCAACCGATGCAC BcCrh1 ⁷⁵⁻¹⁰⁹ -TE R:
	ctcccccgggggtaccgtcgacggaACTGACGATACCAGTTCCG
<i>BcCrh1</i> ¹¹⁰⁻¹⁴⁴ transient expression	<i>BcCrh1</i> ¹¹⁰⁻¹⁴⁴ -TE F:
	ccatttacgaacgatagcatctATGAGTTTTATTCTCGAATCCGA
	<i>BcCrh1</i> ¹¹⁰⁻¹⁴⁴ -TE R:
	ctcccccgggggtaccgtcgacggatccCGTCGTGTTTCCCTTTCCGA
BcCrh193-127 transient expression	<i>BcCrh1</i> ⁹²⁻¹²⁷ -TE F:
	ccatttacgaacgatagcatctATGGGTCGCATCGAGACATGGGTG
	<i>BcCrh1</i> ⁹²⁻¹²⁷ -TE R:
	ctcccccgggggtaccgtcgacggaACCGAGCCATTCCCAATCAA
MBcCrh193-127 transient expression	<i>MBcCrh1</i> ⁹²⁻¹²⁷ -TE F:
	ccatttacgaacgatagcatctATGGGTCGCATCGAGACATGGGTG
	<i>MBcCrh1</i> ⁹²⁻¹²⁷ -TE R:
	ctcccccgggggtaccgtcgacggaACCGAGCCATTGCCAATGAA
	TCTGATCGAG
<i>BcCrh1</i> ⁹³⁻¹¹³ transient expression	<i>BcCrh1</i> ⁹²⁻¹¹³ -TE F:
	ccatttacgaacgatagcatctATGGGTCGCATCGAGACATGGGTG
	<i>BcCrh1</i> ⁹²⁻¹¹³ -TE R:
<i>SP(BcCrh1)-GFP</i> transient expression	SP(BcCrh1)-GFP-TE F:
35S:SP(BcCrh1) cloning	TAAAACGACGGCCAGTGCCAAGCTTAGCTTGCATGCCTGCAGG
	SP(BcCrn1)-GFP-1E F:
Paceth IC26AC33A transient expression	$p_{\alpha C = b} + 1^{C26AC33A}$ TE E.
	GCTAAC
	$B_{C}rhl^{C26AC33A}$ -TE R·
	cccgggggtaccgtcgacggatccCATAACGAGATAACCTAATCC
BcXYG1 Fused with SP(BcCrh1) and	SP(BcCrh1)- BcXYG1 F:
GFP transient expression	ATGCGTTCCTCAACAATATCAGCATCTGCTGTTGTTCTCCTTTC
	AGGACTTGCCAGTGCAAACCCTACTCCTACTCTTG
	BcXYG1-GFP R:
	ctcccccgggggtaccgtcgacggatccATTGAGCGAGACGGAGTAG
BcXYG1 Fused with SP(BcCrh1)-	SP(BcCrh1)- BcCrh1 ²¹⁻⁷⁴ F:
BcCrh1 ²¹⁻⁷⁴ and GFP transient	ccatttacgaacgatagcatctagaATGCGTTCCTCAACAATATC

