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Supplementary Methods 

Human subjects 

Following informed consent obtained under protocol #823392 approved by the University of 

Pennsylvania IRB, samples were collected at the Hospital of the University of Pennsylvania 

beginning on March 23, 2020 (two weeks after the first case was reported in Philadelphia), 

continuing through the first wave of the epidemic, and ending on July 10, 2020. Most patients 

were hospitalized for COVID-19 but a few were admitted for other reasons and found to have 

SARS-CoV-2 infection after hospitalization. Collections began a median of 4 days following 

hospitalization (generally within one week of hospitalization or identification of COVID+ status if 

post-admission) and continued 2-3 times weekly until discharge, death, or change in status 

precluding respiratory tract collections (e.g., noninvasive ventilation modalities) or 30 days from 

enrollment. Oropharyngeal (OP) and nasopharyngeal (NP) samples were obtained using 

flocked swabs (Copan Diagnostics) and endotracheal aspirate (ETA) samples were obtained 

from intubated patients by suction as previously described (1). Swabs and ETA were frozen (-

80°C) within 1 hour of collection and stored until extraction. For some collection days (typically 

during the first 1-2 weeks of enrollment), additional OP and NP swabs were obtained and eluted 

in viral transport media (VTM) for SARS-CoV-2 analysis as previously described (2). COVID-19 

patients were classified clinically based on the maximum score reached during hospitalization 

using the 11-point ordinal WHO COVID-19 progression scale (3). Non-COVID control subjects, 

who were all hospitalized in the intensive care unit (ICU) with a variety of underlying disorders, 

were consecutive consenting patients admitted to the ICU in two periods (September/October 

2019 and July 2020) (Table E1).  

 Total patient and sample numbers subjected to 16S rRNA gene sequencing were:  

COVID-19 patients: 83; samples: 507 (OP: 226; NP: 221; ETA: 60); Non-COVID patients: 13; 

samples: 75 (OP: 34; NP: 34; ETA: 7); Sequencing control samples: 94 (negative controls plus 

synthetic positive controls (4)) (Table ES2). 
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 3 

 

16S rRNA marker gene sequencing and analysis 

DNA extraction, PCR amplification and sequencing were carried out as previously 

described (5, 6), with some modifications. DNA was extracted from swabs or 200 μL ETA using 

DNeasy PowerSoil or PowerSoil Pro kits (Qiagen), incorporating a 95°C x 10 minutes incubation 

to inactivate SARS-CoV-2. Sequencing libraries were prepared using Q5 Polymerase (New 

England Biolabs) and primers targeting the V1V2 regions of the 16S rRNA gene (27F and 338R; 

Table E8). The resulting libraries were quantified using the Quant-iT PicoGreen Assay Kit 

(Invitrogen), pooled in equimolar quantities, and then sequenced with 250-bp paired-end reads 

using the 500 cycle Rapid v2 SBS and PE Cluster HiSeq kits (Illumina) on a HiSeq 2500 in rapid 

run mode. 

16S rRNA gene V1V2 region sequencing data were analyzed using the QIIME2 pipeline 

as described (7). Demultiplexed sequencing reads were imported into QIIME2 pipeline, and 

DADA2 was used for sequence quality filtering and denoising to generate a feature table (8). 

Samples with less than 1000 assigned reads were excluded from further analysis. Taxonomy 

was classified using the naïve Bayes classifier from QIIME2 and the SILVA database (v138.1) 

(9).  

Alpha diversity and UniFrac distances were calculated using the vegan (v2.5-6) package 

in R (v4.0.2). The principal coordinate analysis (PCoA) was performed using the ape package 

(v5.3) in R with UniFrac distances. The vegan package was used for PERMANOVA tests. 

Because patients with more severe COVID-19 had a larger average number of samples than 

those with more moderate disease, patients were randomly subsampled to one sample per 

patient 1000 times when calculating PERMANOVA tests, and mean p values were reported. 

To determine the rate at which sample composition diverged within a patient, we 

compared weighted UniFrac distance to the first sample from each patient in each sample type. 

To account for different sampling duration, only samples from the first 7 days were included. A 
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linear slope was calculated for each patient, and these slopes were compared using a Kruskal-

Wallis non-parametric test, so that patients with a larger number of samples were not more 

heavily weighted. 

