Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.201901427

Preparation and Characterization of Dentin Phosphophoryn-Derived Peptide-Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake

Patrícia Figueiredo, * Mika H. Sipponen, Kalle Lintinen, Alexandra Correia, Alexandros Kiriazis, Jari Yli-Kauhaluoma, Monika Österberg, Anne George, Jouni Hirvonen, Mauri A. Kostiainen, and Hélder A. Santos*

Supporting Information

DOI: 10.1002/ ((please add manuscript number)) Article type: Full Paper

Preparation and characterization of dentin phosphophoryn-derived peptidefunctionalized lignin nanoparticles for enhanced cellular uptake

Patrícia Figueiredo^{*}, Mika H. Sipponen, Kalle Lintinen, Alexandra Correia, Alexandros Kiriazis, Jari Yli-Kauhaluoma, Monika Österberg, Anne George, Jouni Hirvonen, Mauri A. Kostiainen, Hélder A. Santos^{*}

[*] P. Figueiredo, A. Correia, Dr. A. Kiriazis, Prof. J. Yli-Kauhaluoma, Prof. J. Hirvonen, Prof. H. A. Santos
Drug Research Program
Division of Pharmaceutical Chemistry and Technology
Faculty of Pharmacy
University of Helsinki
FI-00014 Helsinki, Finland
E-mail: patricia.figueiredo@helsinki.fi; helder.santos@helsinki.fi

Dr. M. Sipponen, Prof. M. Österberg School of Chemical Engineering Department of Bioproducts and Biosystems Aalto University FI-00076, Aalto, Finland

Dr. K. Lintinen, Prof. M. A. Kostiainen Biohybrid Materials Department of Bioproducts and Biosystems Aalto University FI-00076, Aalto, Finland

Prof. A. George Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory Department of Oral Biology University of Illinois Chicago, Illinois 60612, USA

[*] Prof. H. A. Santos Helsinki Institute of Life Science (HiLIFE) University of Helsinki FI-00014 Helsinki, Finland

Sample	Original Lignin (mg)	Succinic anhydride
		(mg)
Carboxylated Lignin (1:2)	100.0	200.0 (42.4 mmol)
Carboxylated Lignin (1:1)	100.0	100.0 (21.2 mmol)
Carboxylated Lignin (2:1)	100.0	50.0 (10.6 mmol)
Carboxylated Lignin (3:1)	100.0	33.3 (7.06 mmol)
Carboxylated Lignin (4:1)	100.0	25.0 (5.3 mmol)
Carboxylated Lignin (5:1)	100.0	20.0 (4.2 mmol)

Table S1. Summary of the reaction ratios used for the carboxylation of the original lignin

 polymer.

Table S2. Description of the main lignin functional groups: IR absorption bands and respective type of vibration.^[1, 2]

IR band (cm ⁻¹)	Type of vibration					
3500-3100	Stretching vibrations of alcohol and phenol –OH groups involved in					
	hydrogen bonds					
2920-2850	Stretching vibrations of C–H bonds in methoxy group					
1720	Stretching vibrations of C=O bonds at β location and in unconjugated					
1720	–COOH group					
1600	Stretching vibrations of C=O bonds at α - and γ -locations					
1512						
1465	Aromatic ring vibrations					
1427						
1269	Vibrations of quaiacul rings and stratching vibrations of C . O hands					
1215	vibrations of guaracyl rings and stretching vibrations of C–O bonds					
1150	Deformation vibrations of C-H bonds in guaiacyl rings					
1083	Deformation vibrations of C–O bonds in secondary alcohols and aliphatic ethers					
1033	Deformation vibrations of C–H bonds in the aromatic rings and					
1055	deformation vibrations of C–O bonds in primary alcohols					
858	Deformation with rations of C. It hands in the aromatic rings					
819	Deformation violations of C-H bonds in the aromatic rings					

Figure S1. Stability of bare and peptide-decorated LNPs in DMEM supplemented with 10% FBS: effect on the size (a) and ζ -potential (b) of LNPs, LNPs-iRGD and LNPs-DSS after 2 h incubation at 37 °C. Errors bars represent mean \pm s.d. (*n* = 3).

Table S3. Inhibitory Concentration (IC) values by 50% (IC₅₀), 80% (IC₈₀) and 90% (IC₉₀), after incubation of BZL and BZL-loaded LNPs, LNPs-iRGD and LNPs-DSS with a 2D model of PC3-MM2, MDA-MB-231 and A549 for 6 and 24 h at 37 °C. These values were obtained by means of a concentration response curve by non-linear regression using OriginPro 2018.

