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I. SUPPLEMENTARY METHODS

A. Theoretical Framework

1. Linearized Boltzmann transport equation

Electron mobility, µe, can be computed through the
linearized Boltzmann transport equation (BTE) [1–4],
given for electrons as

µe,αβ =
−1

neΩ

∑
n∈cb

∫
dk

ΩBZ
vnk,α∂Eβfnk, (1)

where α and β denote Cartesian coordinates, ne is the
electron concentration, Ω and ΩBZ are the volumes of
the unit cell and first Brillouin zone, respectively, vnk,α
is the group velocity of band index n and wave vector k,
“cb” stands for conduction bands, and ∂Eβfnk is the per-
turbation to the Fermi–Dirac distribution by an electric
field E. The Fermi–Dirac distribution is given by

f0
nk =

1

exp [(εnk − εF)/kBT ] + 1
, (2)

where εnk is the energy of state nk, εF is the Fermi level,
kB is the Boltzmann constant, and T is temperature. The
perturbation to the equilibrium Fermi–Dirac distribution
is given by the self-consistent solution of

∂Eβfnk = e
∂f0

nk

∂εnk
vnk,βτnk +

2πτnk
~

∑
m

∫
dq

ΩBZ
|gnm(k,q)|2

× [(nq + 1− f0
nk)δ(∆εnmk,q + ~ωq)

+ (nq + f0
nk)δ(∆εnmk,q − ~ωq)]∂Eβfmk+q,

(3)
where τnk is the electron lifetime, δ is the Dirac delta
function, ∆εnmk,q = εnk − εmk+q, ~ is the reduced Planck
constant, and nq is the Bose–Einstein occupation. The
matrix elements gnm (k,q) give the probability of scat-
tering from an initial state nk to final state mk + q via
a phonon with wave vector q and frequency ωq.

The primary complexity in the Boltzmann transport
equation results from the dependence of the linear re-
sponse coefficients ∂Eβfnk of state nk on all other states
mk + q. Accordingly, there are several common ap-
proximations to the BTE that can significantly reduce
the computational cost. The momentum relaxation time

approximation (MRTA) makes two simplifications: (i)
Firstly, the linear response coefficients are presumed to
only act in the direction of the band velocity, such that
the electron lifetimes will be scalar quantities [2, 4]. (ii)
Secondly, the probability of scattering from state nk to
mk + q is assumed to be the same as scattering from
state mk + q to nk. The result is that the effects of
back scattering are accounted for by a geometrical fac-
tor resulting from the electronic group velocities. The
resulting expression for τ−1

nk can be written

τ−1
nk =

∑
m

∫
dq

ΩBZ

[
1− vnk · vmk+q

|vnk|2

]
τ−1
nk→mk+q, (4)

where τ−1
nk→mk+q is the partial decay rate for scattering

from initial state nk to final state mk + q. In this ap-
proximation, Supplementary Eq. (1) can be rewritten

µMRTA
e,αβ =

e

neΩ

∑
n∈cb

∫
dk

ΩBZ

∂f0
nk

∂εnk
vnk,αvnk,βτnk. (5)

A further simplification can be made by ignoring the ef-
fcts of scattering back into the state nk entirely. This
corresponds to neglecting the second term on the right-
hand side of Supplementary Eq. (3) or setting the ge-
ometric factor in the square bracket of Supplementary
Eq. (4) to 1. In this approach, termed the self-energy
relaxation time approximation (SERTA) [3], the electron
lifetimes can be obtained according to

τ−1
nk =

∑
m

∫
dq

ΩBZ
τ−1
nk→mk+q, (6)

and the mobility calculated in the same manner as Sup-
plementary Eq. (5).

The partial decay rates of Supplementary Eqs. (4) and
(6) can be obtained through Fermi’s golden rule. In the
present work, we implement two classes of scattering: (i)
inelastic scattering which occurs via emission or absorp-
tion of a phonon and (ii) perfectly elastic scattering in
which no energy is gained or lost. In the case of inelastic
scattering, the partial decay rate can be written [5, 6]

τ−1
nk→mk+q =

2π

~
|gnm(k,q)|2

× [(nq + 1− f0
mk+q)δ(∆εnmk,q − ~ωq)

+ (nq + f0
mk+q)δ(∆εnmk,q + ~ωq)],

(7)
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Supplementary Table 1. Summary of scattering mechanisms

Name Required properties Type Refs.
Ionized impurity Static dielectric Elastic [7, 8]

Acoustic
deformation
potential

Deformation
potential,
elastic constant

Elastic [9–12]

Piezoelectric
acoustic Piezoelectric constant Elastic [13–15]

Polar optical
phonon

Static and
high-frequency
dielectric,
phonon frequency

Inelastic [16]

where the −~ωq and +~ωq terms correspond to scat-
tering by emission and absorption of a phonon, respec-
tively. The dependence of τ−1

nk→mk+q on the occupation
of state mk + q and the observation that fmk+q 6= fnk
reveals that inelastic scattering is not commutative —
i.e., τ−1

nk→mk+q 6= τ−1
mk+q→nk. We note that for spin po-

larized materials, scattering only occurs between states
in the same spin channel — i.e., there are no interactions
between spin-up and spin-down electrons.

For elastic scattering, Supplementary Eq. (7) reduces
to

τ−1
nk→mk+q =

2π

~
|gnm(k,q)|2δ

(
∆εnmk,q

)
. (8)

In contrast to inelastic scattering, elastic processes do not
depend on the occupation of state mk + q. Accordingly,
τ−1
nk→mk+q = τ−1

mk+q→nk and a primary assumption of
the MRTA is satisfied. For this reason, we treat elastic
scattering processes under the MRTA, whereas inelastic
scattering processes are treated in the SERTA.

2. Scattering matrix elements

The general form of the quantummechanical scattering
matrix elements in Supplementary Eqs. (3), (4), and (6)
is

gnm(k,q) = 〈mk + q|∆qV |nk〉 (9)

where ∆qV is an electronic perturbation associated with
a scattering process [6]. In the present work we cal-
culate matrix elements within the Born approximation
[17]; namely, the electronic perturbation is assumed to
only weakly impact the wave function of the final state
mk + q. The scattering matrix elements considered in
this work and the materials parameters needed to calcu-
late them are summarized in Supplementary Table 1.

G-vector summation The matrix elements include
a sum over reciprocal lattice vectors G. In this work, we
restrict the summation to only include a single recipro-
cal lattice vector, G = [0, 0, 0], such that only phonons

within the first Brillouin zone are considered but Umk-
lapp scattering processes (with respect to the electronic
Brillouin zone) are taken into account.

Impurity scattering The inverse screening length β,
required in the calculation of the ionized impurity matrix
element, is given by

β2 =
e2

εskBTΩ

∑
n

∫
f0
nk(1− f0

nk) dk , (10)

where 1/β corresponds to the Debye length and Thomas–
Fermi screening length for non-degenerate and degener-
ate doping regimes, respectively [18].

