S4 Text: Branching factor derivation

The branching factor, n^* , is defined as the expected number of events that are directly triggered by an event in a Hawkes process. It is defined as

$$n^{\star} = \int_0^\infty \phi(\tau) \,\mathrm{d}\tau. \tag{A}$$

Substituting our intensity kernel into (A), and assuming $\tau = t - t_i$ results in

$$n^{\star} = \int_{0}^{\infty} \alpha \tau e^{-\frac{\delta \tau^{2}}{2}} d\tau,$$

$$= \left[-\frac{\alpha}{\delta} e^{-\frac{\delta \tau^{2}}{2}} \right]_{0}^{\infty},$$

$$= \frac{\alpha}{\delta}.$$
 (B)