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Context and significance

Why are women twice as less likely

than men to experience severe

COVID-19? Answering this

question may help us more

completely understand the

immune defenses that counter

SARS-CoV-2. This study from

researchers at Duke University

suggests that a type of white

blood cells, mucosal-associated

invariant T (MAIT) cells, is superior

in women with COVID-19. The

potential importance of the

finding is that these highly

specialized white blood cells have

been shown to contribute critically

to immune defenses in other viral

and bacterial infections. These

findings may shed light on the

underlying reasons for reduced

COVID-19 susceptibility in women

and highlights the potential role

of MAIT cells in countering SARS-

CoV-2.
SUMMARY

Background: Sexual dimorphisms in immune responses contribute to
coronavirus disease 2019 (COVID-19) outcomes, but the mechanisms
governing this disparity remain incompletely understood.
Methods: We carried out sex-balanced sampling of peripheral blood
mononuclear cells from hospitalized and non-hospitalized individuals
with confirmed COVID-19, uninfected close contacts, and healthy con-
trol individuals for 36-color flow cytometry and single-cell RNA
sequencing.
Findings: Our results revealed a pronounced reduction of circulating
mucosal-associated invariant T (MAIT) cells in infected females. Integra-
tion of published COVID-19 airway tissue datasets suggests that this
reduction represented a major wave of MAIT cell extravasation during
early infection in females. Moreover, MAIT cells from females
possessed an immunologically active gene signature, whereas cells
from males were pro-apoptotic.
Conclusions: Our findings uncover a female-specific protective MAIT
cell profile, potentially shedding light on reduced COVID-19 suscepti-
bility in females.
Funding: This work was supported by NIH/NIAID (U01AI066569 and
UM1AI104681), the Defense Advanced Projects Agency (DARPA;
N66001-09-C-2082 and HR0011-17-2-0069), the Veterans Affairs Health
System, and Virology Quality Assurance (VQA; 75N93019C00015). The
content is solely the responsibility of the authors and does not neces-
sarily represent the official view of the National Institutes of Health.
COVID-19 samples were processed under Biosafety level 2 (BSL-2)
with aerosol management enhancement or BSL-3 in the Duke Regional
Biocontainment Laboratory, which received partial support for con-
struction from NIH/NIAID (UC6AI058607).
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global

pandemic of coronavirus disease 2019 (COVID-19) and a death toll of more than

2.3 million people and rising.1 According to reported sex-disaggregated data,

males are affected disproportionately by SARS-CoV-2, with a higher incidence of

cases, mortality, and morbidity.2 This follows a similar trend of higher case fatality

rates for males in SARS-CoV and Middle East respiratory syndrome CoV (MERS-

CoV) and experiments using SARS-CoV mouse models.2–6 Sex differences in the im-

mune response are thought to be a key contributing factor to these CoV disease
Med 2, 755–772, June 11, 2021 ª 2021 Elsevier Inc. 755

http://crossmark.crossref.org/dialog/?doi=10.1016/j.medj.2021.04.008&domain=pdf


ll
Clinical and Translational Article
outcomes, agreeing with the current body of knowledge indicating that innate and

adaptive immune responses are altered substantially according to sex.7–10 Specific

to SARS-CoV-2 infection, responses of lymphocytes and myeloid cells have been

shown to be associated with COVID-19 outcomes.11–19 Correspondingly, a recent

study of sex differences in COVID-19 immune responses uncovered an association

between poor disease outcomes in males and weak T cell responses in CD4+ and

CD8+ compartments, whereas poor outcomes in females were associated with

high innate immune cytokines, tumor necrosis factor superfamily 10 (TNFSF-10),

and interleukin-15 (IL-15).20 The sex differences elucidated in this seminal study

further cement the need to better understand the mechanisms governing sex-spe-

cific susceptibility to SARS-CoV-2.
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RESULTS

In this study, we carried out sex-balanced sampling of peripheral blood mononu-

clear cells (PBMCs) from individuals with COVID-19 and control subjects for 36-color

flow cytometry and single-cell RNA sequencing (scRNA-seq) analyses. A total of 88

samples were analyzed from 45 individuals. Details regarding subject demographics

and sample information are summarized in Figure 1A and Tables 1 and S1). Briefly,

we analyzed samples from 28 individuals with COVID-19 as confirmed by positive

SARS-CoV-2 PCR and/or immunoglobulin G (IgG) seroconversion. These included

9 hospitalized subjects (20%), 7 requiring intensive care, hereafter referred to as

‘‘hospitalized.’’ An additional 19 subjects were identified in non-hospital settings

(42.2%), hereafter referred to as ‘‘infected.’’ Most of these confirmed COVID-19

cases were sampled longitudinally (range, 1–28 days), including pre- and post-

anti-SARS-CoV-2 IgG seroconversion. The dates of symptom onset for all subjects

with confirmed COVID-19 were recorded at enrollment, providing an illness range

of 1–40 days. We also recorded symptom severity, obtained via investigator survey

on 39 symptoms related to COVID-19 (STAR Methods). Additionally, we included 7

subjects (15.6%), hereafter referred to as ‘‘exposed,’’ who were also sampled at mul-

tiple time points. These subjects, despite being close contacts of infected individ-

uals, remained with negligible symptom scores, were negative for SARS-CoV-2 by

PCR, and did not demonstrate detectable anti-SARS-CoV-2 IgG for at least 2 months

after enrollment. Last, we included a group of 10 ‘‘healthy’’ subjects (22.2%) who

were enrolled prior to the pandemic in 2019 and did not show any symptoms asso-

ciated with COVID-19 or other respiratory illness.21
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Immune profiling of PBMCs from individuals with COVID-19 reveals the

association of CD8+CD161hi T cell frequencies with disease severity

With these flow cytometry data, we generated a map of immune cell populations

and their subsets by down-sampling to 3,000 viable CD45+ singlets per sample

and concatenated all data for uniform manifold approximation and projection

(UMAP)22 and unbiased clustering via flow self-organizing maps (FlowSOM).23

Unique marker expression of respective populations facilitated our annotation of

major PBMC populations (Figures 1B and 1C), including CD4+ and CD8+ (ab)

T cells, gd T cells, B cells, plasmablasts, natural killer (NK) cells, monocytes (MOs),

and dendritic cells (DC), which were also confirmed by manual analysis (Figures

S1A–S1H). Subpopulations were also annotated in this manner, such as CD45RA+

CD27+ CCR7+ naive, CD45RA– CCR7+ central memory (CM), CD45RA– CCR7–

effector memory (EM), and CD45RA+ CD27� CCR7– terminally differentiated EM

(terminally differentiated effector memory cells re-expressing CD45RA [EMRA])

CD8+ T cells and CD8+ CD161hi T cells and other indicated subpopulations (Figures

1B, 1C, and S1A–S1H). We noted that a minor population of basophils (Basos) and
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neutrophils (polymorphonuclear neutrophils [PMNs]), primarily from hospitalized in-

dividuals, were detected (Figure 1B) despite using a PBMC isolation protocol.

