
 

Reviewer comments "Using Hawkes Processes to model imported and local malaria cases 
in near-elimination settings" 

We would like to thank all four reviewers for their comments about our manuscript, which have 
significantly improved our submission. Reviewers comments are shown in black and our replies are given 
in blue. As reviewer 3 suggested, we now use a different optimiser to fit our model and ensure our fits are 
in a minima and not a saddle point.  Our “optimal” solution has not changed significantly, but this has 
impacted the uncertainty around our estimates as previously some refits were saddle points. 

Reviewer 1: 

OVERVIEW 

The authors have addressed the concerns that I raised in my initial review. Before I recommend the 
manuscript for publication, I would like to raise one point and also request some clarifications from the 
authors regarding the simulation sweep. 

Thank you for your comments.  We have addressed your points below. 

COMMENTS 

In the caption for Figure 2, the authors note that they only plot kernels where all the parameters lie within 
the respective 95% quantiles. Can the authors justify their reasoning for doing so as opposed to plotting 
all of the 10,000 inferred parameter sets to show the full range of inferences that they can obtain using 
the proposed method? It seems to me that restricting the plots to only those parameters sets for which all 
parameters lie within the respective 95% quantiles would misrepresent the extent to which the inferences 
reproduce the simulated kernels. I may be misunderstanding this though. 

We chose to present kernels where all the parameters lie within the respective 95% confidence intervals 
because occasionally the unbounded optimiser returned invalid solutions where alpha < 0 and delta < 0. 
Our initial idea was to show where 95% of the fits lay. However we have now changed Figure 2 to show 
all solutions, since we have refit our model using a different optimiser.  We now find we get solutions in 
two local regimes - one close to the true value (which corresponds to a lower negative log likelihood) and 
ones with much larger initial contribution from the background intensity. We show an unmagnified version 
of Fig2B in Fig S1 - only a few simulations <2% are not shown in the magnified version. 

I appreciate the inclusion of a simulation study to examine how the parameter estimates change with the 
extent of reporting of cases. There did not appear to be a mention of how Rc estimates change with the 
extent of reporting of cases. Because much of the strength of the method is its ability to estimate the 
reproduction number under control, the authors should mention how this quantity is affected by reporting 
in their simulation studies. 

Thank you for this interesting suggestion.  We have now added this extra figure to the supplementary 
information that shows how the median and 95% confidence intervals of Rc vary with under reporting. 
We have also added text to the simulation results section showing that our median value decreases. 

Moreover, it would be useful if the authors examined the full range of underreporting from 10- 100% to get 
a sense of at what point inferences break down and therefore where the use of the method may be most 



 

appropriate. Even among near-elimination settings, the quality of surveillance systems varies, so the 70% 
lower bound of reporting may be overly optimistic in some settings. 

Thank you for this suggestion, we have now repeated this analysis to include under-reporting from 
10-100% and update Figure 3 accordingly.  Please note the results have slightly changed due to our new 
fitting routine.  We find that alpha and delta (the parameter in the kernel) are more robust to under 
reporting and that, as expected, the terms that control the background intensity or importations (A, B, M 
and N) change most to account for the secondary infections where the parent case has been removed. 
We have added an extra sentence to the results to reflect this. 

[Lines 372-373] The authors should tone down the claim that being able to forecast case counts five 
weeks in advance would enable policy makers to take action to reduce transmission. While I agree that 
forecasts are useful, the method, as presented in this manuscript, lacks a spatial comment. As one of the 
other reviewers noted, without spatial information to guide these forecasts, it would be challenging to take 
actionable steps to reduce transmission in light of these forecasts. 

Thank you for this comment.  We have softened the language to “This could provide insights to policy 
makers about short term transmission, which would be further improved by adding in a spatial 
component.” 

 
 
Reviewer 2: 
 
I am pleased with your answers to my comments. 
Thank you for participating in the peer review of this paper. 
 
 
 
Reviewer 3: 
 

I thank the authors for their revisions, which have addressed most of my comments from the first version. 
As described below, I still have some concerns about the model, primarily about the optimization 
problems the authors discuss in their reply and about the simulation studies. I think these two problems 
are connected—better simulation stud- ies may reveal what is going on with the optimization—and the 
authors should carefully investigate and resolve these issues to ensure confidence in their results. 

Thanks for your new comments, we have addressed them below. 

Main Comments 

1. The authors note in their reply that 

We have further investigated the convexity of our negative log-likelihood and found that the eigenvalues 
of our hessian (returned numerically by the optim solver) do not all have the same sign and so our 
optimisation finds a saddle point, thus the objective function is not convex. 

This makes me suspicious. Does this consistently occur regardless of the starting values used in the 
optimization? And are these eigenvalues with the wrong sign on the same scale as the other eigenvalues, 



 

or are they, for instance, 10−16? I’m suspicious because (like Reviewer 4) I would be surprised of 
convergence problems for these models. I’d be extra-surprised if multiple optimization runs from different 
starting parameter values consistently end up in the same saddle point. I wonder if there is an error in the 
calculation of the Hessian or of the likelihood, or if the eigenvalues with the wrong sign are very close to 
zero and actually a result of numerical issues in estimating the Hessian. (In that case, they may indicate 
non-identifiability in the model, which would be a separate problem to solve.) 