16S rRNA gene V1V2 region sequencing data from NP, OP and lungs (bronchoalveolar 

lavage; BAL) of healthy controls were previously reported (1, 10, 11). These data were acquired 

using the Roche 454 GS-FLX platform; our group previously showed that differences in 

sequencing results between the Illumina and Roche systems are minimal for these samples (1). 

Healthy NP, OP and BAL 16S rRNA gene reads were assigned taxonomy directly, without 

preprocessing, using the naïve Bayes classifier from QIIME2. When calculating unweighted 

UniFrac distances between these samples and samples from our current study, a threshold of 

1% abundance was used to remove rare taxa from our data, to account for differences in 

sequencing depth between the two datasets.  

 

qPCR to detect small circular DNA viruses 

Total microbial DNA was amplified using Phi29 DNA polymerase (New England BioLabs) and 

random hexamers with the following program: 35ºC for 5 minutes, 34ºC for 10 minutes, 33ºC for 

15 minutes, 32ºC for 20 minutes, 31ºC for 30 minutes, 30ºC for 16 hours and 65 ºC for 15 

minutes. Each 20 μL reaction contained 10 units Phi29 DNA polymerase, 0.1 mg/mL BSA, 1X 

Phi29 buffer, 2 uM random hexamers, 1 mM dNTP, and 1 μL of DNA. QPCR was performed 

using TaqMan Fast Universal PCR (Thermo Fisher Scientific) on a QuantStudio 3 Real Time 

PCR System (Applied Biosystems) with the following program: 20 sec at 95°C for 1 cycle, and 

40 cycles of 95°C for 3 sec and 60°C for 30 sec. Each reaction contained 900 nM of each 

primer and 250 nM probe. Primers and probes that target Anelloviridae type species Torque 

Teno Virus (TTV) and Redondoviridae (RV) have been described previously (12, 13). 

Sequences are listed in Supplementary Table E8. qPCR replicates were performed in triplicate 

and the average genome copy number was used. Mean values are in Table E3. 
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qPCR to quantify levels of SARS-CoV-2 RNA 

Levels of SARS-CoV-2 RNA were quantified as described (2), RNA was extracted from 

140 L of swab eluate, neat ETA or saliva using the Qiagen QIAamp Viral RNA Mini Kit. The 

RT-qPCR assay used the CDC 2019-nCoV_N1 primer-probe set (2) and sequences are listed in 

Table E8. RT-qPCR reactions were prepared as follows: 8.5 l dH2O, 0.5 l N1-F (20 M), 0.5 

l N1-R (20 M), 0.5 l N1-P (5 M), 5.0 l TaqMan™ Fast Virus 1-Step Master Mix were 

combined per reaction. 5 l of extracted RNA was added to 15 l of prepared master mix for a 

final volume of 20 l per reaction. Final concentrations of 2019-nCoV_N1-F and 2019-

nCoV_N1-R primers were 500nM and the final concentration of the 2019-nCoV_N1-P probe 

was 125nM. The assay was carried out using an Applied Biosystems™ QuantStudio™ 5 Real-

Time PCR System. The thermocycler conditions were: 5 minutes at 50°C, 20 seconds at 95°C, 

and 40 cycles of 3 seconds at 95°C and 30 seconds at 60°C.  

 

Clinical and immune data 

Results from clinical laboratory tests performed during the patients’ hospitalization were 

extracted from the electronic medical record. For lymphocyte and neutrophil values, which are 

measured frequently, the average value of the three days surrounding the date of microbiome 

sampling was used. Cellular immune profiling data was acquired on peripheral blood 

mononuclear cells using flow cytometry as described (14). Cell subsets queried for associations 

with microbiome variables are listed in Table E7. The unbiased Uniform Manifold Approximation 

and Projection (UMAP) approach was used to distill 193 individual immune components into two 

principal components (14). The microbiome unweighted UniFrac PCoA was compared with 

blood cellular UMAP analysis using Mantel's test. Procrustes analysis was performed using the 

vegan package (v2.5-5) in R. 
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Statistical analysis 

Statistical tests were conducted using R (v4.0.2). Nonparametric tests were used to compare 

two independent groups (Wilcoxon rank-sum test), two related groups (Wilcoxon signed-rank 

test) and multiple groups (Kruskal–Wallis test). A Spearman’s rank-order correlation was used 

to carry out non-parametric correlation analysis. Fisher’s exact tests were used to test the 

difference between two categorical variables. P values are from two-sided comparisons. P 

values for multiple comparisons were corrected using the Benjamini–Hochberg FDR method. 