3. Transport properties

Electronic transport properties — namely, conductiv-
ity, Seebeck coefficient, and electronic component of ther-
mal conductivity — are calculated through the Onsager
coefficients [19, 20]. The spectral conductivity, defined
as

Σαβ(ε) =
∑
n

∫
dk

8π3
vnk,αvnk,βτnkδ(ε− εnk), (11)

is used to compute the moments of the generalized trans-
port coefficients

Lnαβ = e2

∫
Σαβ(ε)(εF − ε)n

[
−∂f

0

∂ε

]
dε , (12)

where εF is the Fermi level at a certain doping concen-
tration and temperature T . Electrical conductivity (σ),
Seebeck coefficient (S), and the charge carrier contribu-
tion to thermal conductivity (κ) are obtained as

σαβ = L0
αβ , (13)

Sαβ =
1

eT

L1
αβ

L0
αβ

, (14)

καβ =
1

e2T

[
(L1

αβ)2

L0
αβ

− L2
αβ

]
. (15)

B. Computational Framework

1. Brillouin-zone interpolation and integration

As described in the main text, we employ a com-
bined Fourier-linear interpolation scheme when calcu-
lating scattering and transport properties. Electronic
eigenvalues — calculated using density functional the-
ory (DFT) on a coarse k-point mesh — are Fourier in-
terpolated onto a denser mesh. Fourier interpolation is
performed using the boltztrap2 software [22, 23] which
enforces symmetry using star functions and employs the
Shankland algorithm to ensure that both quasi-particle
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Supplementary Figure 1. Schematic of the linear-tetrahedron method. (a) A 2 × 2 × 2 k-point submesh can be broken up
into (b) six tetrahedra. Adapted from Supplementary Ref. [21]. (c) The constant energy surfaces (light gray planes) defined by
εa and εb intersect the tetrahedron to produce the cross sections fa (dark gray triangle) and fb (dark gray quadrangle). The
triangular cross section fa is defined by the points c1, c2, and c3. The k-points at the tetrahedron vertices have been numbered
according to increasing energy, i.e., εk1 < εk2 < εk3 < εk4 . (d) Coordinate transformation from initial basis (black arrows) to
transformed basis (pink arrows) that maps the cross section onto a 2D plane. The x∗ coordinates of all points on the cross
section are zero.

energies and their derivatives (group velocities) are ex-
actly reproduced [24–26]. This approach aims to min-
imise the roughness function proposed in Supplementary
Ref. [27].

Scattering rates are calculated on the Fourier interpo-
lated k-point mesh. When calculating the partial decay
rate, scattering is limited to the constant energy surface
defined by ε = εnk in the case of elastic processes [Sup-
plementary Eq. (8)] and ε = εnk ± ~ωq for inelastic pro-
cesses [Supplementary Eq. (7)]. Note that, in our imple-
mentation of polar optical phonon scattering we rely on
a single dispersionless phonon mode, whose energy ~ωpo

is independent of q. Due to finite k-point sampling, it
is common replace the delta function in Supplementary
Eqs. (7) and (8) by Gaussian or Lorentzian functions with
finite broadening. This procedure has the effect that the
calculated lifetimes will depend on the chosen broadening
parameter.

An alternative approach is to employ the linear tetra-
hedron method to analytically integrate the scattering
rates across the constant energy surface [21, 28]. In
this method, the Brillouin zone is divided into tetra-
hedra [Supplementary Figs. 1(a) and 1(b)]. For each
electronic band, the eigenvalues are obtained for the k-
points at the corners of the tetrahedra. The constant
energy surface defined by εnk intersects a tetrahedron
if εmin

tetra < εnk < εmax
tetra, where εmin

tetra and εmax
tetra are the

minimum and maximum energies of the tetrahedron’s
vertices [Supplementary Fig. 1(c)]. Computing the in-
tersections of εnk with all tetrahedra gives rise to a set
of tetrahedron cross-sections that define the constant en-
ergy surface. In the traditional implementation of the
tetrahedron method, the integration for each tetrahedron
is performed analytically after linearly interpolating the
eigenvalues and matrix elements inside the tetrahedron.
As we note in the main text, this approach is only valid
for matrix elements that show a linear dependence on
q. For ionized impurity scattering, where the matrix ele-

ment has a 1/|q|2 dependence, this assumption does not
hold and results in severe overestimation of the scattering
rate.

To overcome this limitation, we employ a modified
linear-tetrahedron approach. The constant energy sur-
face is determined in the same manner as the tetrahe-
dron method. However, instead of analytically integrat-
ing within each tetrahedra, the tetrahedron cross sec-
tions (comprising the constant energy surface) are nu-
merically resampled with hundreds of extra points. By
only computing additional k-points that exactly satisfy
the delta term in Supplementary Eqs. (7) and (8), this al-
lows for “effective” k-point mesh densities that would be
almost impossible to achieve with uniform k-point sam-
pling. The scattering matrix elements are computed on
the denser submesh by linear interpolation of the elec-
tronic wave functions ψnk and group velocities vnk. We
note that the scattering wave vector q is a geometric
term that is known exactly for all points on the sub-
mesh. A primary advantage of this approach is that while
the matrix elements cannot be linearly interpolated with
q, the constituent parameters (electronic wave functions
and group velocities) are linearly interpolatable.

In order to resample the constant energy surface, the
tetrahedron cross sections are projected onto a two-
dimensional plane. First, the k-points that define the
tetrahedron cross sections are identified. These are the
points at the intersection of the constant energy surface
and tetrahedron boundary under the assumption that
the band energies vary linearly between adjacent vertices
in the tetrahedron [points labelled c in Supplementary
Fig. 1(c)]. This results in three and four sets of k-points
for triangular and quadrilateral cross sections, respec-
tively, termed C. The first basis vector for the new co-
ordinate system, B, is the vector normal to the plane of
the cross section, namely

b1 =
c2 − c1

|c2 − c1|
× c3 − c1

|c3 − c1|
,
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where c1 and c2 are the coordinates of the first and sec-
ond vertices defining the cross section. The second and
third basis vectors are defined as

b2 =
c2 − c1

|c2 − c1|
,

b3 = b2 × b1,

The reciprocal space coordinates defining the cross sec-
tion are transformed onto the new basis through

cproj
i = B−1 · ci.

In the new coordinate system, the first component of
all coordinates will be the same, as all vertices lie on a
plane. The last two components of the coordinates de-
fine a two-dimensional (2D) projection of the cross sec-
tion which can be resampled through numerical quadra-
ture schemes [Supplementary Fig. 1(d)]. In the present
work, we employ degree 50 Xiao–Gimbutas (containing
453 sample points, [29]) or Festa–Sommariva quadratures
(454 points, [30]) for resampling triangular and quadri-
lateral tetrahedron cross-sections, respectively. Resam-
pling, including generating sample points and integration
weights wres

i , is performed using the quadpy software
[31]. The set of sample points are transformed back into
the original coordinate system through

ci = B · cproj
i .

The contribution of each tetrahedron to the constant
energy surface is weighted by a geometric factor that ac-
counts for the tetrahedron’s shape in four dimensional
space (reciprocal coordinates and energy space) [28]. Us-
ing the triple ri contragradient to vertices of the tetra-
hedron ki

riki = δij ,

r1 =
k3 × k4

Ω
,

r2 =
k4 × k2

Ω
,

r3 =
k2 × k3

Ω
,

where the k-points have been numbered according to in-
creasing energy, i.e., εk1 < εk2 < εk3 < εk4 , the tetrahe-
dron weight is given by [28]

wtet =

∣∣∣∣∣
4∑
i=2

(εki − εk1
) ri−1

∣∣∣∣∣
−1

.

We stress that this weight is distinct from the integra-
tion weights defined by Blöchl et al. [21] in which the
contragradient cancels when averaging over all adjacent
tetrahedra. The final integration weights wi for the sam-
ple k-point coordinates of each cross section are scaled
by the tetrahedron weight to give wi = wres

i · wtet.

