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Appendix E1 

Quantitative Assessment Metrics 
There are two main factors we wish to assess to estimate the quality of outputs from a trained 
generator network. One is the shape of the distributions, or how probable are the synthesized 
images were under the true data distribution, and the other is how large is the support of the 
generated distribution. Neither of these factors are straightforward to quantitatively assess and 
have been a subject of research since the advent of GANs. 

The difficulty in assessing the fidelity to which the generated distribution follows the true 
data distribution stems from the fact that: 

Images Are Unpaired 
We wish to compare sets, as opposed to pairs of images for which most conventional image 
similarity metrics are designed. 

Conceptual Assessment 
The comparison is based on conceptual attributes of appearance that are inherently subjective 
and difficult to quantify. 

The most popular quantitative methods as described in the literature are the following: 

Inception Score (IS) 
The first quantitative metric proposed in the literature. It typically involves presenting the images 
X to a trained Inception network (13) (usually ImageNet (14) pretrained). 

Intuitively, high fidelity to the true distribution implies low entropy with respect to the 
conditional prediction p (y|X) (samples are unambiguous) and high distributional support 
translates to high entropy with respect to the marginal p (y) (samples have high diversity). 

Most prominent criticisms of the metric focus on the fact that it is difficult or impossible 
to apply to a domain for which no pretrained network is available and that it does not explicitly 
utilize the real images in the computation of the score. 

Frechet Inception Score (FIS) 
An alternative to the IS proposed to ameliorate some of the aforementioned issues is the Frechet 
Inception Distance (FID). Both real and synthetic images are encoded into a discriminative 
feature space by means of a pretrained neural network. The overlap of those features is then 
assessed using the Frechet distance. 

As a result the metric can be more robust to transferring to a slightly different domain 
than the one of the encoder network, as long as the features are still discriminative enough for the 
new domain. 
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Multiscale Structural Similarity Index (MS-SSIM) 
The MS-SSIM is a metric that does not require the use of a pretrained model. It is based on the 
SSIM, which was designed to improve upon traditional image quality metrics (15,16) and has 
also been used as a loss function in deep learning as it is differentiable (17). 

As SSIM is a distance metric between images, it is necessary to randomly pair the real 
and synthetic images (as no better pairing is available), compute the SSIM of each set and then 
compare with within set self-similarities. 

Multiscale Sliced Wasserstein’s Metric 
An interesting alternative to conventional GAN evaluation metrics is the Multiscale Sliced 
Wasserstein metric (2). It is based on the concept of the sliced Wasserstein distance between 
distributions. 

The Wasserstein’s distance, also referred to as the “earth mover distance” can be 
computed by simple subtraction of paired samples. However, the samples must be optimally 
paired and finding the optimal transport policy between multidimensional distributions is very 
computationally intensive. In contrast, the optimal transport between two one-dimensional 
distributions can be simply found by sorting their samples. Based on this observation the sliced 
Wasserstein’s is an approximation of the Wasserstein’s distance as a finite sum of one-
dimensions projections to sufficiently many random directions, where it is much simpler to find 
the optimal coupling. 

Appendix E2  

A Primer on GANs 

Pixel resolution of GANs 
Early research into GANs did not focus on increasing generated image resolution due to 
challenges with respect to training instability and resulting quality. For every increase in pixel 
size, there is a concordant increase in dimensionality and complexity, which makes the problem 
more difficult. 

In addition, and despite the abundance of high-resolution medical image datasets, that is 
not necessarily the case for natural images, on which GAN literature relies. In fact, the authors in 
(2) resorted to synthetically increasing the resolution of the popular CelebA facial image dataset 
to train a GAN at pixel resolution as high as 1024 × 1024. To date there has been little published 
research focusing on high-resolution GANs in the medical imaging domain. 

Progressive Growing of GANs 
Despite the original concept of progressively growing of GANs presented in (2), this work 
included several further important contributions, including a) a dynamic weight initialization 
method proposed to equalize the learning rate between parameters at different depths, b) batch 
normalization was substituted with a variant of local response normalization to constrain signal 
magnitudes in the generator c) addition of the mini-batch standard deviation as an extra signal to 
the discriminator to promote intrabatch variability d) a new evaluation metric was proposed 
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(Sliced Wasserstein distance). Finally, further stability and performance gains stem from using 
the Wasserstein objective with gradient penalty (18). 