We next set out to screen our flow cytometry dataset for immune populations that ex-

hibited major quantitative changes associated with COVID-19 severity. Regression

analysis revealed a significant (p < 0.05) association of several major PBMC popula-

tions, including CD8+ T cells, NK cells, B cells, and MOs relative to disease severity

rank (i.e., healthy, exposed, infected, and hospitalized) (Figure 1D). The highest de-

gree of association with the most significance was found in CD8+ T cells (Figure 1D).

Additional analysis of CD8+ T subpopulations also revealed significant changes in

CD8+ EM T cells (Figure S1I) and in CD8+ CD161hi T cells with high significance (p =

0.0006) (Figure S1I). Other significant changes were also observed, such as in B cell

subpopulations (naive, IgD+ non-class switch, and plasmablasts), NK cells (CD56lo

populations), DCs (CD11c+ DCs and plasmacytoid DCs [pDCs]), MOs (classical, inter-

mediate, and nonclassical). and CD4+ (EM) ab T cells (Figure S1I). Our findings there-

fore suggest that the frequencies of certain lymphocyte and myeloid populations are

affected in COVID-19, including a major effect on CD8+ CD161hi (ab) T cells.

The robust statistical changes in total CD8+ T cells and the CD8+ CD161hi T sub-

population prompted us to look at these cells more closely. Regarding annotation

of this CD161hi cluster, because the overwhelming majority of events were low to

negative for CD56 and for T cell receptor gd (TCRgd) (Figure 1E), the phenotype

was largely consistent with mucosal-associated invariant T (MAIT) cells but not

NK T or gd T cells. This designation is congruent with recent work with COVID-

19 PBMCs.24–27 Next we performed a more focused analysis of this cluster in

COVID-19 by assessing their frequencies by severity rank using samples taken

within 3 days of enrollment, the time point most proximal to the initial symptom

score recordings. Results were displayed via UMAP contour plots, revealing a

reduction in these cells in the SARS-CoV-2 settings (Figure 1F). Manual gating

(CD3+ TCRgd� CD8+ CD161hi) from all flow cytometry events revealed a significant

reduction when comparing healthy (p = 0.0036) or exposed (p = 0.0488) subjects

versus hospitalized subjects and a negative correlation (p = 0.0002) with disease

severity rank (Figure 1G). Moreover, the ages of the hospitalized group are signif-

icantly higher than those of other groups (Figure 1H), although the ages of

sampled subjects were similar between sexes at each severity rank (Figure 1I).

To address the potential confounding factor of age, we built a multiple regression

model with age and severity rank as two independent variables (Figure 1J). Our re-

sults showed that age does not significantly (p = 0.1165) affect CD161hi cells but

severity rank does (p = 0.0034). Therefore, we concluded that changes of these

CD161hi cells are associated with COVID-19 disease severity.
Figure 1. Loss of peripheral CD8+CD161hi T cell frequencies correlates with increased severity of COVID-19

(A) Overview of groups in this study.

(B) UMAP visualization of PBMC subsets identified by FlowSOM clustering. Samples from all participants were pooled and down-sampled to 3,000 live

CD45+ cells per sample. MO, monocyte; NK, natural killer; DC, dendritic cell; PMN, polymorphonuclear neutrophil; Baso, basophil.

(C) Representative marker expression by CD4+ T cell, CD8+ T cell, MO, NK cell, and B cell subsets.

(D) Correlation analysis of immune cell subsets as shown in (C) with disease severity rank.

(E) Expression of CD161, TCR gd and CD56 in CD8+ T cell subsets. NK cells were used as a positive control for CD56 expression.

(F) UMAP of samples grouped by disease severity rank. Samples collected within 3 days from initial symptom score recording were included.

(G) Frequencies of CD161hi T cells (mean G standard error) in different severity groups (left) and their correlation with severity rank (right).

(H and I) Age comparisons among severity rank and between sexes.

(J) Multiple linear regression of age (x1) and severity rank (x2) with CD161hi cell frequencies. Regression models with p values are shown for age and

severity rank.

Significance was determined by Kruskal-Wallis test with Dunn’s test (E) or ANOVA (H and I): *p < 0.05, **p < 0.01, ***p < 0.001. Correlation efficiency was

calculated by Spearman’s rank correlation (D and G). See also Figure S1 and Tables 1 and S1.
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Table 1. Summary of demographics and sample information

Group Healthy Exposed Infected Hospitalized Total

Age (mean
G SD [range])

39.70 G
13.68 (25–61)

42.57 G
13.93 (17–60)

36.73 G
13.88 (20–65)

59.44 G
15.11 (31–76)

42.84 G
16.06 (17–76)

Number of
subjects (female:male
[F:M] ratio)

n = 10 (5:5) n = 7 (3:4) n = 19 (8:11) n = 9 (4:5) n = 45 (20:25)

Race (n [%]) African
American

3
(30.00%)

0 1 (5.26%) 5 (55.56%) 9 (20.00%)

Asian 0 1 (14.29%) 2 (10.53%) 0 3 (6.67%)

White 7 (70.00%) 5 (71.42%) 16 (84.21%) 3 (33.33%) 31 (68.89%)

Others/
unknown

0 1 (14.29%) 0 1 (11.11%) 2 (4.44%)

Days since onset
when enrolled (mean
G SD [range])

N/A 15.17 G
11.25 (5–33)

11.18 G
4.30 (3–19)

8.25 G
6.14 (1–18)

11.19 G
6.73 (1–33)

# samples of flow
cytometry (F:M ratio)

n = 10
(5:5)

n = 20
(9:11)

n = 44
(21:23)

n = 9 (4:5) n = 83
(39:44)

# samples of scRNA-
seq
(F:M ratio)

n = 5
(3:2)

n = 8
(3:5)

n = 29
(12:17)

n = 6
(1:5)

n = 48
(19:29)

Days since onset when
samples collected
mean
G SD (range)

N/A 26.94 G
14.94 (5–61)

18.27 G
8.44 (3–40)

8.25 G
6.14 (1–18)

19.32 G
11.44 (1–61)

See also Table S1.
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Elucidation of sex differences in CD8+ lymphocytes during SARS-CoV-2

infection

Given the previously reported sex differences in immune responses in COVID-19,2,20

we further grouped the data by sex and characterized the frequencies of CD8+ sub-

sets stratified by disease severity rank (Figures 2A, 2B, S2A, and S2B), time after

symptom onset (early, %14 days; middle, 15–21 days; late, >21 days) (Figures

2C–2E), and seroconversion status (Figure 2F). The severity rank results showed

that healthy females had greater frequencies of CD161hi cells relative to males

and that females had a more dramatic loss of peripheral CD161hi cells compared

with males in COVID-19 (Figures 2A–2C). We also found that, within the CD8+ com-

partments of healthy subjects, males had greater frequencies of CD8+ memory

T cells (combined EMRA, EM, and CM) (Figures 2D and 2E). Although the memory

cell predominance in males was preserved at all time points, the greater abundance

of CD161hi cells in females was lost at early and middle time points but not in late

disease (Figures 2D and 2E). The loss of this difference was due to a precipitous

drop of CD161hi cells in females at early and middle time points (Figure 2F). No

obvious changes of naive CD8+ T cells were found (Figure S2C). Last, when analyzing

data from individuals with confirmed COVID-19 by seroconversion status, we found

that CD161hi cells were higher in females relative to males prior to seroconversion,

whereas CD8+ memory cells were higher in males in seroconverted subjects (Fig-

ure 2G). We identified a female-specific decline in circulating CD161hi cell fre-

quencies upon exposure to/infection with SARS-CoV-2. This sex-specific reduction

may be due to extravasation into airway tissue, suggesting a sex-specific role of

these CD161hi cells in COVID-19.
scRNA-seq uncovers the role of CD161hi T lymphocytes in SARS-CoV-2

immune responses

Next we analyzed scRNA-seq (10x Genomics) data of 48 different PBMC samples

from 24 subjects across all groups (Tables 1 and S1) to further characterize these
Med 2, 755–772, June 11, 2021 759



Figure 2. Sex-specific responses of circulating CD8+ T cells in individuals with COVID-19

(A) UMAP of samples stratified by sex and severity rank as shown in Figure 1F.