expression	$SP(BcCrh1)$ - $BcCrh1^{21-74}$ R:
	GACGAATTGGGCACCGAGG
	BcCrh1-BcXYG1 F:
	CCTCGGTGCCCAATTCGTCAACCCTACTCCTACTCTTG
	BcCrh1-BcXYG1 R:
	ctcccccgggggtaccgtcgacggatccATTGAGCGAGACGGAGTAG
BcCrh1 over-expression	BcCrh1-OE F:
	attggcgcgccATGCGTTCCTCAACAATATCAGC
	BcCrh1-OE R:
	gcggccgcTTA <u>AGCGTAATCTGGAACATCGTATGGGTA</u> CATAACG
	AGATAACCTAATCCGAGAC
MBcCrh1 over-expression in wt and	MBcCrh1-OE (PoliC-MBcCrh1) F:
<i>bccrh1</i> deletion mutant background	CCATCACATCACAATCGATCCAACCATGCGTTCCTCAACAATA
MBcCrh1 ^{C26AC33A} over-expression in	TCAGCAT
<i>bccrh1</i> deletion mutant background	
	MBcCrh1-OE (MBcCrh1-Tgluc) R:
	CATACATCTTATCTACATACGCTAAGCGGCCGCCATAACGAGA
	TAACCTAATCCGAGA
BcCrh1-GFP fused protein under control	PtrpC-promoter of BcCrh1 F:
of the native <i>bccrh1</i> promoter	GCCCAAAAAATGCTCCTTCAATATCACTAGTTTCATATGCTTTG
	GAAATGGGATGG
	Promoter of BcCrh1 R:
	GCTGATATTGTTGAGGAACGCATCTTGAAATATGTGATGTGTG
	TGTGC
	BcCrh1 F:
	ATGCGTTCCTCAACAATATCAGCAT
	BcCrh1-GFP-R:
	TACTTACCTCACCCTTGGAAACCATCATAACGAGATAACCTAA
	TCCGAGA
MBcCrh1 under control of the native	PtrpC-promoter of BcCrh1 F:
promoter in <i>bccrh1</i> deletion mutant	GCCCAAAAAATGCTCCTTCAATATCACTAGTTTCATATGCTTTG
background	GAAATGGGATGG
	promoter of BcCrh1 R:
	GCTGATATTGTTGAGGAACGCATCTTGAAATATGTGATGTGTG
	TGTGC
	MBcCrh1 F:
	ATGCGTTCCTCAACAATATCAGCAT
	MBcCrh1-Tgluc-R:
	CATACATCTTATCTACATACGCTAAGCGGCCGCCATAACGAGA
	TAACCTAATCCGAGA
BcCrh1/MBcCrh1 expression in E. coli	BcCrh1 pET14b F:
1	
, A	AACCTGTACTTCCAGGGTCATATGCAAACATTCACTGATTG

	CCGGCCATGGAAAAAAAAACATTACATAACGAGATAACCTAA
	ТС
<i>BcCrh1</i> ²¹⁻¹⁴⁴ expression in <i>E. coli</i>	<i>BcCrh1</i> ²¹⁻¹⁴⁴ pET14b F:
L L	AACCTGTACTTCCAGGGTCATATGCAAACATTCACTGATTGC
	<i>BcCrh1</i> ²¹⁻¹⁴⁴ pET14b R:
	TCGGGCTTTGTTAGCAGCCGTTACGTCGTGTTTCCCTTTCCGA
<i>BcCrh1</i> ⁷⁵⁻¹⁴⁴ expression in <i>E. coli</i>	<i>BcCrh1</i> ⁷⁵⁻¹⁴⁴ pET14b F:
L L	AACCTGTACTTCCAGGGTCATATGATTAGCACAGCAACCGAT
	GCAC
	<i>BcCrh1</i> ⁷⁵⁻¹⁴⁴ pET14b R:
	TCGGGCTTTGTTAGCAGCCGTTACGTCGTGTTTCCCTTTCCGA
Generate pET14b linearized vector	pET14b-GFP F:
skeleton for cloning	CGGCTGCTAACAAAGCCCGAAAGG
C	pET14b-GFP R:
	- CATATGACCCTGGAAGTACAGG
BcCrh1 replacement vector upstream	pTZ-5'flank <i>BcCrh1</i> F:
Amplify 5'flank of <i>BcCrh1</i>	ggtaacgccagggttttcccagtcacgacgCCCCCGCCCCTCGTTTGCTTACAG
	TGAC
	HygTer-5'flank <i>BcCrh1</i> R:
	cettttttttcaggaattattctcacagtCTTGAAATATGTGATGTGTGTGTGTGCG
	TG
BcCrh1 replacement vector downstream	OliCProm-3'flankBcCrh1 F:
Amplify 3'flank of BcCrh1	gatctagatgcattcgcgaggtaccgagctACCTGATAAACGAGAAATTCCAG
	GAAAG
	pTZ-3'flankBcCrh1 R:
	agcggataacaatttcacacaggaaacagcCATGGGAGTATTGCATCAGGTAT
	CACC
Amplify hph cassette	OliCprom-Hyg-pOnex F:
	AGCTCGGTACCTCGCGAATGC
	ToACR R:
	ACTGTGAGAATAATTCCTG
Check <i>BcCrh1</i> deletion	5'flank <i>BcCrh1-</i> check F:
	TTTCATGACAATGCTGAAAACCTTC
	3'flank <i>BcCrh1</i> -check R:
	GAGATGTTGAGAATCTAATTACTATT
Used to check homologous recombination	Hyg end for:
of <i>hph</i> -containing cassette	ATTCCCAATACGAGGTCGCCAACATCTTCTTC
	Hyg beg rev:
	GAGATGCAATAGGTCAGGCTCTCGCTGAATTC
Used to check the expression cassettes of	pH2B start Rev: caaaacateteteeteeatecaeceaaaac
pH2B: N'GFP-BcCrh1 and pH2B: C'GFP-	pH2B end For: actcatcaacatcaatctcagcc
BcCrh1	
To amplify part of the open reading frame	<i>BcCrh1</i> -check For:

of BcCrh1	AGAAAAGACCTGTCCTTCAGACCCA
	BcCrh1-check Rev:
	AAGATCAATCATGCCGTATTCGTGC
To amplify part of the open reading frame	BcActin-check F:
of BcActin	CCCAATCAACCCAAAGTCCAACAG
	BcActin-check R:
	CCACCGCTCTCAAGACCCAAGA
Y2H assay	AD-BcCrh1 F:
	tatggccatggaggccagtgaattcCAAACATTCACTGATTGC
	AD-BcCrh1 R:
	tctgcagctcgagctcgatgTTACATAACGAGATAACCTAATC
	BD-BcCrh1 F:
	GCATATGGCCATGGAGGCCGAATTCCAAACATTCACTGA
	TTGC
	BD-BcCrh1 R:
	GCGGCCGCTGCAGGTCGACGTTACATAACGAGATAACCTAAT
	C
	<i>BD-BcCrh1</i> ^{C26AC33A} F:
	GCATATGGCCATGGAGGCCCAAACATTCACTGATGCTAACCC
	AACAGAAAAGACCGCTCCTTCAGACCCAGCCATTG
	<i>BD-BcCrh1-</i> ^{C26A} F:
	GCATATGGCCATGGAGGCCGAATTCCAAACATTCACTGATGC
	TAACCCAACAGAAAAGACCGCT
	AD- BcCrh1 $^{\Delta 21-38}$ F:
	TATGGCCATGGAGGCCAGTGAATTCATTGGAGGCCTTCAAGT
	GACC
	AD- BcCrh1 $^{\Delta 21-38}$ R:
	GCATATGGCCATGGAGGCCGAATTCATTGGAGGCCTTCAAGT
	GACC
<i>BcCrh1</i> for qRT-PCR	BcCrh1-q F: TGATTGCAACCCAACAGAAA
	BcCrh1-q R: GGTTGCTGTGCTAATGACGA
<i>B. cinerea Bcgpdh</i> for qRT-PCR	Bcgpdh-q F: CGAAGAATAGCACAAACAGCTGGAC
	Bcgpdh-q R: CGTCACCTTATGCTTCTTGCTCC
<i>S. lycopersicum LoxD</i> for qRT-PCR	LoxD-q F: GGCTTGCTTTACTCCTGGTC
	LoxD-q R: AAATCAAAGCGCCAGTTCTT
<i>S. lycopersicum PR1a</i> for qRT-PCR	PR1a-q F: TGGTATGGCGTAAGTCGGTA
	PR1a-q R: CTTGGAATCAAAGTCCGGTT
S. lycopersicum ACS6 for qRT-PCR	ACS6-q F: CCTGGTTGTTCATTTCATTGCTCAGAG
	ACS6-q R: GCAACTTCAACTCCCTTATTTGGTTGTAA
S. lycopersicum LRR22 for qRT-PCR	LKK22-q F: AAGATTGGAGGTTGCCATTGGAGC
	LKK22-q R: ATCGCGATGAATGATCGGTGGAGT
S. tycopersicum PI-II for qRT-PCR	
	<i>PI-II-</i> q R: GGGCAATCCAGAAGATGG