Nevertheless, we experienced stability issues and mode collapse despite using 
progressive training, which we alleviated by taking the following measures: (a) adding 
supervised information (19) we conditioned on useful attributes, such as the view (craniocaudal 
or mediolateral oblique) and breast mask size, (b) decreasing the default learning rate (from 
0.002 to 0.0015), (c) gradually increasing the discriminator iterations per each generator update, 
from 1 to a maximum of 5, (d) increasing the capacity of the networks, by doubling the number 
of neurons in the final feature layer and the starting depth of the network. We trained for 33 
epochs, before resuming and presenting an additional 5 million images (sampled with 
replacement). We selected the best network checkpoint based on the sliced Wasserstein distance. 
The whole process took approximately 52 hours on an NVIDIA DGX-1, with 8 V100 GPUs (Fig 
E1). 

Mode Collapse 
Mode collapse is an important problem encountered in GAN research, difficult to detect or 
avoid. In a GAN framework the generator network is aiming to create a synthetic image x = G 
(z), where G is the generator, and z represents a feature vector drawn from a uniform distribution 
in the latent space. The resulting image x can therefore manifest as one of many variations of the 
underlying latent space. However, let us suppose a situation where the generator network is 
trained without sufficient updates to the discriminator. In this situation generated images may 
converge to an optimal image x*, independent of z; that is to say that the generated image will 
not be related to the underlying latent features: 

* ( )xx argmax D x= . 

Here, the ‘mode’ is said to have collapsed to a single point, as the gradient associated with z 
approaches zero. All the discriminator has to do to be successful is to find one (or few) x*, which 
is trivial, as that is all the generator is producing at this point. Continued training essentially 
overfits the generator to carry on producing x*, and the discriminator to finding x*, and the 
model cannot converge to equilibrium. 

Beyond the most extreme manifestations of mode collapse, the problem is typically much 
more subtle and therefore difficult to detect. More generally, partial collapse would preclude the 
generator from producing images in some areas of the support of the real image distribution. 
Therefore, there would be areas of the real (target) distribution to which the synthetic (source) 
distribution would assign zero probability density. 

Appendix E3 

Mutual Information 
The method for calculating mutual information is proposed in (18) and can be outlined as 
follows: 

For each data point yi in class ci, we first find the distance to its’ kth-nearest neighbor (k = 
3) within the same class and denote it as di. We then count the neighbors that lie within the 



 

Page 4 of 5 

sphere with radius di regardless of their class and denote that count as mi. The mutual 
information score for each data point i is given by the following equation (18): 

( ) ( ) ( ) ( )
ii c iI N N k mψ ψ ψ ψ= − + −

, 

where N  is total number of data points, 
icN  is the number of data points belonging to class ic , 

k  is the number of neighbors we consider (default is 3) and im  is the number of neighbors 
within a sphere of radius di. 

To calculate the mutual information between the two groups of points, we need to pair 
their samples. To do so, we used the optimal coupling for one-dimensional distributions, which 
according to Optimal Transport theory is simply obtained by the sorting operator. 

 

Appendix E4 

Application Design 
Our iOS application was developed for Apple iPad Pro using Unity 2018.2.2f1, built in Xcode 
9.2 and deployed over Amazon S3. The iPad had a screen resolution of 2048 × 2732 pixels, a 
screen height of 12.9” and an aspect ratio of 4:3. The architecture was a basic model-view-
controller (MVC) implementation binding a data-store (Model) to a simple state-machine 
(Controller) that manages the presentation and input from several pages (Views) presented to the 
player. The basic modes of the app in the controller layer, were: (a) survey, (b) tutorial, and (c) 
gameplay states. 

During an onboarding survey participants were asked a variety of questions for the 
purpose of stratifying the results of the study. The tutorial instructed participants on how the real 
and synthesized mammograms would be presented and how to interact with the application. The 
gameplay state displayed the real and synthesized images to the participant and allowed them to 
select the “real” image. 

In the view layer (Fig 4), the gameplay state of the app was designed to emulate a basic 
DICOM viewer displaying image pairs to the participant with a high level shading language 
(HLSL) shader to enable zooming and panning using familiar gestures. The participants were not 
able to change the window level. The images were selected at random from the pool, and 
assigned to the left and right of the screen on a ‘coin-toss’ upon presentation. Once presented an 
image was removed from the pool for that players session (sampled without replacement). The 
probability distribution for the coin-toss presentation of images was verified by a unit test which 
always chose the left image and asserted the mean average score to be 5 out of 10. 
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