(B) Frequencies of CD161hi cells between females and males at each rank group.

(C) Linear regression of CD161hi cells with severity rank between sexes. Dashed lines indicate 95% confidence intervals. Regression models with p values

are shown for each sex.

(D) UMAP of samples stratified by sex and time after symptom onset (early, %14 days; middle, >15 days and %21 days; late, >22 days).

(E) Frequencies of CD161hi and memory CD8+ T cells between sexes and time points.

(F) Sex-specific changes of CD161hi cells frequencies shown in (E).

(G) Frequencies of CD161hi and memory CD8+ T cells in samples from subjects with confirmed COVID-19 pre- and post-seroconversion.

Data were plotted as mean G standard error (B and E–G). Significance was determined by Mann-Whitney test (B, E, and G) and Kruskal-Wallis test with

Dunn’s test (F): *p < 0.05. See also Figure S2.
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Figure 3. Characterization of CD8+CD161hi T cells among COVID-19 PBMCs using scRNA-seq

(A) UMAP and unsupervised cluster analysis of PBMCs. RBC, red blood cell; PB, plasmablast; PLT, platelet.

(B and C) Visualization of T cell subsets with high resolution in UMAP (B) and expression of their marker genes as indicated in violin plots (C). The T*

cluster likely represents a dropout population with low unique molecular identifier (UMI) counts. N, naive; EM, effector memory; CM, central memory;

DN, double negative; rep, replicating.

(D) Changes of T cell subsets with severity rank. N, number of individuals.

(E) Frequencies of CD161hi clusters relative to all T cell subsets. Females were plotted in red and males in blue. The red dashed box delineates healthy

females.

(F) Top enriched pathways of CD161hi clusters in the Reactome Pathway Database, ranked by false discovery rate (FDR; �log10 scale).

Data were plotted as mean G standard error. Significance was determined by Kruskal-Wallis test (E). See also Figure S3 and Table S2.
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CD161hi cells. Data were processed using the Seurat 3 package,28 and subsequent

transcript-based annotation was carried out (Figures 3A, S3A, and S3B). Within T cell

subsets (Figure 3B; Table S2), we were able to identify CD161hi cells in a single clus-

ter containing high KLRB1 (i.e., CD161) expression and co-expression of CD3D,

CD8A, and TRAV1-2 (Figures 3C and S3B), which encodes the Va7.2 invariant TCR

a chain on MAIT cells. Grouping these data by disease severity showed that hospi-

talized individuals had lower frequencies of T cells, including CD161hi cells (Fig-

ure 3D), agreeing with our flow cytometry findings and consistent with reported lym-

phopenia in individuals with severe COVID-19.11,20,29–32 Also showing the same

trend as our flow cytometry data was the higher frequency of CD161hi cells in healthy

adults (Figure 3E), although it did not reach statistical significance because of the
Med 2, 755–772, June 11, 2021 761
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variations between females and males. Next, to address the functional role of this

CD161hi cluster in COVID-19, we performed gene enrichment analysis using differ-

entially expressed genes (DEGs) calculated by comparing the CD161hi cluster from

all samples with all other T cell clusters. With several top-ranked hits consisting of

immune pathways related to cytokine signaling (IL-4, IL-13, IL-10, and transforming

growth factor b [TGF-b] signaling) and signal transduction and transcription (an NGF-

TRKA signaling axis, nuclear events, and RAF-independent mitogen-activated pro-

tein kinase (MAPK) 1/3 activation) and an estrogen-dependent pathway (Figure 3F),

our results inferred a possible sex-specific immune response of these CD161hi cells

in COVID-19.

Considering the critical roles of MOs in activatingMAIT cells33 and the association of

dysregulated MOs with severe COVID-19 outcomes,12,13,20,34 we applied the Cell-

phoneDB package35 and analyzed ligand-receptor interactions between MO and

T cell clusters in our data. We identified 5 MO clusters, including three conventional

subsets (classical, non-classical, and intermediate) and two subsets of activatedMOs

(CD16 MOA and CD14 MOA) associated with COVID-19 (Figures 4A and 4B). These

two activated MO subsets, which were also reported by other studies,13,34 express

high levels of interferon-related genes (Figure S3B). Although cell-cell communica-

tions may not take place in the blood in the same way as in solid tissue, our results

inferred unique interactions between CD161hi cells and MOs with the following

gene pairs: KLRB1_CLEC2D, CCL5_CCR1, CXCR6_CXCL16, and IL18_IL-18R (Fig-

ures 4C and 4D). Moreover, the number of interaction counts of MOs wasmost abun-

dant with the CD161hi cluster relative to all major T cell populations (Figure 4E). A

recent study reported IL-18-dependent MAIT cell activation by SARS-CoV-2-in-

fected macrophages, which supports the existence of unique interactions of MAIT

cells with MOs/macrophages in COVID-19.27 These transcriptome findings further

suggest a role of circulating CD161hi cells in the SARS-CoV-2 immune response

and their possible interactions with MO-derived cells.

Sex-specific heterogeneity of circulating MAIT cells in COVID-19

To analyze our scRNA-seq dataset for potential sex differences in circulating

CD161hi cells, we first sought to examine phenotypic heterogeneity in this popula-

tion. To do this, we performed a focused subcluster analysis, which generated 3

distinct clusters (Figure 5A). However, this added resolution revealed a cluster that

expressed TRDC, encoding the constant region of the d chain expressed by gd

T cells (Figure 5B), which was excluded from subsequent analyses. In contrast, the

other two clusters had higher KLRB1 and TRAV1-2 expression (Figure 5B), and

they are therefore referred to here as MAITa and MAITb clusters. Of note, these 2

clusters make up approximately 80% of CD161hi PBMCs, which is consistent with a

previously reported frequencies of circulating MAIT cells.24 Our results showed

that the MAITa cluster possessed upregulated genes associated with cytotoxic

T cells (GNLY,CD8A, andCD8B), migration/adhesion (CXCR4 and ITGB2), and cyto-

kine signaling (IRF1, B2M,NFKBIA, JUNB, and FOS) (Figure 5C; Table S3). Although

the MAITa cluster showed expression of the hemoglobin B gene (HBB), this cluster

did not express other hemoglobin genes (Figures S4A and S4B), and its HBB expres-

sion level was much lower than in red blood cells (RBCs), suggesting that this cluster

is not contaminated with RBCs. The MAITb cluster was enriched for genes of ribo-

somal proteins, apoptosis (BAX and STUB1), and the linker histone H1 associated

with apoptosis (HIST1H1C, HIST1H1D, and HIST1H1E) (Figure 5C; Table S3).