When evaluating the density of states

N(ε) =
∑
n

∫
dk

8π3
δ(ε− εnk), (16)

and the spectral conductivity in Supplementary Eq. (11),
we employ the traditional approach to the linear-
tetrahedron method described by Blöchl et al. [21].
Specifically, we use the energy-dependent integration
weights as described in Supplementary Ref. [32] and else-
where. Unlike the partial decay rates τnk→mk+q−1 , the fi-
nal lifetimes τnk vary smoothly across the Brillouin zone.
Accordingly, use of the linear-tetrahedron method can
significantly improve the convergence of transport prop-
erties without issue.

2. Optimization of scattering calculations

Under typically achievable carrier concentrations (1016

to 1021 cm2/Vs) the Fermi level will sit close to either the
conduction or valence band edge. Accordingly, only k-
points that lie within a few hundred meV of the band
edge will contribute to electronic transport. It is there-
fore unnecessary to compute the electron lifetimes for
all k-points in the band structure, as most will have no
impact on transport properties. From the generalized
transport coefficients L in Eq. (12), it can be seen that
each k-point’s contribution to the transport properties is
scaled by a factor (εnk − εF)n

[
−∂f0

nk/∂εnk
]
, which de-

pends entirely on the energy of the state. Accordingly, we
have designed a procedure to assess which energy range
is important for transport, illustrated in Supplementary
Fig. 2(a). We begin by denoting the “moment-coefficient
weight” as

wn(ε) = (εF − ε)n
[
−∂f

0

∂ε

]
, (17)

where the indices n = 0, 1, 2, correspond to the moments
of Ln required to compute conductivity, Seebeck coeffi-
cient, and the electronic component of thermal conduc-
tivity, respectively. This is weighted by the spectral con-
ductivity Σcrt under the assumption of a constant relax-
ation time [i.e., Supplementary Eq. (11) with τ = 1] to
give

wΣcrt

n (ε) = |wn(ε)| · Σcrt(ε). (18)

Finally, we compute the normalized cumulative integral
of the weights according to

wcum
n (ε) =

∫ ε
−∞ wΣcrt

n (ε′) dε′∫
wΣcrt

n (ε′) dε′
. (19)

We can then define a tuneable parameter λ than controls
the minimum and maximum energy ranges within which
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Supplementary Figure 2. (a) Procedure for obtaining the energy range in which to calculate scattering rates. The momentum
coefficient weight wn for n = 0, 1, 2 (top panel) is scaled by the spectral conductivity Σcrt to give wΣcrt

n . The cumulative integral
of the moment weights wcum

n is used to determined the energy cutoffs (bottom panel). The dashed orange, teal, and pink lines
give εmin

n and εmax
n for n = 0, 1, 2, respectively at λ = 0.05. The final values of εmin and εmax are taken as the smallest εmin

n

and largest εmax
n values across all moments, respectively. (b) Convergence of electronic transport properties p as a function

of λ at 300 K for GaAs, Si, SnSe, and CuAlO2. Absolute percentage difference from converged value |(p− pλ0)/pλ0 | given for
conductivity (p = σ, orange), Seebeck coefficient (S, teal), and electronic contribution to the thermal conductivity (κ, pink),
respectively. pλ0 corresponds to the value of the transport properties at λ = 0 — i.e., the scattering rates for all k-points are
calculated explicitly. Convergence within 1 % is highlighted by a dashed gray line.

to calculate the scattering rates. Namely,

εmin
n = arg min

ε

∣∣∣∣wcum
n (ε)− λ

2

∣∣∣∣, (20)

εmax
n = arg min

ε

∣∣∣∣wcum
n (ε)−

[
1− λ

2

]∣∣∣∣, (21)

where λ can vary between 0 (in which case εmin
n and εmax

n

will be the minimum and maximum energies in the band
structure) and 1 (where εmin

n and εmax
n will be the same

value). A value of λ = 0.1, indicates that 90 % of the
integrated wΣcrt

n will be included in the energy range.
Alternatively put, a value of λ = 0.1 results in εmin

n

and εmax taking the energies where wcum
n = 0.05 and

0.95, respectively. The final energy range is given by
εmin = min({εmin

n : n = 0, 1, 2}) and εmax = max({εmax
n :

n = 0, 1, 2}). The scattering rate is only calculated for
states where εmin ≤ εnk ≤ εmax, with the scattering rates
of the remaining states set to the average value of the
rates that have been calculated explicitly. By setting λ
to an appropriate value, the scattering rates for k-points
outside the energy range will not impact the transport
properties.

To demonstrate the impact of λ and determine rea-
sonable values to use in our calculations, we have in-
vestigated the convergence of the transport properties
for GaAs, Si, SnSe, and CuAlO2 at 300 K [Supplemen-
tary Fig. 2(b)]. The conductivity, Seebeck coefficient,
and electronic contribution to the thermal conductiv-
ity of all materials are converged to within than 1 % by

λ = 0.02. In most cases, the Seebeck coefficient converges
the fastest, most likely due to its weaker dependence on
the scattering rate. The electronic contribution to the
thermal conductivity is the slowest property to converge,
as expected from its reliance on a broader momentum
coefficient weight. If only the conductivity or Seebeck
coefficient are of interest, a much larger value of λ can be
used. For example, using a λ of 0.1 converges these prop-
erties to within 1 %. In our calculations, we employ a λ
of 0.05 which offers a reasonable trade-off between speed
and convergence. This property is controlled in our soft-
ware implementation through the fd_tol parameter.

3. Software implementation

An open-source implementation of the formalism, used
to perform all calculations in this work, is released as
a package called amset [33]. amset is freely avail-
able under a modified Berkeley Software Distribution
(BSD) license. The current version is developed and
maintained using Git and is accessible at https://
hackingmaterials.lbl.gov/amset. The code can be
run on both high-performance computing clusters or per-
sonal computers. amset is implemented in Python 3 and
relies on several open-source libraries including pymatgen
[34] for parsing vasp calculation outputs, BoltzTraP2
[20, 35] for Fourier interpolation of electronic eigenvalues
and group velocities, spglib [36] for symmetry analysis,
quadpy [31] for numerical integration, and matplotlib

https://hackingmaterials.lbl.gov/amset
https://hackingmaterials.lbl.gov/amset


6

preprocessing 
tools wave phonon-

frequency

!n"

run

plot

transport
(json)

plots

VASP 
outputs

AMSET
command-line

interface

ωpo

ε∞, εs, C, h

materials
properties

runtime
parameters

#$%, &'$ , ('   εn"
deform

wavefunction
(hdf5)

deformation
(hdf5)

mesh
(hdf5)

temps
doping
fd_tol
bandgap
symprec

...

Supplementary Figure 3. Schematic of the amset pro-
gram indicating the typical inputs and outputs, command-line
tools, and program flow.

[37] for plotting. The NumPy [38] and SciPy [39] li-
braries are used extensively to minimize the cost of ex-
pensive matrix operations. All-electron wave function co-
efficients are generated from the pseudo-wave functions
using the MomentumMatrix functionality of the pawpy-
seed package [40].

amset can be used through either the the command-
line or a Python application programming interface
(API). A typical workflow, showing computational inputs
and outputs, is illustrated in Supplementary Fig. (3).
The primary inputs are vasprun.xml and WAVECAR vasp
output files, calculated on a uniform k-point mesh. Ad-
ditional settings, such as the materials parameters used
to calculate scattering, the doping concentrations and
temperatures to consider, and accuracy settings such as
fd_tol, can be specified in a separate file or as command-
line arguments. Information on all the available set-
tings is provided on the amset website. After obtain-
ing the first principles inputs, two pre-processing steps
are required. Firstly, the all-electron wave function coef-
ficients must be extracted from the vasp WAVECAR file
using the wave tool. Secondly, the “effective-phonon-
frequency” should be calculated from phonon frequencies
and eigenvectors, and the Born effective charges using
the phonon-frequency tool. This process is described in
more detail in Section IC 1. Scattering rates and trans-
port properties are computed using the run command.
The primary output is the transport file, which by de-
fault contains the calculated mobility, Seebeck coefficient,

and electronic contribution to the thermal conductivity
in the JavaScript Object Notation (JSON) format. The
scattering rates, and interpolated eigenvalues and group
velocities can be written to the mesh file with the Hierar-
chical Data Format version 5 (HDF5) format [41] using
the write_mesh option. Finally, the plot command can
be used to plot transport properties, lifetimes, and elec-
tron linewidths from the transport and mesh files. The
sumo package is used for plotting band structures [42].