S. lycopersicum NPR1 for qRT-PCR	NPR1-q F: CCCTGGCTAGCATGAGGAAG
	NPR1-q R: AGAGAGAGCCCTAAGCCGAT
S. lycopersicum OPR3 for qRT-PCR	OPR3-q F: CTTTGAGGAACGCGTATCAGG
	OPR3-q R: TGACACGAGATCAGCATCACC
S. lycopersicum actin for qRT-PCR	actin-q F: TGAGCTTCGAGTTGCTCCTGA
	actin-q R: AGCACAGCCTGGATAGCAACA
A. thaliana UBQ10 for qRT-PCR	UBQ10-q F: AGATCCAGGACAAGGAAGGTATTC
	UBQ10-q R: CGCAGGACCAAGTGAAGAGTAG
A. thaliana NPR1 for qRT-PCR	NPR1-q F: TGCATCAGAAGCAACTTTGG
	NPR1-q R: GGCCTTTGAGAGAATGCTTG
A. thaliana PR5 for qRT-PCR	PR5-q F: GTCAATTCAAATCCTCCATCG
	PR5-q R: CGCAGGACCAAGTGAAGAGTAG
A. thaliana PAD4 for qRT-PCR	PAD4-q F: TCTTCAGTTAAAGATCAAGGAAGG
	PAD4-q R: GGTTGAATGGCCGGTTATC
A. thaliana PDF1.2 for qRT-PCR	PDF1.2-q F: GTTCTCTTTGCTGCTTTCGAC
	PDF1.2-q R: GCAAACCCCTGACCATGT
A. thaliana LOX3 for qRT-PCR	LOX3-q F: CGCCAATCAACAGTTTCTGA
	LOX3-q R: CTCGTCTCGTGGCACATACA
$BcXYG1^{E120Q/D122H/E124Q}$ enzymatic activity	BcXYG1 ^{E120Q/D122H/E124Q} F:
site-directed mutation	CTCGATCAGATTCATTGGCAATGGCT
	BcXYG1 ^{E120Q/D122H/E124Q} R:
	AGCCATTGCCAATGAATCTGATCGAG

116 Supplemental Table 2. List of *B. cinerea* and yeast strains used in this study.

Strain	Genotype and description	Source
B05.10	Haploidized B. cinerea wild type strain	Shlezinger et al., (2016)
∆ bccrh1	<i>bccrh1</i> deletion mutant	This work
OE-BcCrh1	Over expression strain of the native form of BcCrh1	This work
OE-MBcCrh1	Over expression strain of the mutated form of BcCrh1	This work
	that has no enzymatic activity in wild-type background	
NP-BcCrh1-GFP	BcCrh1-GFP fused protein under control of the native	This work
	bccrh1 promoter	
Δ/OE-MBcCrh1	Over expression strain of the mutated form of BcCrh1	This work
	that has no enzymatic activity in <i>bccrh1</i> deletion	
	background	
Δ/NP-MBcCrh1	Mutant strain of the enzymatic inactive BcCrh1 protein	This work
	under control of the native bccrh1 promoter in bccrh1	
	deletion background	
∆/OE-MBcCrh1 ^{C26AC33A}	Over expression strain of the mutated form of BcCrh1	This work
	that lost both enzymatic activity and homodimer activity	
	in <i>bccrh1</i> deletion background	
N'GFP-BcCrh1	BiFC assay, BcCrh1 was fused with N'GFP and C'GFP,	This work
/C'GFP-BcCrh1	respectively. Co-expressing of the N'GFP-BcCrh1 and	
	C'GFP-BcCrh1 was controlled by <i>B. cinerea</i> H2B	
	promoter.	
N'GFP-BcCrh1 ^{C26AC33A}	BiFC assay, BcCrh1 $^{\rm C26AC33A}$ was fused with N'GFP and	This work
/C GFP-BCCIIII CLOREDSA	C'GFP, respectively. Co-expressing of the N'GFP-	
	BcCrh1 ^{C26AC33A} and C'GFP-BcCrh1 ^{C26AC33A} was	
	controlled by <i>B. cinerea</i> H2B promoter.	
N'GFP /C'GFP-BcCrb1	BiFC assay, BcCrh1 was fused with C'GFP only. Co-	This work
	expressing of the N'GFP and C'GFP-BcCrh1 was	
	controlled by <i>B. cinerea</i> H2B promoter.	
OE-GFP	Over expression strain of the free GFP protein	This work
BY4741	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$	Cabib E et al., (2007)
GRA007	MATa his3∆1 leu2∆0 ura3∆0 crh2::HIS3	Cabib E et al., (2007)
	crh1::hphMX4	
$crh1\Delta crh2\Delta/BcCrh1$	Yeast strain of the BcCrh1 protein under control of	This work
	CRH2 promoter and terminator in GRA007 background	

$crh1\Delta crh2\Delta/MBcCrh1$	Yeast strain of the enzymatic inactive BcCrh1 protein	This work
	under control of CRH2 promoter and terminator	
	in GRA007 background	
$crh1\Delta crh2\Delta/BcCrh1^{C26AC33A}$	Yeast strain of the BcCrh1 ^{C26AC33A} protein (the mutated	This work
	form of BcCrh1 that lost homodimer activity) under	
	control of CRH2 promoter and terminator	
	in GRA007 background	