Gene enrichment analysis further supported a functional dichotomy for a and b clus-

ters. Although MAITa was enriched with several immune process pathways (e.g.,

interferon g [IFN-g], IL-4, and IL-13 signaling as well as antigen processing and
762 Med 2, 755–772, June 11, 2021



Figure 4. Receptor-ligand interaction inferences uncover unique interactions between CD8+CD161hi T cells and MOs

(A and B) Visualization (A) and percentage distribution (B) of different MO subsets identified in Figure S3A. Three MO subsets represent resting classical

(cl) CD14, non-classical (nc) CD16, and intermediate (int) MO as seen in healthy subjects. Two MO subsets involved in IFN signaling are associated with

individuals with COVID-19. Based on differential expression of CD14 and CD16, they are referred to as activated CD14 and activated CD16 MO (CD14

MOA and CD16 MOA, respectively).

(C) Overview of selected ligand-receptor interactions inferenced using CellPhoneDB in the COVID-19 PBMC single-cell dataset. The red box delineates

specific interactions of CD161hi T cells with MOs. p values and scales are indicated by circle size and color, respectively.
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presentation), MAITb was enriched in cellular responses to external stimuli, meta-

bolism of RNA, viral infection, and programmed cell death but not immune pro-

cesses (Figures 5D and 5E; Table S4). Hence our results suggest MAIT cell heteroge-

neity, with the MAITa signature representing an immunologically poised/active

phenotype and the MAITb signature representing a stressed/apoptotic phenotype.

Last for this series of experiments, we sought to determine the dynamics of the two

phenotypically distinct clusters by sex over the COVID-19 disease course. By first

grouping our data by severity and time after symptom onset, we found that MAITa

was the major phenotype in healthy individuals, whereas MAITb predominated in

exposed and infected groups (Figures 5F and 5G) and at early, middle, and late

time points (Figure 5H). There was a noted exception for hospitalized individuals

(Figure 5F), who had very few cells, as seen in our flow cytometry data, consistent

with lymphopenia, which occurs in severe COVID-19.36 When further stratified by

sex, we found that MAIT cell frequencies were higher in healthy females (Figures

5I and 5J), corroborating our flow cytometry results. In healthy females, these cells

were skewed toward the MAITa cluster, whereas the few cells present in healthy

males consisted mostly of the MAITb cluster (Figure 5I). However, this difference

was lost in the exposed/infected setting, where the cells of individuals of both sexes

were comprised mostly of the MAITb cluster (Figure 5J). Nonetheless, MAITb cluster

percentages were statistically greater in females in late disease (Figure 5J), which re-

flects the increased MAIT cells during late infection in females, as shown by our flow

cytometry findings. Regarding expression ofCD69, a T cell activation marker, we did

not observe major differences across cluster or sex but did observe elevated expres-

sion in the hospitalized group (Figures S4C–S4F). This possibly suggests an altered

MAIT cell response in hospitalized individuals.24–27 These results suggest sex-spe-

cific MAIT cell differences at the quantitative and phenotypic levels in health and

COVID-19.

Respiratory tract MAIT cell responses differ by sex in COVID-19

To test our hypothesis that the sex-specific change of circulating MAIT cells is due to

their extravasation into airway tissues, we utilized published scRNA-seq datasets of

bronchoalveolar lavage fluid (BALF)37 and nasopharyngeal swabs (NPSs)38 to assess

MAIT cells in airway tissues of individuals with COVID-19. Beginning our analysis with

the BALF dataset, we identified the MAIT cell cluster by expression of TRAV1-2,

CD3D, KLRB1, and SLC4A10 (Figures 6A–6C). With this annotation, we found a sig-

nificant increase (p = 0.0188) of MAIT cells in individuals with COVID-19 (including

mild and severe cases) relative to normal control individuals and a higher MAIT

cell frequency (p = 0.0332) in females relative to males among subjects with

COVID-19 (Figure 6D). This detection of increased MAIT cells in BALF from females,

along with the drop in these cells we observed in peripheral blood from females,

suggest female-dominant extravasation of MAIT cells in COVID-19.

To perform the same analysis with NPS samples, we integrated the T cell data from

NPSs with those from BALF to identify MAIT cells in NPSs (Figure 6E and 6F) because

TCR genes were not aligned in the NPS dataset.38 With this annotation, we identified

232 and 631 MAIT cells in BALF and NPS, respectively, and quantified MAIT cell fre-

quencies in the NPS dataset, again observing a significant increase (p = 0.0139) in

individuals with COVID-19 (Figure 6G). We also analyzed the data across severity,
(D) Expression of representative ligand and receptor pairs between MAIT cells and MOs as indicated. Red and blue circles indicate CD161hi clusters and

MOs, respectively.

(E) Heatmap of interaction counts between major T cell and MO subsets.
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Figure 5. Heterogeneity and distinct dynamics of circulating MAIT cells across sexes in COVID-19

(A) Subclustering of CD161hi cells (n = 21,610), showing two MAIT cell clusters and one gd T cluster.

(B) Marker gene expression of three CD161hi clusters.

(C) Heatmap of the top 25 discriminative genes between MAITa and MAITb clusters. Expression level was scaled by Z score distribution.

(D and E) Representative top enriched pathways of MAITa and MAITb in the Reactome Pathway Database (ranked by FDR, �log10 scale). The top 100

DEGs ranked by fold change between MAITa and MAITb were used for this analysis.

(F and G) UMAP visualization of MAIT cluster changes (F) and their frequencies (G) with severity rank.

(H) Frequencies of MAIT clusters, grouped by time after symptom onset.

(I and J) Sex differences of MAIT clusters as shown in (H).

Data were plotted as mean G standard error (G–J). Significance was determined by Mann-Whitney test (I). *p < 0.05. See also Figure S4 and Tables S3 and S4.
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observing a significant increase (p = 0.0038) in subjects with moderate disease rela-

tive to normal subjects and a decrease (p = 0.0366) relative to individuals with critical

COVID-19 (Figures 6H and 6I). We could not perform the same analysis by sex
Med 2, 755–772, June 11, 2021 765



Figure 6. Sex differences of MAIT cells in airway tissue samples from individuals with COVID-19

(A and B) Clustering analysis of scRNA-seq data from the COVID-19 BALF dataset with subtracted T and NK cells.37

(C) MAIT cell cluster indicated by marker genes.

(D) Frequencies of MAIT cells in BALF between normal subjects and individuals with COVID-19 (left) and across sexes within subjects with COVID-19

(right).
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because of insufficient numbers of samples from females (Figure 6I). Nonetheless,

these results match the reduced circulating MAIT cell frequencies seen in our hospi-

talized individuals, suggesting that a lymphopenic state that occurs in severe

COVID-19 affects MAIT cells, consistent with other reports.24–26,39

In a final experiment, we sought to characterize MAIT cell transcriptomes by sex in

the BALF and NPS datasets and determine whether these cells resembled a and b

phenotypes we identified in circulating MAIT cells. Cluster analysis was not war-

ranted here, given the low cell numbers in these datasets. Instead, we leveraged

gene modules derived from our respective a and b clusters of circulating MAIT cells.