4. Timing analysis

A primary goal of the present approach is to be
amenable to high-throughput computational workflows.
To investigate the computational requirements of the am-
set package, we have illustrated the time taken to cal-
culate the scattering rates of several of the test materials
in Supplementary Fig. 4(a). All calculations were per-
formed on a MacBook Pro with a quad core 2.9 GHz Intel
Core i7 processor. The maximum time taken was 42 min
for GaN, with most of the remaining materials completed
in under 20 min. To understand which portions of the
code are the most computationally demanding, we have
broken down the results into the time taken to: (i) per-
form Fourier interpolation of electronic eigenvalues, (ii)
compute the density of states through the tetrahedron
method, (iii) obtain the scattering rates, (iv) calculate
transport properties, and (v) write the output data to
disk. We note, the benchmarks were performed with the
write_mesh option enabled, so the output includes the
scattering rates and interpolated band structure. In gen-
eral, writing the output data takes the least amount of
time relative to the other functions of the code. The
breakdown for the rest of the computational steps de-
pends strongly on the material and run time parameters,
with most of the time spent calculating the scattering
rates or transport properties.

To understand the scaling performance of amset with
interpolation density, we have investigated the correla-
tion of runtime with number of k-points. We find there
is not a simple correlation between the total number of
k-points and total runtime. Instead, each function of
the code shows different scaling behaviour. The interpo-
lation routines show O(n log n) scaling (where n is the
total number of k-points in the dense mesh), which is
consistent with the time complexity of the fast Fourier
transform algorithm. The time taken to compute scat-
tering does not correlate well with total number of k-
points. This is primarily as we only compute the scat-
tering rates for the k-points which fall within the energy
cutoffs defined by the λ parameter (see Section IB 2).
In addition, we use the symmetry of the reciprocal lat-
tice to limit our calculations to the k-points in the irre-
ducible Brillouin zone (denoted kir-points). The timing
of the scattering routines correlates with the number of
irreducible k-points that fall within the energy cutoffs,
exhibiting a O(n1.3) scaling complexity. We note that,
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Supplementary Figure 4. Timing analysis for running am-
set on a selection of materials in the test set. Calculations
performed using the materials parameters in Supplementary
Table 4 and at the carrier concentrations and temperatures
specified in Supplementary Table 6. (a) The total runtime
for each system, broken up into the different functions of the
code. (b) Correlation between time and number (denoted
by #) of k-points for the interpolation, scattering, and trans-
port routines. kir indicates the k-points within the irreducible
Brillouin zone. The number of temperatures and carrier con-
centrations are denoted by # T and # n, respectively. The
computational complexity, provided in big O notation relative
to the x-axis, is given in grey text and highlighted by dashed
grey lines.

while the scattering rate is only calculated for the irre-
ducible k-points within the energy cutoffs, the scattering
rate for each state requires integrating the partial de-
cay rates over the full Brillouin zone and not just the
irreducible part. The time taken to compute transport
properties correlates to the number the number of irre-
ducible k-points multiplied by the number of carrier con-
centrations and temperatures included in the calculation,
with a O(n0.9) scaling complexity. The primary expense
when computing transport properties is generating the
energy-dependent tetrahedron integration weights used
to obtain the spectral conductivity.

Supplementary Table 2. Time required to obtain first-
principles inputs given in core hours. Calculations were per-
formed as described in the Computational Methodology. We
note that the DFPT calculation listed here is performed only
for a single q-point at Γ and is used to obtain the effective
phonon frequency, static and high-frequency dielectric con-
stants, and piezoelectric constants rather than the matrix el-
ements g(k,q). Static+NSCF (non self-consistent field) refers
to a single point calculation on the relatively dense DFT k-
point meshes listed in Supplementary Table 5. Deformation
and elastic refer to the total time required to calculate the
deformation potential and elastic tensors

Material Static+NSCF Deformation DFPT Elastic Total
GaN 1.75 15.76 13.82 32.68 64.01
GaP 1.48 13.36 8.43 10.24 33.52
GaAs 0.30 0.91 9.33 10.31 20.85
InP 0.55 4.91 9.01 4.48 18.94
ZnO 1.77 15.92 11.79 31.64 61.12
ZnS 1.46 13.11 7.11 10.21 31.88
ZnSe 1.47 13.19 7.90 10.24 32.79
CdS 1.16 10.40 14.88 18.80 45.24
CdSe 1.12 10.07 16.61 17.28 45.08
CdTe 0.93 8.33 8.11 5.84 23.22
SiC 2.57 23.16 3.23 17.69 46.66
PbS 0.53 4.80 7.31 3.67 16.31
PbTe 0.80 5.21 8.48 7.21 21.70
MAPbI3a 6.67 40.03 901.12 65.03 1012.85
SnO2 1.34 12.03 14.11 18.08 45.56
SnS 0.91 9.50 42.85 21.99 75.25
SnSe 1.90 17.14 48.48 24.00 91.53
Bi2Te3 1.55 18.08 12.12 19.11 50.86
BiCuOSe 0.79 5.64 9.88 17.56 33.87
CuAlO2 1.88 16.93 25.60 34.07 78.49
Si 2.65 7.96 2.62 8.78 22.01
Ba2BiAu 1.78 16.05 9.16 5.55 32.49
NbFeSb 1.21 12.15 5.52 6.15 25.04

a MA = CH3NH3

The total time to obtain transport properties is domi-
nated by the calculation of the first-principles inputs (ma-
terials parameters and band structure calculation). In
Supplementary Table 2, we provide the full timing infor-
mation (in core hours) required to calculate all materials
parameters used in this work. In Fig. (1) in the main text,
we compare these times against DFPT+Wannier calcu-
lations performed using quantum espresso and epw.
In Supplementary Table 3 we provide the full breakdown
of the DFPT+Wannier calculations, including the refer-
ences from which the timing information and mobility
was extracted.