			PC3-	MM2		MDA-MB-231				A549			
		BZL	BZL@ LNPs	BZL@ LNPs- iRGD	BZL@ LNPs- DSS	BZL	BZL@ LNPs	BZL@ LNPs- iRGD	BZL@ LNPs- DSS	BZL	BZL@ LNPs	BZL@ LNPs- iRGD	BZL@ LNPs- DSS
50 M)	6h	56.4	-	-	50.7	-	-	-	-	18.2	27.0	27.4	24.1
IC (F)	24h	11.4	10.8	8.5	9.3	12.7	5.4	10.2	9.4	12.5	15.4	15.9	16.1
80 M)	6h	-	-	-	-	-	-	-	-	29.4	35.2	34.4	37.4
IC [h]	24h	17.3	17.2	15.5	16.7	20.1	22.4	26.0	22.0	25.2	29.4	29.3	28.9
.90 M)	6h	-	-	-	-	-	-	-	-	41.5	41.1	43.5	49.8
ы Г	24h	22.5	22.5	22.3	23.6	29.8	31.9	35.5	31.4	31.9	36.5	36.0	35.2

Table S4. Inhibitory Concentration (IC) values by 50% (IC₅₀), 80% (IC₈₀) and 90% (IC₉₀), after incubation of BZL and BZL-loaded LNPs, LNPs-iRGD and LNPs-DSS with a 3D tumor spheroids of PC3-MM2, MDA-MB-231 and A549 for 6, 24 and 48 h at 37 °C. These values were obtained by means of a concentration response curve by non-linear regression using OriginPro 2018.

			PC3-	MM2		MDA-MB-231			A549				
		BZL	BZL@ LNPs	BZL@ LNPs- iRGD	BZL@ LNPs- DSS	BZL	BZL@ LNPs	BZL@ LNPs- iRGD	BZL@ LNPs- DSS	BZL	BZL@ LNPs	BZL@ LNPs- iRGD	BZL@ LNPs- DSS
IC ₅₀ (μM)	6h	-	33.1	45.4	31.5	11.5	18.8	19.9	18.3	-	42.6	53.7	
	24h	-	45.4	22.1	21.1	17.0	17.0	15.7	19.5	20.9	20.3	20.1	24.5
	48h	-	31.5	20.1	20.9	15.9	20.1	20.4	21.0	21.1	18.9	20.2	24.3
IC ₈₀ (μM)	6h	-	-	-	-	34.9	38.9	42.6	33.7	-	-	-	-
	24h	-	49.3	44.0	41.7	38.2	33.6	32.4	33.4	45.5	61.7	54.6	62.7
	48h	-	59.4	41.8	42.4	37.6	40.7	38.5	36.7	40.9	50.5	44.4	47.6
⁹⁰ (μM)	6h	-	-	-	-	50.6	49.7	54.9	41.3	-	-	-	-
	24h	-	-	-	-	50.1	42.2	41.2	39.9	-	-	-	-
IC	48h	-	-	53.3	53.7	50.1	51.5	47.5	44.2	51.0	70.2	57.7	60.1

Materials: Tetrahydrofuran (THF), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 2-(*N*-morpholino)ethanesulfonic acid (MES) were purchased from Sigma-Aldrich[®], USA. Culture flasks were purchased from Corning Inc., USA. Dulbecco's Modified Eagle medium (DMEM), Roswell Park Memorial Institute 1640 medium (RPMI), heat inactivated fetal bovine serum (FBS), L-glutamine (200 mM), non-essential amino acids (NEAA), penicillin (100 IU/mL), streptomycin (100 mg/mL) and trypsin (2.5%) were acquired from HyClone Waltham, USA. Dulbecco's phosphate buffer saline (10× PBS) and Hank's balanced salt solution (10× HBSS) were purchased from Life Technologies Gibco[®] (Carlsbad, CA, USA).

Cell Culturing: Human prostate cancer (PC3-MM2), human mammary carcinoma (MDA-MB-231) and human lung carcinoma (A549) cell lines were obtained from American Type Culture Collection (ATCC), USA. The PC3-MM2 and A549 cells were incubated in DMEM, the MDA-MB-231 cells were incubated with RPMI, supplemented with 10% FBS, 1% NEAA, 1% L-glutamine and 1% penicillin-streptomycin in 75 cm² flasks. Cells were maintained in an incubator (BB 16 gas incubator, Heraeus Instruments GmbH) at 37 °C, 5% CO₂ and 95% relative humidity.

Preparation of Lignin Nanoparticles and experimental conditions for BZL quantification

Table S5. HPLC conditions used in this study for quantification of the loaded and released
 BZL.

	Benzazulene			
	Solution A: 0.1% Trifluoroacetic acid (pH 2.0)			
Mobile Phase (v/v)	Solution B: Acetonitrile			
	(35:65)			
Column	Kinetex [®] C ₁₈ , 75 mm \times 4.6 mm, 2.6 μ m			
Column	(Phenomenex, USA)			
Flow Rate (mL/min)	1.0			
Detection (UV, nm)	295			
Injection Volume (µL)	15			
Temperature (°C)	25			

Conjugation of the peptides to LNPs:

Table S6. Relevant information of the peptides for the conjugation reactions.

	DSS	iRGD		
Length	22 aa	10 aa		
Sequence	DSSDSSDSSDSSDSSDSSKKKK	CCRGDKGPDC		
Molecular weight	2267.15	1053.34		
250 μM of peptide (mg/mg of LNPs)	0.283 mg	0.132 mg		

References

 B. Ahvazi, É. Cloutier, O. Wojciechowicz, T.-D. Ngo, ACS Sustainable Chemistry & Engineering 2016, 4, 5090.
 P. Figueiredo, C. Ferro, M. Kemell, Z. Liu, A. Kiriazis, K. Lintinen, H. F. Florindo, J. Yli-Kauhaluoma, J. Hirvonen, M. A. Kostiainen, H. A. Santos, Nanomedicine 2017, 12, 2581.