We found that MAIT cells in BALF and NPS data were largely skewed toward the b

module, withminimal sex differences (Figure S5A). However, when we directly exam-

ined DEGs (DEGs between sexes), we were able to detect sex differences associated

with a and b phenotypes. Specifically, in BALF, we found increased IL7R expression

in females (Figure 6J) and other IL-7 signaling-associated genes (CISH and SOCS1)

(Figure 6K). Given the key role of this signaling in T cell survival, we explored addi-

tional pathway genes, finding that femaleMAIT cells had upregulated anti-apoptotic

genes (BCL2 and FOXP1) and downregulated pro-apoptotic genes (BAX and

CASP3) (Figures S5B and S5C). Also observed in cells from females were upregu-

lated anti-proliferative genes (CDKN1B and BTG2) (Figure S5D). These patterns

matched MAITa gene changes in our PBMC dataset. We were able to find other

sex differences, including increased expression of several transcription factors

(KLF2, MYC, and CEBPD) (Figure 6L). Conversely, males had higher expression of

CCL2 (Figure 6M), which has been linked to COVID-19 immunopathology.40 In short,

our results infer sex differences at the qualitative level in COVID-19, with MAIT cells

from females possessing a pro-survival and immunologically active phenotype.
DISCUSSION

Despite the knowledge of sex differences in the immune response as an underlying

factor in COVID-19 disease outcomes, the sexually dimorphic responses of MAIT

cells, an unconventional T cell population deemed important in this disease, has re-

mained unknown. Although MAIT cells may be known primarily for their role in host

defense against bacteria, responding via their invariant TCRs to microbial vitamin B

metabolites presented on major histocompatibility complex class I-related mole-

cules,33,41 they are also capable of responding in a TCR-independent manner to cy-

tokines such as IL-12 and IL-18 and can be critical players in immune responses

against certain viruses.42–44 We now demonstrate that MAIT cells in females are

quantitatively and qualitatively more robust in the SARS-CoV-2 setting, potentially

helping us understand the immunological reasons for reduced COVID-19 suscepti-

bility of females.

Our finding that MAIT cell recruitment to airway tissues may be more robust in females

with COVID-19 was aided first by our observation of higher frequencies of circulating

MAIT cells in females in the healthy setting. This difference can be explained by the
(E) Integrated clustering analysis of NPSs with BALF using Seurat 3. Cluster 11, MAIT cells.

(F) Referenced MAIT cell cluster in NPSs by expression of TRAV1-2 in BALF and the indicated marker genes in NPSs.

(G) Frequencies of MAIT cells in NPSs from healthy subjects and subjects with COVID-19.

(H and I) Visualization (H) and frequencies (I) of MAIT cells in NPSs, grouped by disease severity.

(J) Volcano plot showing DEGs of BALF MAIT cells between sex with log2 fold change and �log10 FDR.

(K–M) Expression of DEGs in IL-7 signaling (K), transcription factors (L), and CCL2 (M).

Data were plotted as mean G standard error (D, G, and I), with females in red and males in black. Significance was determined by unpaired one-tailed

Student’s t test (D), Mann-Whitney test (G), and Kruskal-Wallis test with Dunn’s post hoc test (I): *p < 0.05, **p < 0.01. See also Figure S5.
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rate of physiological aging-related attrition of MAIT cells, which is substantially less pro-

nounced in the blood of females.45–47 The resultant higher frequencies in circulation

enabled us to readily uncover the precipitous percentage drop we saw with MAIT cells

relative to exposed/infected females. When trying to elucidate the potential cause of

this drop, we considered two possible scenarios, (1) lymphopenia and (2) extravasation,

which are not necessarily mutually exclusive. It is accepted that lymphopenia is associ-

atedwith severeCOVID-19 infection,32,36,48,49 which agreeswith our observations in our

hospitalized group (comprised of 77.8% of individuals in intensive care). Similarly, lym-

phopenia could partially explain the reduction inMAIT cells described by Jouan et al.,26

who studied male-dominated samples from critically ill individuals with COVID-19,

although extravasation also likely occurred. In our study, however, we demonstrated

that the frequencies of circulating MAIT cells dropped in our group of infected individ-

uals. Because these subjects were not critically ill, our findings point to extravasation as a

major reason for the sex-specific drop in the frequencies of circulating MAIT cells. The

same pattern may also exist in several other studies.24,25,27 For example, although it has

been demonstrated that circulatingMAIT cells are reduced in individuals withmoderate

COVID-19 relative to healthy subjects in aggregated data,24 it is possible that the fre-

quencies in healthy females contributed to reaching a statistical difference. Further sup-

porting our conclusion, we were able to show, with publicly available scRNA-seq data

from COVID-19 BALF samples,37 that females in that study had an increased MAIT

cell percentage relative to males, allowing us to conclude that MAIT cell extravasation

during COVID-19 may be quantitatively more robust in females.

Our results also suggest that MAIT cells may be qualitatively superior in females with

respect to anti-viral immune activity in COVID-19. Leading us to this conclusion, our

scRNA-seq analysis of PBMCs from affected individuals revealed two distinct clusters

ofMAIT cells,MAITa andMAITb. The a cluster was enriched for various immunepath-

ways, such as IFN-g signaling, inferring a capacity for anti-viral immune function. In

contrast, the b cluster was enriched for cell stress and apoptosis pathways, inferring

a frail phenotype roughly similar to a previously described population of double-

negative MAIT cells.50,51 We showed in the healthy setting that MAIT cells in females

were skewed toward the a cluster, whereas those in males were comprised of the b

cluster. Although, from these results, it could be inferred that the a cluster should

be overrepresented in airways of females with COVID-19, this was not the case

with BALF. However, we reasoned that such a finding would be very difficult to prove

for two main reasons. First, extravasated MAIT cells with an a phenotype would be

restricted to the early wave of recruitment because circulating cells are almost

completely skewed to the b module in exposed/infected individuals. Second, a

certain level of transcriptional reprogrammingwould occur upon immune cell extrav-

asation into the tissue and potentially again upon accessing the alveolar space. Still,

wewere able to show in BALF that certain gene patterns remained consistent with the

a signature in females versus males. In addition, our finding that BALF samples from

females had quantitatively more MAIT cells gives further credence that differences

revealed in the blood would likewise extend to tissue.

Limitations of study

The following limitations of this study should be considered when interpreting re-

sults. It is possible that decreased COVID-19 severity and elevated levels of MAIT

cells are associated independently with the female sex. We showed the immunolog-

ically active signature of MAIT cells from females at the transcriptomic level, but

functional analysis of MAIT cells in SARS-CoV-2 infection would be needed to

demonstrate whether MAIT cells directly protect females with COVID-19. The

same argument is relevant with respect to MAITa and MAITb subsets in lung
768 Med 2, 755–772, June 11, 2021
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tissues of individuals with COVID-19. Last, although our analyses included over 80

sex-balanced samples, the current study may not be powered to distinguish other

immune cell types or specific sequelae that are associated with sex differences in

COVID-19, and larger cohorts with more comprehensive longitudinal sampling

would be needed in the future.