5. Reproducing the Brooks–Herring model of impurity
scattering

A primary advantage of the present approach is that
it allows, for the first time, evaluation of ionized impu-
rity scattering in anisotropic multi-band systems. Most
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Supplementary Table 3. Time required to obtain electron
mobility using DFPT+Wannier, as implemented in quan-
tum espresso (DFPT to obtain g(k,q) portion) and epw
(Wannier interpolation and scattering portion) in core hours.
References are given to the publications in which the timing
information and mobility results are reported

Material DFPT Scattering Total Refs.
Ba2BiAu 7000 2500 9500 [43]
NbFeSb 4600 2600 7200 [44, 45]

modern computational evaluations of impurity scattering
instead employ the closed-form Brooks–Herring formula
[7, 8]. We will not reproduce the full derivation here but
refer the reader to the excellent introduction provided in
Supplementary Ref. [46]. In this approach, the scattering
matrix element

gnm(k,q) =
n

1/2
ii Ze

εs

1

|q|2 + β2
, (22)

where nii and Z are the concentration and charge of the
charge of the impurities, εs is the static dielectric con-
stant, and β is the inverse screening length given by Sup-
plementary Eq. (10), is analytically integrated for a single
parabolic band [7, 8]. Under the assumption of complete
overlap between the states the nk and mk + q, the re-
sulting energy-dependent lifetime can be written

τ−1
BH(ε) =

niiZ
2e4G(b)

π16
√

2
√
m∗dε

2
s

ε−3/2, (23)

where m∗d is the density of states effective mass, ε0 is
the vacuum permittivity, G(b) = ln(b+ 1) − b/(b + 1),
and b = 8m∗dε/~2β2. Further integration of the energy-
dependent lifetime yields the well-known Brooks–Herring
mobility formula

µBH =
128
√

2πε2s (kBT )3/2

e3Z2
√
m∗dniiG(b)

. (24)

To validate our implementation of ionized impurity
scattering, we have generated a model parabolic elec-
tronic structure according to

εk =
~2|k|2
2m∗d

, (25)

vk =
~|k|
m∗d

, (26)

where εk and vk are the energy and group velocity at
wave vector k, respectively. We calculated the ionized
impurity scattering rate and resulting mobility using the
AMSET package and Brooks–Herring formulas, param-
eterized according to Z = 1, m∗d = 0.2m0, εs = 20 ε0,
nii = 1× 1016 cm−3 to 1× 1019 cm−3, and T = 500 K. A
comparison between the two approaches is presented in
Supplementary Fig. (5). Close agreement is observed for
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Supplementary Figure 5. Comparison of the (a) mobility
and (b) carrier lifetime between AMSET and the analytical
Brooks–Herring formulas for a parabolic band structure. Re-
sults calculated at a temperature of 500 K.
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Supplementary Figure 6. Comparison of the electron mobility
between AMSET and the analytical Brooks–Herring formu-
las for a parameterized Silicon-like band structure. Results
calculated at a temperature of 500 K.

the both the mobility and carrier lifetime, indicating our
approach is accurately reproducing the Brooks–Herring
results.

The Brooks–Herring formula is known to lead to inac-
curate results for non-parabolic band structures or sys-
tems with multiple valleys. To demonstrate this, we com-
pare our method against Brooks–Herring on an idealized
Silicon band structure, as parameterized in Supplemen-
tary Refs. [47] and [48] and using the experimental effec-
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Supplementary Figure 7. Spectral band structure of SnO2

indicating band and k-dependent electron linewidths calcu-
lated at 300 K.

tive masses according to

εk =
~2(kx − k0,x)2

2m∗‖
+

~2(ky − k0,y)2

2m∗⊥

+
~2(kz − k0,z)

2

2m∗⊥
,

(27)

where m∗‖ = 0.98m0, m∗⊥ = 0.19m0, and k0 de-
notes the wave vectors of the conduction band min-
ima. The Brooks–Herring mobility is calculated us-
ing the harmonic mean of the effective masses, namely
3/(m−1,∗

‖ + 2m−1,∗
⊥ ) = 0.26m0. As can be seen in Sup-

plementary Fig. (6), the Brooks–Herring mobility is con-
siderably over estimated by almost an order of magni-
tude relative to the mobility computed by AMSET. This
agrees well with empirical investigations into the mobil-
ity of Silicon that have noted the overestimation of the
Brooks–Herring result [49].

6. Electron linewidths

Access to band and k-dependent lifetimes can further
be used to calculate electron linewidths that are qual-
itatively comparable to those measured through tech-
niques such as angle-resolved photoemission spectroscopy
(ARPES) [50]. In Supplementary Fig. (7) we plot the
spectral band structure of SnO2 along a high symmetry
Brillouin zone path, where the spectral function Ak(ε) =
π−1

∑
n(τ−1

nk /2)/[(ε−εnk/~)2 +(τ−1
nk /2)2] was calculated

at 300 K. The spectral function provides insight into the
k-dependence of the carrier lifetimes. States close to the
conduction band edge at Γ exhibit long lifetimes (low en-
ergy broadening) due to the reduced phase space of avail-
able states for scattering. Between the Z and R high sym-
metry points, the lowest conduction band is relatively flat

leading to large scattering rates and considerable broad-
ening of the spectral function.

C. First-principles inputs

1. Computational methodology

First-principles calculations were performed using
Kohn-Sham DFT [51, 52] as implemented in the Vi-
enna ab initio Simulation Package (vasp) [53–55]. All
ab initio inputs were computed within the generalized-
gradient approximation (GGA) [56] using the Perdew-
Burke-Ernzerhof (PBE) exchange–correlation functional
[57]. Calculations were performed in a plane-wave basis
set with scalar relativistic psueodpoentials and with the
interactions between core and valence electrons described
using the projector augmented-wave method (PAW)
[58, 59]. The set-up, submission, and management of
first-principles calculations was handled using the ato-
mate workflow management software with the default
parameters of version 0.8.3 [60, 61]. The plane-wave
energy cutoff was set to 520 eV. Structure optimization
was performed using the standard pymatgen MPRelaxSet
with a reciprocal k-point density of 64 k-points/Å3 [34].
The uniform non-self-consistent calculations used as in-
put to the scattering calculations were run with a recip-
rocal k-point density of 1000 k-points/Å3. Spin–orbit in-
teractions were included for calculations on CH3NH3PbI3
as they were necessary to obtain the correct band order-
ing at the conduction band minimum.

Piezeoelectric constants, and static and high-frequency
dielectric constants were computed using density func-
tional perturbation theory (DFPT) based on the method
developed by Baroni and Resta [62] and adapted to the
PAW formalism by Gajdoš et al. [63]. Elastic constants
were obtained through the stress-strain approach de-
tailed in Supplementary Ref. [64]. These calculations
were automated using the piezeoelectric_constant,
dielectric_constant, and elastic_constant preset
workflows available in atomate [60]. The calculation
outputs (permitivies, elastic constants) were extracted
using the pymatgen materials science software [34].

Absolute volume deformation potentials were calcu-
lated in the manner proposed by Wei and Zunger [65].
The deformation potential describes the change in en-
ergy of the bands with applied stress. Starting from a
relaxed structure, a set of distorted structures are gener-
ated as follows. The Green-Lagrange strain tensor, Sαβ ,
has 6 independent components (S11, S22, S33, S12, S13,
S23), each of which is applied independently to deform
the structure. For each deformed structure, the defor-
mation potential Dnk,αβ at band, n, and k-point, k, is
calculated as

Dnk,αβ =
ε0
nk − εs

nk + ∆ζ

Sαβ
, (28)
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where ε0 and εs are the electronic energies of the bulk
and strained structures, respectively, and ∆ζ is a correc-
tion that accounts for the shift in the electrostatic refer-
ence energy between the two calculations. In this work,
∆ζ, is calculated as ∆ζ = ζs − ζ0, where ζ0 and ζs are
the energies of the deepest core states of the bulk and
strained structures, respectively [65]. We note that, in
practice, even the reference energy levels can shift upon
strain, leading to a small degree of error in the defor-
mation potentials for non-covalent crystals [66, 67]. By
repeating this procedure for each of the 6 independent
strain components, all elements of the 3 × 3 deforma-
tion potential tensor (at each band and k-point) can be
calculated. To alleviate issues of numerical noise, we av-
erage the the deformation potentials for both contrac-
tion (−0.5 % strain) and expansion (+0.5 % strain) of
the lattice. Furthermore, to reduce the computational
requirements, the 12 independent calculations (compris-
ing 6 independent strain components × 2 displacement
strain magnitudes) are reduced using the symmetry of
the bulk structure. For highly symmetric structures such
as Si and GaAs, this means only 3 deformation calcula-
tions are required. We have released an open source tool
deform as part of the amset package that automates the
set-up of deformation calculations and the extraction of
deformation potentials from vasp calculation outputs.