P<0.05 or FDR-corrected P<0.05 was considered significant. All acquired data were included in 

analyses. Figures were generated using the R packages ggplot2 (v3.3.2). 

 

Random forests 

Random forest classification was implemented using the randomForest package (v4.6-14) in R. 

The decision trees were trained on the data consisting of bacterial relative abundance at the 

genus level (genera with abundances greater than 10% in at least one sample were selected) 

and small circular DNA viruses copy numbers (Redondoviridae or Anelloviridae). The samples 

from the first two time points were interrogated to control for greater sampling duration of sicker 

subjects; the sample with the highest commensal DNA virus level was selected from each pair. 

Binary variables, such as intubated or not intubated, were analyzed using classificatory random 

forest classification. Discriminating predictors were identified by random forest using importance 

values, which were calculated as mean decrease in Gini index for classification random forests. 

Bootstrapped iterations were performed to obtain an estimate of the misclassification rate. 

Receiver operating characteristic (ROC) curves, which plot the true positive rate versus false 

positive rate for all possible threshold probabilities, were generated by pROC (v1.16.2) in R.  

 

Data availability 
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Sample information and raw sequences analyzed in this study are available in the National 

Center for Biotechnology Information Sequence Read Archive under accession IDs 

PRJNA678105, and PRJNA683617 (Table E9). Computer code used in this study is available at 

https://github.com/BushmanLab/covid_microbiome_2021. 
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Supplementary Figures 

Figure E1. Subject timelines and antibiotic administration. Subjects are grouped by COVID-

19 versus non-COVID status. Light gray boxes indicate period of hospitalization and dark gray 

boxes indicate period of sampling. The X axis indicates time from hospitalization. Maximum 

COVID-19 disease severity based on WHO score is indicated with subject identifiers, and 

patients who died (WHO 10) indicated with an asterisk. Antibiotic administration is shown as 

colored horizontal bars. For simplicity, some antibiotics are grouped with the most common 

agent within a particular class as indicated by "+": Cefazolin+ also includes cefalexin and 

cefadroxil; Ceftriaxone+ also includes ceftazidime and cefpodoxime; Meropenem+ also includes 

ertapenem and meropenem-vaborbactam. Antifungals include caspofungin, fluconazole, 

isavuconazonium, posaconazole, voriconazole and atovaquone. "Other" indicates less 

commonly used antibiotics including amoxicillin, aztreonam, ceftaroline, clindamycin, colistin, 

fosfomycin, minocycline, amoxicillin-clavulanate, ceftolozane-tazobactum, ampicillin, and 

ampicillin-sulbactam.  

  

Figure E2. SARS-CoV-2 viral RNA levels in respiratory tract samples. Levels of SARS-CoV-

2 were determined by qPCR. Sample type is coded by color, and samples of the same type 

from the same subject are connected by lines.  

 

Figure E3. Bacterial communities in oropharyngeal and nasopharyngeal samples. 

Heatmap showing oropharyngeal (A) and nasopharyngeal (B) communities.  

 

Figure E4. Bacterial taxa present in first sample that are significantly associated with 

clinical status over course of hospitalization. The x-axis shows the WHO score, the y-axis 

shows the precent of the community comprised by the indicated genus in the first sample. 

Sample type and FDR-corrected p-values are shown at the top.  
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Supplementary Tables 

Table E1. Demographic and clinical information on subjects. 

Table E2. Samples analyzed by 16S rRNA marker gene sequencing. 

Table E3. Results of qPCR assays to quantify Anelloviridae and Redondoviridae levels. 

Table E4. Statistical comparison of bacterial and viral microbiome data to patient demographics, 

treatment, and outcomes. P values are FDR-corrected and significant associations are 

highlighted.  

Table E5. Relationship between Lymphocyte-to-Neutrophil ratios and bacterial and viral 

microbiome data. To account for multiple daily laboratory tests and day-to-day variability, the 

first value per calendar day was used, and the average of 3 days (day -1, day 0 and day +1 

relative to the microbiome sample) was used. P values are FDR-corrected and significant 

associations are highlighted. 

Table E6. Statistical comparison of bacterial and viral microbiome data to clinical laboratory 

data. P values are FDR-corrected and significant associations are highlighted.  

Table E7. Statistical comparison of bacterial and viral microbiome data to immune profiling data 

available on 34 subjects. P values are FDR-corrected.  

Table E8. Synthetic oligonucleotides used in this study.  

Table E9. Accession numbers of sequence data generated in this study. 
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