We conclude that MAIT cells in females are quantitatively and qualitatively distinct from

those of males, and we surmise that this distinction provides a protective advantage in

COVID-19. Indeed, females in general tend to have elevated frequencies of circulating

MAIT cells, as also gleaned from large independent studies with European45, South

Korean,46 and Chinese populations.47 Further supporting this argument, it has now

been recorded that fatality rates of adults with COVID-19 tend to be lower in females

at all ages in 37 of 38 different countries or regions where MAIT cell frequencies tend

to be higher in females, including North America, Europe, and Asia.2 These points

also argue against the possibility that an immunologically more robust MAIT cell

response has a net negative effect; for example, by immunological misfiring20 or cyto-

kine storm-related immunopathology.40 However, one open question our findings raise

is whether themales in our study, whohadmore circulatingCD8+memory T cells, would

have an advantage in the reinfection setting or following vaccination.52 Future studies

are needed to explore this question and to better understand sex differences in MAIT

cells in general and in COVID-19.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

BV421 anti-human CCR7 (clone G043H7) BioLegend Cat# 353208

BV711 anti-human CCR6 (clone G034E3) BioLegend Cat# 353436

BV750 anti-huamn CXCR5 (clone RF8B2) BD Biosicences Cat# 747111

BUV563 anti-huamn CCR5 (clone 2D7) BD Biosicences Cat# 741401

PE-Cyanine7 anti-human CXCR3
(clone CEW33D)

ThermoFisher Cat# 25-1839-42

PerCP-eFluor710 anti-human TCR gd
(clone B1.1)

ThermoFisher Cat# 46-9959-42

APC-Fire810 anti-human CD38 (clone HIT2) BioLegend Cat# 303549

FITC anti-human CD57 (clone HNK-1) BioLegend Cat# 359604

PE-Cyanine5 anti-huamn CD95 (clone DX2) ThermoFisher Cat# 15-0959-42

Spark-NIR685 anti-huamn CD19 (clone H1B19) BioLegend Cat# 302270

Spark-NIR550 anti-human CD14 (clone 63D3) BioLegend Cat# 367148

PerCP anti-human CD45 (clone H130) ThermoFisher Cat# MHCD4531

PE anti-huamn CD25 (clone BC96) ThermoFisher Cat# 12-0259-42

APC anti-human CD27 (clone O323) ThermoFisher Cat# 17-0279-42

APC-eFluor780 anti-human HLA-DR
(clone L243)

ThermoFisher Cat# 47-9952-42

PerCP-Cyanine5.5 anti-human CD11b
(clone ICRF44)

BioLegend Cat# 301328

PE-eFluor610 anti-human CD24
(clone eBioSN3 (SN3 A5-2H10))

ThermoFisher Cat# 61-0247-41

Alexa Fluor�647 anti-human CD1c
(clone L161)

BioLegend Cat# 331510

APC-R700 anti-human CD127
(clone HIL-7R-M21)

BD Biosicences Cat# 565185

BUV496 anti-human CD16 (clone 3G8) BD Biosicences Cat# 612944

BV480 anti-human IgD (clone IA6-2) BD Biosicences Cat# 566138

BUV395 anti-human CD45RA (clone 5H9) BD Biosicences Cat# 740315

BUV737 anti-human CD56 (clone NCAM16.2) BD Biosicences Cat# 612766

BUV805 anti-human CD8 (clone SK1) BD Biosicences Cat# 612889

BUV661 anti-human CD11c (clone B-ly6) BD Biosicences Cat# 612967

SuperBright436 anti-human CD123
(clone 6H6)

ThermoFisher Cat# 62-1239-42

BV570 anti-human IgM (clone MHM-88) BioLegend Cat# 314517

BV650 anti-human CD28 (clone CD28.2) BioLegend Cat# 302946

BB515 anti-human CD141 (clone 1A4) BD Biosicences Cat# 566017

eFluor450 anti-human CD161 (clone HP-3G10) ThermoFisher Cat# 48-1619-42

BV510 anti-human CD3 (clone OKT3) BioLegend Cat# 317332

Pacific Orange anti-human CD20 (clone HI47) ThermoFisher Cat# MHCD2030

BV605 anti-human IgG (clone G18-145) BD Biosicences Cat# 563246

BV785 anti-human PD-1 (clone EH12.2H7) BioLegend Cat# 329929

BUV615 anti-human CD4 (clone SK3) BD Biosicences Cat# 612987

Biological samples

Peripheral blood from healthy and
COVID-19 related subjects

Duke University Health System NA

Chemicals, peptides, and recombinant rroteins

Live/Dead UV Blue ThermoFisher Cat# L34962

Brilliant Stain Buffer Plus BD Biosicences Cat# 566385

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Dead Cell Removal Kit Miltenyi Biotec Cat# 130-090-101

Chromium Next GEM Single Cell 50

Library & Gel Bead Kit v1
10x Genomics

Deposited data

BALF scRNA-seq data Liao et al.37 GSE145926

NPS scRNA-seq data Chua et al.38 https://figshare.com/articles/COVID-
19_severity_correlates_with_airway_
epithelium-immune_cell_interactions_
identified_by_single-cell_analysis/12436517

Supplemental data This study https://dx.doi.org/10.17632/csc9p34d5t.1

scRNA-seq data of PBMCs This study GSE171555

Flow cytometry data of PBMCs This study https://flowrepository.org/id/FR-FCM-Z3WR

Software and algorithms

FlowJo version 10.6.1 Tree Star https://www.flowjo.com/

Omiq Omiq https://www.omiq.ai/

Cell Ranger version 3.1.0 10x Genomics https://www.10xgenomics.com/

Seurat v3 R package https://satijalab.org/seurat/

CellPhone DB v2 https://www.cellphonedb.org/

Reactome pathway database https://reactome.org/

GraphPad Prism version 8 https://www.graphpad.com/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Daniel R. Saban (daniel.saban@duke.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Publicly available scRNA-seq data of BALF37 were downloaded from GEO with the

accession number GSE145926, and the count data of NPS38 were downloaded from

https://figshare.com/articles/COVID-19_severity_correlates_with_airway_epithelium-

immune_cell_interactions_identified_by_single-cell_analysis/12436517. All clinical

metadata of participants and samples in this study are included in Table S1. The fcs files

of flow cytometry are available to download from https://flowrepository.org/id/FR-

FCM-Z3WR. The scRNA-seq of PBMC data generated in this study are available in

Gene Expression Omnibus (GEO) with the accession number GSE171555. Additional

Supplemental Items are available from Mendeley Data at https://dx.doi.org/10.

17632/csc9p34d5t.1. All analytic scripts will be also made available per request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

This study and relevant protocols were approved by the Institutional Review Boards

of Duke University Health System (DUHS). All procedures were performed in accor-

dance with the Declaration of Helsinki, applicable regulations, and local policies.

