
S1 Text: Additional Methods

A Fitting Hawkes Processes

Following Rasmussen et al. [1] and Rizoiu et al. [2], the likelihood of the Hawkes process can be
derived as follows. We define the history, Ht, of the disease outbreak to be the list of infection
times t1, t2, ...., tn up to but not including the current time t. We also define the conditional
intensity function (or hazard function) in terms of time t as

λ(t) =
f ?(t)

1− F ?(t)
(A)

where f ?(t) := f(t|Ht) is the conditional probability density function of the time of the next event
tn+1 given the history of the previous events t1, t2, ..., tn and F ?(t) is the corresponding cumulative
distribution function. Equations for f ?(t) and F ?(t) are derived as follows.

We first write the conditional intensity function, (A), just in terms of the cumulative distribu-
tion function F ?(t)

λ(t) =
∂
∂t
F ?(t)

1− F ?(t)
. (B)

We then simplify (B) into

λ(t) = − ∂

∂t
log(1− F ?(T )). (C)

If we integrate (C) between times tn and t we get∫ t

tn

λ(τ) dτ = −[log(1− F ?(t))− log(1− F ?(tn))], (D)

where t is the current time and tn is the time of the last known event prior to t. Since F ?(tn) = 0,
because tn+1 > tn, (D) can be simplified to be∫ t

tn

λ(τ) dτ = − log(1− F ?(t)). (E)

Rearranging (D) gives us the equation for the cumulative distribution function

F ?(t) = 1− e−
∫ t
tn
λ(τ) dτ . (F)
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Substituting (F) into (A) enables us to solve for the conditional probability density function

λ(t) =
f ?(t)

1− (1− e−
∫ t
tn
λ(τ) dτ )

. (G)

After rearranging (G),

f ?(t) = λ(t)e−
∫ t
tn
λ(τ) dτ . (H)

The likelihood function of the Hawkes Process, with parameters θ is the joint density function of
all the points in the history of the outbreak and can therefore be factorised into all the conditional
densities of each points given all points before it. This yields

L(θ) = f ?(t1)...f ?(tn)(1− F ?(T )), (I)

where (1−F ?(T )) is the last term because the unobserved point tn+1 appears after the end of the
observation interval. Using equation (A), the likelihood function can be written as

L(θ) =
n∏
i=1

f ?(ti)
f ?(T )

λ(T )
. (J)

Expanding (J) using the equation for the conditional probability density function from (H) gives

L(θ) =
n∏
i=1

λ(ti)e
−

∫ ti
ti−1

λ(τ) dτ λ(T )e−
∫ T
tn
λ(τ) dτ

λ(T )
. (K)

Simplifying (K) yields

L(θ) =
n∏
i=1

λ(ti)e
−

∫ ti
ti−1

λ(τ) dτ
e−

∫ T
tn
λ(τ) dτ . (L)

By combining the exponentials in (L) and assuming t0 = 0, the likelihood function is

L(θ) =
n∏
i=1

λ(ti)e
−

∫ T
0 λ(τ) dτ . (M)

One method for selecting parameters is to maximise our likelihood function over our parameter
space Θ, which is defined as

θ̂ = argmaxθ∈Θ

(
L(θ)

)
. (N)

However, it is common to minimise the negative log-likelihood function instead of maximising it
because it is a less computationally expensive calculation and is more accurate. We therefore
define our problem as

θ̂ = argminθ∈Θ

(
− logL(θ)

)
, (O)

where

logL(θ) =
n∑
i=1

log λ(ti)−
∫ T

0

λ(τ) dτ (P)
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and n is the number of events at time T [3].
Traditionally, a monotonically decreasing exponential kernel of the form

φ(t− ti) = αe−δ∗(t−ti) (Q)

is used in the Hawkes process literature [4, 5, 6] where δ > α > 0. Here α controls the magnitude
of the kernel, δ controls the speed of the decrease and i is an index. This kernel is traditionally
chosen because in the most common use cases such as earthquakes and social media, events
are most likely to trigger secondary events immediately after the first event happens. We discuss
alternative kernels in the Methods Section that may be better suited to epidemiological modelling,
where for example latent periods are necessary to capturing disease specific behaviour.

B Simulating Hawkes Processes

Simulation is used to learn more about our Hawkes Process so that we can better understand their
behaviour and can validate our models to see how well they fit the underlying data. We can also
use them to infer future behaviour. Ogata’s thinning algorithm [7] is a method for simulating non-
homogeneous Poisson processes for any kernel function φ(t); we describe this algorithm adapted
for Hawkes Processes in Algorithm 1.

Supplementary Algorithm 1: Ogata’s thinning algorithm adapted for Hawkes Pro-
cesses

Set current time t = 0 and event counter i = 0;
while t ≤ Tmax do

(a) Calculate the upper bound of the Hawkes intensity λ? = λ(t+). If an event occurs
at time t it is accounted for;

(b) Sample inter-arrival time by drawing u ∼ U(0, 1) and letting τ = − lnu
λ

;
(c) Update current time: t = t+ τ ;
(d) Draw s ∼ U(0, 1).;

if If s ≤ λ(t)
λ?

then
Accept the current sample and let ti = t and i = i+ 1;

else
Reject the sample;

end

end

While the current time is less than the maximum time considered in the simulation, we calculate
the maximum value of the intensity, λ?, for the events that have happened. For any bounded
intensity λ(t), there is constant λ? such that λ(t) ≤ λ? in a given time interval. The upper bound
of intensity is immediately after the event has occurred for a Hawkes Process with a monotonically
decreasing kernel function, like the exponential function in Eq Q, and no or a constant µ (exogenous
term). However, this is not always so simple for other kernel functions and is addressed in the
Methods Section.
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Next we sample an inter-arrival time, τ ; the greater the maximum intensity, the higher the
chance of subsequent infection arising and the shorter the suggested arrival time. This is then used
to update the current time and the new event is then accepted or rejected according to λ?. If the
event is accepted, the inter-arrival time is recorded and the event count incremented. Otherwise,
we reject the inter-arrival time and repeat the sampling until one is accepted or the maximum
time of the simulation is reached. Even if an inter-arrival time is rejected, the time counter is still
updated [7]. The upper bound, λ? is updated even in the case of a rejected inter-arrival time to
improve efficiency because of the strict monotonicity of λ(t) in between event times.
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