The “effective phonon frequency” used in the calcula-
tion of polar-optical phonon scattering was determined
from the phonon frequencies ωqν (where ν is a phonon
branch and q is a phonon wave vector) and eigenvectors
eκν(q) (where κ is an atom in the unit cell). In order
to capture scattering from the full phonon band struc-
ture in a single phonon frequency, each phonon mode is
weighted by the dipole moment it produces according to

wν =
∑
κ

[
1

Mκωqν

]1/2

× [q · Z∗κ · eκν(q)] (29)

where Z∗κ is the Born effective charge. This naturally
suppresses the contributions from transverse-optical and
acoustic modes in the same manner as the more general
formalism for computing Frölich based electron-phonon
coupling [68, 69]. The weight is calculated only for Γ-
point phonon frequencies and averaged over the unit
sphere scaled by 0.01 to capture both the polar diver-
gence at q → 0 and any anisotropy in the dipole mo-
ments. The effective phonon frequency is calculated as
the weighted sum over all Γ-point phonon modes accord-
ing to

ωpo =
ωΓνwν∑
ν wν

. (30)

We have released an open source tool phonon-frequency
as part of the amset package that automates this com-
putation from vasp calculation outputs.

2. Computational input settings

In this section we detail the computational input pa-
rameters used to calculate the materials properties in the
vasp DFT code. We stress that in addition to the set-
tings listed below, the accuracy of the calculated proper-
ties can depend on the exchange–correlation functional,
the presence of spin–orbit interactions, and the treatment
of highly correlated electrons, which must be assessed on
a per material basis. To obtain accurate results, the crys-
tal structure should first be relaxed using “tight” calcula-
tion settings including high force and energy convergence
criteria. An example of the vasp settings required is:

ADDGRID = True
EDIFF = 1E-8
EDIFFG = -5E-4
PREC = Accurate
NSW = 100
ISIF = 3
NELMIN = 5

Our approach requires a vasprun.xml file from a
“dense” uniform band structure calculation. Typically
a k-point mesh density at least twice that needed to con-
verge the total energy will be necessary to converge trans-
port properties. Note, this refers to the initial DFT mesh
before Fourier interpolation. In order to obtain accurate
band gaps often a hybrid DFT functional such as HSE06
is required.

The wave function coefficients are required to calculate
wave function overlaps. This requires the WAVECAR file to
be written by vasp (achieved by setting LWAVE = True).
The wave function coefficients can be extracted using
the amset wave command. Coefficients are stored in the
wavefunction.h5 file. An example of the vasp settings
required to generate the wave function information is:

ADDGRID = True
EDIFF = 1E-8
PREC = Accurate
NSW = 1
LWAVE = True

amset includes a tool to assist with the calculation of
the deformation potentials. The initial input is a “tight”
optimised structure as described above. Deformed struc-
tures are generated using the amset deform create
command, which will generate a set of deformed POSCARs
each corresponding to a component of the strain tensor.
Symmetry is automatically used to reduce the number
of calculations needed. A single point calculation (no
relaxation, i.e., NSW = 0) should be performed for each
deformed POSCAR as well as the bulk (undeformed) struc-
ture. An example of the vasp settings required for the
single point calculations is:

ADDGRID = True
EDIFF = 1E-8
PREC = Accurate
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NSW = 1
ICORELEVEL = 1 # write core levels to OUTCAR

The deformation potentials can be calculated using the
amset deform read command. This requires the paths
to the bulk and deformation calculations as inputs. The
bulk folder should be specified first, followed by the de-
formation folders. For example,

amset deform read bulk def-1 def-2 def-3

This will write the deformation potentials to a
deformation.h5 file in the current directory.

Static and high-frequency dielectric constants, piezo-
electric constants, and the “effective polar phonon fre-
quency” can be obtained using density functional per-
turbation theory. It is very important to first relax the
structure using tight convergence setting. An example of
the vasp settings required to perform DFPT is:

ADDGRID = True
EDIFF = 1E-8
PREC = Accurate
NSW = 1
IBRION = 8
LEPSILON = True

Note, DFPT cannot be used with hybrid exchange-
correlation functionals. Instead, the LCALCEPS flag
should be used in combination with IBRION = 6. The
dielectric constants and polar phonon frequency can be
extracted from the vasp outputs using the command
amset phonon-frequency. This command should be
run in a folder containing the vasprun.xml file from a
DFPT calculation.

3. Materials parameters

All materials parameters were computed from first-
principles in the manner described in the Computational
Methodology. A summary of the materials parame-
ters used to compute carrier scattering rates is provided
in Supplementary Table 4. We have additionally em-
ployed the rigid scissor approximation such that band
gaps match those calculated using the hybrid HSE06
exchange–correlation functional. Supplementary Table 5
gives the band gaps and k-point meshes employed in our
calculations. Furthermore, we report the range of tem-
peratures and carrier concentrations at which mobility
and Seebeck coefficients are computed in Supplementary
Tables 6 and 7.

4. Experimental data

In the main text, we calculate the mobility and Seebeck
coefficient of 17 semiconductors and compare our results
to experimental measurements. Our set of test materials
spans a range of chemistries and doping-polarities and

contains both isotropic and anisotropic materials. The
set includes: (i) conventional semiconductors, Si, GaAs,
GaN, GaP, InP, ZnS, ZnSe, CdS, CdSe, and SiC; (ii)
the thermoelectric candidate SnSe; (iv) photovoltaic ab-
sorbers CH3NH3PbI3, PbS, and CdTe; and (iii) transpar-
ent conductors, SnO2, ZnO, and CuAlO2. The reference
samples are of the highest purity and crystallinity in or-
der to minimize the mesoscopic effects of grain bound-
ary scattering and crystallographic one-dimensional and
two-dimensional defects (e.g., line dislocations, edge dis-
locations, and stacking faults). We favor bulk crys-
tals over thin films (which can exhibit surface effects
that impact carrier transport, e.g., strain, oxidation, off-
stoichiometries, and surface dipole moments), however,
in some cases we use epitaxial single crystal films. We
also favor undoped or dilutely doped crystals (to less than
0.5 % at.) to avoid the formation of secondary crystal
phases and degenerate doping. Lastly, we favor studies
that look at a wide range of carrier concentrations and/or
temperatures (greater than 300K). In all cases, experi-
mental mobility is measured via the DC Hall effect. A
summary of the reference data used in the comparisons
against carrier mobility and Seebeck coefficient are pro-
vided in Supplementary Tables 6 and 7.