Participants in this study

Inpatients (hospitalized) and outpatients (infected) with confirmed infection of SARS-

CoV-2 were identified through the DUHS and enrolled into the Molecular and Epide-

miological Study of Suspected Infection (MESSI, Pro00100241). The PCR testing for
e2 Med 2, 755–772.e1–e5, June 11, 2021
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SARS-CoV-2 was performed at either the North Carolina State Laboratory of Public

Health or at clinical laboratories of the DUHS. The exposed group, who closely con-

tacted with COVID-19 patients, presented negative PCR test and negative serology

test during longitudinally sampling from the first visit to at least 2 months after, typi-

cally 0, 7, 14, and 28 days relative to enrollment. Initial severity scores of individuals

were recorded through a self-reporting survey on 38 defined symptoms related to

COVID-19 plus ‘‘other’’ when enrolled. The exposed group (average score = 9.71)

showed a lower severity scores compared with infected (outpatients) group (average

score = 18.16). The hospitalized patients presented severe disease symptoms with

breath difficulty, cough, fever or chest pain when enrolled, and 77.8% of them for

this study required intensive care unit (ICU) care. All COVID-19 patients were also

longitudinally sampled with serology test from enrollment to convalescent phase.

Healthy donors were enrolled in 2019 (Duke IRB Protocol Pro00009459) with no

diagnosis or symptoms consistent with COVID-19 or other respiratory illness. Writ-

ten informed consent was obtained from all subjects or legally authorized represen-

tatives. Patient Demographics are summarized in Tables 1 and S1.

In keeping with inclusion criteria above, all participants with the minimum age of 17

were maintained in the analysis. Investigators were blinded during experiments in

terms of sex, time post symptom onset and anti-SARS-COV-2 IgG serology

condition.

METHOD DETAILS

Collection of peripheral blood mononuclear cells (PBMCs)

Peripheral whole blood was collected in EDTA vacutainer tubes and processed

within 8 hours via Ficoll-Hypaque density gradient method to obtain cryopreserved

PBMCs. Blood was diluted 1:2 in PBS, layered onto the the Ficoll-Hypaque in 50 mL

conicals, and centrifuged at 420 g for 25 min. Buffy coat was used to collect PBMCs

and cell pellets were washed twice with D-PBS following centrifugation at 400 g for

10 min. Counts and cell viability were obtained using Vi-Cell automated cell counter

(Beckman-Coulter) before PBMCs were adjusted to 10x106 cells/ml in cryopreserva-

tion media (90% FBS, 10% DMSO) and aliquoted into cryopreservation vials on ice.

Finally, cells were subjected to controlled freezing at �80�C using CoolCell LX (Bio-

Cision) for 12-24 hours, and transferred to liquid nitrogen vapor phase.

Sample processing for flow cytometry and single cell RNA-sequencing (scRNA-

seq)

Counts and cell viability of thawed PBMCs were measured by Countess II after a

wash with DMEM 10% FBS. The cell viability of hospitalized patients ranged from

70%–80% whereas all other samples exceeded 80% viability. An additional dead

cell removal step (Miltenyi Biotec) was conducted on hospitalized PBMC samples

prior to aliquot for scRNA-seq. To perform scRNA-seq, 200,000 cells per sample

were aliquoted, spun down, resuspended in 30 mL PBS supplemented with 0.04%

BSA and 0.2U/ml RNase inhibitor and counted using Countess II.

Panel and Staining for Flow Cytometry

Approximately 0.5-2x106 cells per cryopreserved sample were stained for flow cy-

tometry analysis. Antibody titrations used in this study were previously established

by Cytek Biosciences with slight modifications. All staining procedures were per-

formed at room temperature. PBMCs were stained with live/dead Blue (Thermo-

fisher) for 15 min, washed with FACS-EDTA buffer and spun down at 1500 rpm for

5 min. Samples were resuspended with Brilliant Stain Buffer Plus (BD Biosciences)

and sequentially stained with anti-CCR7 for 10 min, all other chemokine receptor
Med 2, 755–772.e1–e5, June 11, 2021 e3
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mix of CCR6, CXCR5, CCR5 and CXCR3 for 5 min, anti-TCR gamma/delta for 10 min

and the rest surface receptor mix for 30 min. After incubation, PBMCs were washed

with FACS-EDTA buffer and spun down at 1500 rpm for 5 min. Samples were fixed

with 1% PFA in PBS for 20 min, spun down and resuspended in FACS-EDTA buffer.
36-color Full Spectrum Flow Cytometry

Samples were acquired using a four-laser Cytek Aurora Spectral Flow Cytometry Sys-

tem. Single color controls for spectral unmixing were acquired with PBMCs from

healthy control blood and UltraComp eBeads (ThermoFisher). Raw data were un-

mixed and further analyzed using either FlowJo for manual gating or Omiq

(https://www.omiq.ai) for clustering visualization and analysis.
High-dimensional data analysis of flow cytometry data

Uniform Manifold Approximation and Projection (UMAP) and FlowSOM clustering

analyses were performed on Omiq (https://www.omiq.ai), using equal random sam-

pling of 3000 live CD45+ singlets. from each FCS file. The UMAP plot was generated

with the parameters of 15 neighbors and 0.4 minimum distance. All markers in flow

panel were used for analysis except live/dead and CD45.
ScRNA-seq using 10x Genomics platform

10x Genomics Single Cell 50 v1 chemistry was used to generate Gel Bead-In Emul-

sions (GEM), and perform post GEM-RT cleanup, cDNA amplification, as well as li-

brary construction. An agilent DNA ScreenTape assay was used for quality control.

Libraries were pooled and sequenced to saturation or 20,000 unique reads per

cell on average using an Illumina NovaSeq6000 with 150-bp paired-end reads.
Processing and quality control of scRNA-seq

Raw sequencing data were initially processed with 10x Genomics Cell Ranger pipe-

lines (V3.1.0). Briefly, BCL files were demultiplexed to generate FASTQ files. FASTQ

files were aligned with STAR aligner to the human genome reference GRCh38 from

Ensemble database. Feature barcode processing and UMI counting were then per-

formed according to the standard workflow. (QC summary after sequencing). The

following criteria were applied as quality control of single cells from all individual

samples. Cells that had fewer than 1000 UMI counts or 500 genes, as well as cell

that had greater than 10% of mitochondrial genes were removed from further anal-

ysis. Genes that were expressed by fewer than 10 cells were also excluded. After

filtering, a total of 424,080 cells with 18,765 gene features were kept for the down-

stream analysis.
QUANTIFICATION AND STATISTICAL ANALYSIS

Dimensionality reduction and clustering analysis

The filtered gene-barcode matrix was analyzed using Seurat 3.28 All the procedures

were conducted with the default parameters unless otherwise specified. Briefly, data

were first normalized using log transformation and adjusted with a scale factor of

10,000. The top 2,000 variable genes were identified, and percentages of mitochon-

drial genes were regressed out when scaling data. Principle component analysis

(PCA) was performed using these top variable genes, and top 25 principle compo-

nents (PCs) were selected for graph-based clustering with Shared Nearest Neighbor

(SNN) and visualization in UMAP. The resolution was set to 0.35 to identify major im-

mune cell subsets in PBMCs. Sub-clustering of CD161hi T cells (21,610 cells) was also

performed using the analytic pipeline mentioned above with two modifications: top