In either case, I think this warrants some double-checking (with different starting values and optimizer 
settings, and of the gradient and likelihood code). A good strategy to diagnose the problem (though 
perhaps not necessary to present in the paper, depending on what you find) is to make contour plots of 
the log-likelihood near the solution, varying the parameter with the suspicious eigenvalue and another 
parameter. 

If the saddle point issues are real, they should be mentioned in the text as a warning for the interpretation 
of the results. 

Thank you very much for drawing this strange behaviour to our attention as something we should be 
concerned about.  The optimal solutions from the “optim” that we originally obtained were different so we 
assumed we were hitting multiple different saddle points.  However, we have looked into this more and 
have implemented a few changes. 

1) We compared the numerical hessian from the “optim” package with two other numerical hessian 
packages from “pracma” and “numDeriv”.  We found that the “pracma” and “numDeriv” gradients 
agreed with each other and were different to the ones in the “optim” package.  This suggested 
that optimisers may have difficulty with finding the gradients and hessians of our log-likelihood. 
We had always been providing an analytic gradient. 

2) We derived an analytic hessian and added this to our “epihawkes” package.  We found our 
analytic hessian agreed with the numerical hessians from “pracma” and “numDeriv”. This 
suggested the optimal solutions provided by “optim” were not necessarily optima and we should 
look for alternative optimisers. 

3) We investigated various different open source optimisers and found that “optimx” used the 
numerical gradients from the “numDeriv” package, which agreed with our analytic hessian.  We 
tried to provide our analytic hessian to the “optimx” package but sometimes the optimiser would 
throw an unhelpful error message about our hessian potentially being incorrect but nothing else. 
We check the analytic hessian and the numDeriv hessian at these parameters and find they 
agree, which agrees with our previous findings that our numerical hessian is derived and coded 
correctly . We are looking into contacting the developers of that package to suggest a more 
helpful error message is provided. 

4) We therefore have switched to the optimizer in “optimx” and provide our analytic gradients.   We 
check the gradients and hessians at the optimal solutions from 10 different initial positions.  We 
find that the gradients are small for all our optimal solutions.  For the China data set, some of our 
optimal solutions are at saddle points (one negative eigenvalue) but we also find a true minima 
where all the eigenvalues are positive, see figure A below.  For Eswatini we identify two minima 
regions, where we choose the one with the lower negative log likelihood, see figure B below. We 
feel this non-convex surface may arise due to the periodic nature of our background intensity. 
We investigated fitting an exponential and Rayleigh kernel with and without a delay for no 
background intensity and found our surface was convex. 

5) We now ensure for each of our refits that we are not in a saddle point but a true minima. 



 

6) We have updated the text to suggest our solution may be non-convex and that we ensured our 
optimal solutions were not saddle points. We note our “optimal” solution has not changed, but this 
refitting alters our uncertainty. 

 

Fig A: Parameters for China dataset 

 

Fig B: Parameters for Eswatini dataset 



 

2. I appreciate that the authors added simulations to validate that their model can re- cover the true 
parameters. The text (pages 6–7) states that 
We simulate 10,000 sets of events... We then use optim to minimise our log-likelihood and find the 
optimal values of our simulation from one initial set of parameters for each simulation. We compare these 
fitted parameters to the initial parameters used for the simulation and run KS tests for a sub-sample of our 
re-fits to check our goodness of fits. 
I don’t understand the procedure being described here. I assume “find the optimal values of our 
simulation from one initial set of parameters for each simulation” simply means the model is fit to the 
simulated data.  

Thanks for pointing out that our method was unclear.  We did fit the model to simulated data.  We have 
simplified the text as suggested. It now reads: 

“We then use optim to minimise our log-likelihood and find the optimal values of each of our simulations.” 

But what are the KS tests testing? The hint is on page 5: “If the model is correct, then, according to the 
theorem, the difference in intensity between two subsequent events are independent exponential random 
variables with mean 1.” 
This seems to suggest that 𝜆(𝑡𝑖+1) − 𝜆(𝑡𝑖) ∼ Exp(1), which is false. (The difference can easily be negative, 
for instance.) So I hope the text isn’t accurate, and the authors are instead applying the time-rescaling 
theorem correctly. 

We are sorry for the wrong description of the time re-scaling theorem in the text.  We have now changed 
the methods section to reflect what we are actually doing, which is looking at the difference between the 
integrals of the intensity.  

We use the time--rescaling theorem to assess our model fits. Similar to Brown et al. ~\cite{brown:2002}, 
we define  

\begin{equation} 

    \Lambda(t_{i}) = \int_0^{t_{i}} \lambda(t) \diff t. 

\end{equation} 

If the model is correct, then, according to the theorem, the difference in $\Lambda$, the integral of the 
intensity, between two subsequent events are independent exponential random variables with mean 1. 