We note that for SnSe, significant anisotropy is seen in
the measured carrier concentrations for the a and b di-
rections [122]. We believe this discrepancy is an artefact
of the Hall effect measurements from which the concen-
trations were calculated. The authors assumed a Hall
factor rH of unity when extracting the carrier concentra-
tions when in practice the Hall factor will depend on the
band structure, temperature, and doping, and will likely
be direction dependent. Although, the carrier concentra-
tion of a sample should be independent of the orientation
of the sample, the measured carrier concentrations vary
by up to three times suggesting that rH actually deviates
from unity significantly. This anomalous behaviour was
also recently highlighted by Ma et al. [123] who calcu-
lated the mobility of SnSe using DFPT+Wannier as im-
plemented in EPW. To compare directly to their EPW
results, we have used the same carrier concentrations in
our calculations. We further note that use of a constant
Hall factor may also explain the large anisotropy of the
carrier mobilities between the b and c directions [122]
which is not reproduced in DFPT+Wannier calculations.
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Supplementary Table 4. Materials parameters used to compute scatterings rates. C is the elastic tensor in Voigt notation, with
the unit GPa. εs and ε∞ are the static and high-frequency dielectric constants in ε0. Dvb and Dcb are the absolute deformation
potentials at the valence and conduction band edge, respectively. d is the dimensionless piezoelectric coefficient. ωpo is the
effective polar phonon frequency given in THz. For all tensor properties, components that are not explicitly listed are zero

Material C11 C22 C33 C44 C55 C66 C12 C13 C23 εs,11 εs,22 εs,33 ε∞,11 ε∞,22 ε∞,33 Dvb
11 Dvb

22 Dvb
33 Dcb

11 Dcb
22 Dcb

33 d ωpo

GaN 325 325 358 90 90 107 112 78 78 5.9 5.9 6.1 10.5 10.5 11.7 8.2 8.2 8.5 15.0 15.0 15.2 0.0 19.0
GaP 125 125 125 65 65 65 52 52 52 10.6 10.6 10.6 12.9 12.9 12.9 0.4 0.4 0.4 13.0 13.0 13.0 0.0 10.3
GaAs 99 99 99 51 51 51 41 41 41 10.3 10.3 10.3 12.2 12.2 12.2 1.2 1.2 1.2 8.6 8.6 8.6 0.0 8.2
InP 87 87 87 42 42 42 46 46 46 13.2 13.2 13.2 16.5 16.5 16.5 1.6 1.6 1.6 5.7 5.7 5.7 0.0 10.3
ZnO 188 188 205 37 37 39 109 92 92 3.8 3.8 3.8 10.5 10.5 11.4 7.6 7.6 8.2 9.1 9.1 9.5 0.0 11.2
ZnS 96 96 96 46 46 46 55 55 55 5.9 5.9 5.9 9.4 9.4 9.4 0.5 0.5 0.5 7.0 7.0 7.0 0.1 7.9
ZnSe 82 82 82 37 37 37 47 47 47 7.3 7.3 7.3 10.7 10.7 10.7 0.8 0.8 0.8 5.7 5.7 5.7 0.0 5.9
CdS 80 80 85 15 15 17 45 37 37 6.0 6.0 6.1 9.8 9.8 10.4 0.3 0.3 0.8 2.4 2.4 3.2 0.2 6.5
CdSe 66 66 72 13 13 15 36 31 31 8.8 8.8 8.7 12.4 12.4 13.0 0.2 0.2 0.6 2.4 2.4 2.9 0.1 4.7
CdTe 47 47 47 19 19 19 30 30 30 9.3 9.3 9.3 12.8 12.8 12.8 0.1 0.1 0.1 2.9 2.9 2.9 0.0 3.9
SiC 382 382 382 241 241 241 126 126 126 7.0 7.0 7.0 10.3 10.3 10.3 5.6 5.6 5.6 3.4 3.4 3.4 0.2 23.2
PbS 121 121 121 20 20 20 18 18 18 15.6 15.6 15.6 277.7 277.7 277.7 1.6 1.6 1.6 1.0 1.0 1.0 0.0 6.6
PbTe 108 108 108 14 14 14 6 6 6 26.2 26.2 26.2 380.0 380.0 380.0 0.9 0.9 0.9 3.2 3.2 3.2 0.0 3.2
MAPbI3a 43 55 53 10 20 11 33 31 17 31.7 97.5 66.7 5.1 5.2 5.1 4.0 4.7 4.0 2.8 3.1 2.5 0.0 2.6
SnO2 376 215 215 178 84 84 127 127 136 4.9 4.6 4.6 10.5 13.6 13.6 0.9 1.5 1.5 10.7 13.2 13.2 0.0 10.4
SnS 29 37 71 18 29 18 12 27 10 12.6 12.6 14.2 26.7 24.5 37.7 7.5 2.9 0.2 0.1 3.9 1.3 0.0 3.2
SnSe 30 39 67 12 28 14 13 28 8 16.9 15.3 18.7 32.3 27.1 46.3 13.8 15.9 14.7 11.2 9.8 14.5 0.0 3.2
Bi2Te3 55 55 10 8 8 20 14 8 8 35.0 35.0 27.7 117.2 117.2 35.2 1.1 1.8 1.8 3.2 3.8 3.8 0.0 3.4
BiCuOSe 131 131 83 29 29 40 50 47 47 16.1 16.7 13.7 122.4 122.4 43.4 2.1 2.1 2.9 5.3 5.3 1.2 0.0 3.4
CuAlO2 294 294 509 39 39 102 90 103 103 6.1 6.1 4.6 10.8 10.8 7.3 2.5 2.5 4.8 7.1 7.1 10.2 0.0 14.0
Si 144 144 144 75 75 75 53 53 53 13.0 13.0 13.0 13.0 13.0 13.0 6.5 1.1 1.1 8.1 0.5 0.5 0.0 0.0
Ba2BiAu 69 69 69 17 17 17 18 18 18 37.2 37.2 37.2 22.2 22.2 22.2 3.0 3.0 3.0 2.9 2.9 2.9 0.0 1.8
NbFeSb 309 309 309 67 67 67 95 95 95 44.7 44.7 44.7 24.7 24.7 24.7 1.1 1.1 1.1 0.6 1.6 1.6 0.0 7.4

a MA = CH3NH3
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Supplementary Table 5. Band gaps and k-point meshes used to compute scatterings rates. εHSE
g and εexp

g are the band gaps
calculated using the HSE06 functional and taken from experiment, respectively, with the references given in square brackets.
The coarse k-point mesh of the electronic band structures computed using density functional theory (DFT) are compared to
the dense mesh obtained through Fourier interpolation

k-point mesh
Material εHSE

g (eV) εexp
g (eV) DFT Interpolated

GaN 3.06 [70] 3.26 [71] 20× 20× 12 183× 183× 97
GaP 2.37a 2.24 [72] 18× 18× 18 105× 105× 105
GaAs 1.33 [73] 1.52 [71] 17× 17× 17 143× 143× 143
InP 1.48 [74] 1.42 [71] 16× 16× 16 151× 151× 151
ZnO 2.55 [75] 3.37 [76] 20× 20× 12 145× 145× 77
ZnS 3.22a 3.72 [77] 18× 18× 18 133× 133× 133
ZnSe 2.24a 2.82 [78] 17× 17× 17 99× 99× 99
CdS 2.12a 2.48 [79] 15× 15× 9 87× 87× 47
CdSe 1.46a 1.73 [80] 15× 15× 9 87× 87× 47
CdTe 1.34a 1.48 [81] 15× 15× 15 89× 89× 89
SiC 2.35a 2.36 [82] 22× 22× 22 125× 125× 125
PbS 0.84 [83] 0.37 [76] 16× 16× 16 119× 119× 119
PbTe 1.45a 0.31 [84] 15× 15× 15 101× 101× 101
MAPbI3b 2.43a 1.63 [85] 7× 4× 6 51× 33× 47
SnO2 2.88 [86] 3.60 [87] 19× 13× 13 135× 91× 91
SnS 1.58a 1.42 [88] 15× 14× 5 57× 51× 19
SnSe 1.10 [89] 0.90 [90] 13× 13× 5 51× 49× 17
Bi2Te3 0.93a 0.13 [91] 11× 11× 11 61× 61× 61
BiCuOSe 1.08a 0.80 [92] 15× 15× 11 47× 47× 21
CuAlO2 3.52 [93] 2.97 [94] 14× 14× 4 57× 57× 13
Si 1.15 [75] 1.14 [76] 18× 18× 18 105× 105× 105
Ba2BiAu 0.88a — 11× 11× 11 41× 41× 41
NbFeSb 1.26a 0.51 [95] 16× 16× 16 45× 45× 45

a This work.
b MA = CH3NH3
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Supplementary Table 6. Summary of temperature and doping conditions used for computing electron mobility. References
provided to DFPT+Wannier calculations and experimental measurements performed at the same doping and temperature
conditions, which are used in the comparison of electron mobilities in the main text and Supplemental Material. For anisotropic
materials that were measured as single crystals, we also report the axis along which transport properties were measured and
calculated