10 PCs were used, and the resolution was set to 0.1 to identify MAIT cell clusters.
e4 Med 2, 755–772.e1–e5, June 11, 2021
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Differential gene expression analysis

Differentially expressed genes (DEGs) were identified using Seurat 3 (FindAllMarkers or

FindMarkers Functions) with either ‘wilcox’ for all cluster markers or ‘DESeq20.53

Randomly downsampled data with 100,000 cells were used to find all markers of

PBMCclusters.Agenewasconsideredsignificantwithadjustedpvalue or falsediscovery

rate (FDR)<0.05.DEGs results of all PBMCsandMAIT cells are listed inTables S2andS3.
Pathway enrichment analysis

Top 100 DEGs of MAIT clusters were used for pathway enrichment analysis using

Reactome Pathway Database (https://reactome.org). A pathway was considered

significantly over-presented with FDR < 0.05. The full pathway enrichment results

are summarized in Table S4.
Inference of ligand-receptor interactions between T cells and monocytes

Ligand-receptor interactions between T cells and monocytes were inferred using Cell-

PhoneDB.35 PBMC scRNA-seq data were randomly downsampled to 50,000 cells and

T and monocyte clusters were extracted based on the expression of their lineage

markers. CellPhoneDB was with default parameters (https://github.com/Teichlab/

cellphonedb). The inferred interactions are considered significant when p value < 0.05.
Integration of BALF and NPS dataset

Publicly available scRNA-seq data of BALF37 and of NPS38 were downloaded and

processed using Seurat 3 as previously described.28 All T cell clusters, were ex-

tracted from both datasets and integrated via the Single Cell Transform (SCT)

method in Seurat 3. Top 3,000 variable features were selected for the integration.

Dimensionality reduction was conducted using PCA and UMAP embedding of the

top 100 PCs. Clusters were visualized at a resolution of 0.8 after constructing a

SNN graph using the first 50 PCs.
Calculations of the feature scores in MAIT cells

The DEGs between MAIT1 and MAIT2 were used to generate their feature scores as

previously described.54 The feature scores were calculated using AddModuleScore

function in Seurat 3. MAIT cells from different single cell dataset were plotted with

MAIT1 feature and MAIT2 feature for visualization.
Statistical analysis

Data normality and homogeneity of variance were assessed using Kolmogorov-Smirnov

test and Bartlett’s test, respectively. Due to the distribution and variance of human data,

non-parametric statistical tests were favorably used throughout this study unless other-

wise specified. MannWhitney U test was used for two-group comparisons, and Kruskal-

Wallis with post hoc Dunn’s test was used for comparisons of three groups and more.

Spearman’s correlation efficiency was used to quantify the correlation of the ranked dis-

ease severity (from healthy as 1, to hospitalized as 4). Simple linear regression and mul-

tiple linear regression were calculated using GraphPad Prism 8. Data were transformed

tomeet the assumptions of linear regression when necessary. To adjust p values formul-

tiple hypothesis testing, FDR correction was performed using the Benjamini-Hochberg

procedure when appropriate. Two-tailed tests were used unless otherwise specified. A

p value or FDR < 0.05 is consider statistically significant. Graphical data of quantifica-

tions presented throughout are expressed as the meansG SEMs and were plotted us-

ing Graphpad Prism 8. Other graphs in this study were generated using either the cor-

responding analytic packages or R package ggplot2.
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Figure S1. Manual Gating Strategy and Immune Profiling of PBMC Subsets in COVID-19, 

Related to Figure 1. (A-H) Gating strategy of major lymphocyte (A) and myeloid cell (B) 

subsets in PBMC samples, including CD4 (D) and CD8 (E) ab T cells, γd T cells (A), 

monocytes (B), B cells (F), plasmablasts (PB, C), NK cells (G) and dendritic cells (DC, H). (I) 

Frequencies of major PBMC subsets identified in A-H among healthy, exposed, infected and 

hospitalized groups. Significance was determined by Kruskal-Wallis test (p-values as 

indicated). 

  



 
 

Figure S2. Sex-Specific Changes of CD8+ CD161hi and Memory T Cells in COVID-19 

PBMCs analyzed by Flow Cytometry, Related to Figure 2. (A) Gating strategy of CD8+ 

CD161hi and memory T cells (αβ). (B) Representative flow plots of CD8+ CD161hi and memory 

T cells from female and male individuals with severity rank. (C) Frequencies of naïve CD8 T 

cells among different severity groups as indicated. Significance was calculated by Kruskal-

Wallis. 

  



 

Figure S3. Characterization of Immune Subsets in COVID-19 PBMCs by scRNA-seq, 

Related to Figure 3. (A) High resolution clustering of PBMCs as shown in Figure 3A. (B) 

Expression of marker genes used to annotate the identifies of individual clusters. N, naïve; EM, 

effect memory; CM, central memory; DN, double negative; rep, replicating. cl, classical; int, 

intermediate; nc, non-classical; CD14 MOA, activated CD14 monocytes; CD16 MOA, activated 

CD16 monocytes; NK, natural killer; PB, plasmablasts; PLT, platelets; DC, dendritic cells. 

  



 

Figure S4. Expression of HBB and CD69 by Circulating MAIT Clusters in COVID-19, 

Related to Figure 5. (A,B) Expression of hemoglobin related genes (HBB, HBD, HBA2, 

HBA1) are shown by PBMC clusbters (A) and MAIT clusters (B). Red dash boxes indicates 

RBC cells. (C to F) Data are grouped by MAIT clusters (C), sex (D), severity rank (E) as well 

as clusters and severity (F).  

  



 

Figure S5. Comparisons of MAITα and MAITβ Features in MAIT Cells from Peripheral 

Blood and Airway Tissue Samples, Related to Figure 6. (A) Estimation of MAITα and 

MAITβ features of individual cells from PBMC and BALF dataset based on the expression of 

MAITα gene (y-axis) and MAITβ gene sets (x-axis). Differentially expressed genes between 

MAITα and MAITβ were used as two modular features, respectively. (B to D) Expression of IL7 



receptor and its co-receptor genes (B), apoptosis-related genes (C), proliferation-related genes 

by MAIT cells from PBMC and BALF dataset (D).  



Table S1. Clinical Metadata of Participants and Samples in this study, Related to Figure 
1 and Table 1. Clinical data of participants in the 1st sheet 1; sample metadata in the 2nd 

sheet.  

Table S2. List of DEGs of PBMC Clusters, Related to Figure 3. The DEGs of each PBMC 

cluster are listed with details of p-values (p_val), average log2 fold changes (avg_logFC), 

percentages of cells with the detected feature (pct.1 and pct.2), clusters and gene names. 

Table S3. List of DEGs of MAIT Subsets, Related to Figure 4. The DEGs of MAITα and β 

are listed with details of p-values (p_val), average log2 fold changes (avg_logFC), percentages 

of cells with the detected feature (pct.1 and pct.2), clusters and gene names. 

Table S4. List of Enriched Reactome Pathways of MAIT Subsets, Related to Figure 4. 
Details of the parameters provided by Reactome Pathway enrichment analysis. MAITα in the 

1st sheet 1; MAITβ, the 2nd sheet. 
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