 

3. Also on the topic of the simulation studies, I think what I was really looking for was that the parameters 
are recovered accurately. If different parameter values can result in similar intensity functions, then 
interpretation of parameters of the model—like the reproduction number—depends on whether the MLE is 
estimating the parameters well. And if the MLE is finding a saddle point, as the authors note, that seems 
questionable. (If, on the other hand, the MLE estimates the parameters quite accurately, that suggests it’s 
finding the true maximum, not a saddle point, or that the saddle point is somehow always near the 
maximum. So I think these points are linked: simulations can shed light on what’s going on with the 
likelihood, and make the implications of the optimization problem clearer.) 
The diagnostics I’m thinking of would include, say, a histogram of estimated values of a parameter from 
the 10,000 simulations, with a line marking the true value. Or a table showing each true parameter value, 



 

plus the mean, median, and quantiles of estimates from the simulation. Either would indicate if the 
estimation algorithm is indeed working. Reinhart and Greenhouse (2018, Section 4) provide some 
simulation studies of a related model that illustrate how simulations can be used to illustrate the model’s 
properties. 

We agree that presenting results to show if our parameters from the simulation can be accurately 
recovered.  We already include this in the 100% “percentage of data fit to” box in the box and whisker 
plot, where the red line is the true value.  We have edited the text to make this clearer. 

4. In my previous review, I suggested plotting the event times {𝑡𝑖} against the integral ∫𝜆(𝑡) d𝑡. As the 
authors correctly note in their reply, this need not be a diagonal 0 line like I implied. What I should have 
said is that plotting the event indices {𝑖} against the integral ∫𝜆(𝑡)d𝑡 should yield a diagonal line. This, I 
think, would be a more useful diagnostic than some of the plots included in Figure 2, which don’t really 
demonstrate whether the model is adequately fitting the observed data. 

Thanks for your suggestion about Figure 2.  We have now included a plot where we plot the integral of 
our intensity against the event indices for several different simulations..  We find our simulations lie close 
to a straight line.  We also show how the integral of the intensity varies for our two case studies (Figure 
S2). 

5. The authors have moved discussion of the simulation algorithm and 𝜆∗ to the sup- plementary 
information. I think this is a good choice, but I suspect the paragraph at the bottom of page 4 should be 
adjusted, because it now mentions “the thinning Algorithm” and “𝜆∗ is no longer trivial to find” before the 
algorithm is introduced. 𝜆∗ also no longer seems to be defined in the text. 

Thanks for this comment.  We have now removed the detail and refer the reader to later in the text: 

‘This delay is novel and requires modifications to be made to the usual simulation approach; this is 
explained further below.’ 

(The same paragraph should also specify the units, days, when stating that Δ = 15.) 

We thank you for noticing our omission.  We have added this into the manuscript. 

 
Reviewer 4: 
The manuscript has greatly improved thanks to the many reviewers' thoughtful comments. The simulation 
study with its assessment of underreporting is very useful. 
We agree with you that thanks to the reviewers comments this manuscript has been improved. 
 
I'm happy with most replies to my comments and only have some minor follow-up remarks: 
 
1. I agree that a purely temporal Hawkes model is a suitable starting point for the development of more 
complex spatio-temporal formulations such as "twinstim" of [26]. Purely temporal models are much faster 
to estimate as they don't require heavy cubature over space to evaluate the log-likelihood. FWIW, it is 
relatively straightforward to supply different parametric kernels in "twinstim" such as the Rayleigh kernel. 
I'm happy to help if you would like to use "twinstim" for comparison in the future. However, in my 
experience, reliable estimation of the temporal kernel in a spatio-temporal model requires a lot of events 



 

because the spatial decay reduces the effective number of events contributing to the likelihood. The 
Eswatini data seem to be too sparse for that, in particular if event locations are partially unknown. 
 
Thanks for agreeing to help with comparisons in the future.  We would be interested in this and plan to get 
in touch after the review has ended. 
 
2. The authors say they now reference Menon and Lee (2018) and Lime and Choi (2018). However, I 
couldn't find these references and the comment on the negative log-likelihood being potentially 
non-convex seems gone as well? 
 
We’re sorry about this mix up. We must have removed some of the text - following on from Reviewer 3 we 
have done analysis to investigate the non-convex surface and found the references were no longer 
relevant.  We believe our surface is non-convex and by changing our optimiser to “optimx” instead of 
“optim”, we can distinguish between true minima and saddle points.  
 
3. IMO, Fig S1 would rather suggest that the exponential and Rayleigh kernels fit equally well. I cannot 
see a relevant difference. Why not report the AIC values to compare the two fits? 
Thanks for this suggestion - we have included the AIC in the paper.  We find that the AIC for the Rayleigh 
kernel is slightly smaller than the AIC for the exponential kernel for China (ray - 339.7, exp - 343.5) but 
that the exponential kernel AIC is slightly lower for Eswatini (ray - 1614, exp - 1606).  Due to the biology, 
we chose the Rayleigh kernel. 
 
Sebastian Meyer 