Material Doping T (K) n (cm−3) Exp. DFPT+Wannier Axis
GaN n-type 150–500 3.0× 1016–5.5× 1016 [96] [97] —
GaP n-type 100–500 3.0× 1016 [98] — —
GaAs n-type 200–1000 3.0× 1013 [18] [99] —
GaAs p-type 300 3.0× 1013–8.6× 1019 [100, 101] — —
InP n-type 150–700 1.5× 1016 [102] — —
ZnO n-type 300–1000 8.2× 1016 [103] — —
ZnS n-type 300–650 1.0× 1016 [104] — —
ZnSe n-type 200–1300 4.0× 1014–2.0× 1015 [105, 106] — —
CdS n-type 100–400 5.0× 1015 [107] — —
CdSe n-type 150–1300 1.0× 1016–1.0× 1018 [108, 109] — —
CdTe n-type 100–1200 5.4× 1014–1.4× 1017 [110, 111] — —
CdTe p-type 550–1000 1.4× 1016–6.7× 1016 [111] — —
SiC n-type 100–850 3.7× 1015–2.5× 1016 [112] [113] —
PbS n-type 300–750 3.6× 1017 [114] — —
PbTe n-type 100–300 1.1× 1018 [115] [116] —
MAPbI3a n-type 100–350 1.0× 1014 [117, 118] [119] —
SnO2 n-type 300–700 1.0× 1017 [120] — —
SnS p-type 100–600 4.3× 1017–5.6× 1017 [121] — a
SnSe p-type 300–600 3.0× 1017 [122] [123] b
Bi2Te3 n-type 100–300 3.3× 1019 [124] — b–c
Bi2Te3 p-type 100–250 3.0× 1018 [125] — b–c
BiCuOSe p-type 300–650 2.2× 1018–6.4× 1019 [126] — —
CuAlO2 p-type 300–430 1.3× 1017–7.4× 1018 [94] — a–b
Si n-type 300 2.0× 1014–4.4× 1018 [127] [3] —
Ba2BiAu n-type 300 1× 1014 [43] — —
NbFeSb p-type 300 2× 1020 [44, 45] — —

a MA = CH3NH3

Supplementary Table 7. Summary of temperature and doping conditions used for computing Seebeck coefficient. References
provided to experimental measurements performed at the same doping and temperature conditions, which are used in the
comparison of Seebeck coefficients in the main text and Supplemental Material

Material Doping T (K) n (cm−3) Exp.
GaN n-type 100–300 1.3× 1019 [128]
GaAs n-type 400–750 3.5× 1017 [129]
GaAs p-type 350–750 6.4× 1019 [130]
InP n-type 150–700 2.1× 1017 [131]
ZnO n-type 200–1000 5.2× 1017 [132]
CdS n-type 130–300 2.8× 1015 [133]
PbS n-type 300–800 2.5× 1019 [134]
SnO2 n-type 300–800 8.2× 1018 [135]
SnSe p-type 300–600 3.0× 1017 [122]
Si n-type 300 1× 1014–1× 1019 [136, 137]
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II. SUPPLEMENTARY DISCUSSION

A. Mobility results

1. Temperature and carrier dependent mobility
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Supplementary Figure 8. Mobility against temperature or carrier-concentration for all test materials, computed using the
HSE06 band gap. Constant relaxation time (CRT) results performed using τ = 10 fs. Scaled relaxation time (SRT) performed
using τT = 10× 300

T
fs. For anisotropic materials such as SnSe and Bi2Te3, the calculated and experimental results are reported

along particular directions as reported in Supplementary Table 6.
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2. Scattering limited mobilities
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Supplementary Figure 9. Mobility limited by different scattering mechanisms against temperature or carrier-concentration
for all test materials, computed using the HSE06 band gap. For anisotropic materials such as SnSe and Bi2Te3, the calculated
and experimental results are reported along particular directions as reported in Supplementary Table 6.
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3. Mobility calculated using the HSE06 functional
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Supplementary Figure 10. Mobility against temperature or carrier-concentration for a set of test materials, computed using
HSE06 electronic structures. PbTe calculations also include spin–orbit coupling effects. For anisotropic materials such as SnS
and CuAlO2, the calculated and experimental results are reported along particular directions as reported in Supplementary
Table 6.
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B. Seebeck coefficient results

1. Temperature- and carrier concentration-dependent Seebeck coefficient
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Supplementary Figure 11. Seebeck coefficient against temperature for all test materials, computed using the HSE06 band gap.

2. Seebeck coefficient calculated using the HSE06 functional
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Supplementary Figure 12. Seebeck coefficient against temperature for a set of test materials computed using HSE06 electronic
structures.
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C. Scattering rate comparison

0.00 0.05 0.10 0.15 0.20

Energy (eV)

50

100

150
S

ca
tt

er
in

g
ra

te
(p

s−
1
)

(a) p-SnSe

0.0 0.1 0.2 0.3

Energy (eV)

0

20

40

60

80

100

S
ca

tt
er

in
g

ra
te

(p
s−

1
)

(b) n-3C-SiC
DFPT+Wannier

AMSET

Supplementary Figure 13. Computed scattering rates compared against DFPT+Wannier calculations [3, 99, 113, 123]. Results
calculated at 300 K using the the lowest carrier concentrations for each material given in Supplementary Table. 6

.

D. Comparison against CRT and DFPT+Wannier
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Supplementary Figure 14. Comparison between AMSET, constant relaxation time approximation calculations,
DFPT+Wannier calculations, and experiments for (a) carrier mobilities at 300 K (b) the exponential temperature trend of
carrier mobilities, and (c) Seebeck coefficients at 300 K.
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E. Band structures

Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

GaAs
Γ M K Γ A L H A|LM|K H

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

GaN
Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

InP
Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

ZnS

Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

ZnSe
Γ M K Γ A L H A|LM|K H

−3.0

−1.5

0.0

1.5

3.0
E

n
er

gy
(e

V
)

CdS
Γ M K Γ A L H A|LM|K H

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

CdSe
Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

CdTe

Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

GaP
Γ X S Y Γ Z U R T Z|Y T|U X|S R

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

CH3NH3PbI3

Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

PbTe
Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

3C-SiC

Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

PbS
Γ X M Γ Z R A Z|XR|M A

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

SnO2

Γ M K Γ A L H A|LM|K H

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

ZnO
Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

Si

Γ M K ΓA L H A|LM|KH

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

CuAlO2

Γ X S Y Γ Z U R T Z|YT|UX|SR

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

SnSe
Γ X S Y Γ Z U R T Z|YT|UX|SR

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

SnS
Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0
E

n
er

gy
(e

V
)

Ba2BiAu

Γ X W K Γ L U W L K|UX

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

NbFeSb
Γ L B1|B Z Γ X|Q FP1 Z|LP

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

Bi2Te3

Γ X M Γ Z R A Z|XR|MA

−3.0

−1.5

0.0

1.5

3.0

E
n

er
gy

(e
V

)

BiCuOSe

Supplementary Figure 15. Band structures (pre-scissor operation) calculated using the PBE exchange–correlation functional,
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