
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript, Muto et al., utilized single nucleus RNA sequencing (snRNA-seq) and single 
nucleus ATAC sequencing (snATAC-seq) simultaneously to study the transcriptional and chromatin 
accessibility landscape of the adult human kidney. Joint profiling by scRNA-seq and snATAC-seq 
provided a framework for understanding how chromatin accessibility regulates transcription and 
this is the first study describing the single-cell epigenomic landscape of the human kidney. The 
authors applied this integration approach to highlight functional heterogeneity in the proximal 
tubule and thick ascending limb. They demonstrate that snATAC-seq provided additional 
information as compared to scRNA-seq and snATAC-seq. 
 
The authors applied previously established R packages such as “chromVAR” to infer transcription-
factor-associated chromatin accessibility, which means individual cell types are classified by 
transcription factor activity. The results are in agreement with previous finding that HNF4A binding 
motifs are enriched within differentially accessible chromatin regions (DAR) in the proximal tubule. 
Next, the authors applied the R package “Cicero” to predict cis-regulatory chromatin interactions 
for individual cell types. In order to study the cellular heterogeneity in the thick ascending limb, 
the authors performed unsupervised clustering analysis on the thick ascending limb in snRNA-seq 
dataset and identified 3 groups of cells: cortical thick ascending limb (CLDN16, KCNJ10 and 
PTH1R), medullary thick ascending limb (CLDN10) and ascending thin limb. Consistently, 3 groups 
of identified cells were also shown in the snATAC-seq dataset, suggesting that thick ascending limb 
subpopulations can be defined by either transcription or chromatin accessibility profiles. 
Furthermore, the authors detected a subset of proximal tubule cells with increased expression as 
chromatin accessibility of VCAM1 (2% of total cells) which also express Vimentin, CD24, and 
CD133, indicating that VCAM1 positive cell cluster may represent an injured or regenerative 
subpopulation. 
Overall this is an important study, which could serve as reference for many studies to come. To 
qualify as reliable reference there needs to be some additional validation of the bioinformatics data 
though. 
 
Specific comments: 
Based on the ChromVAR motif activity analysis, authors have identified several genes, which are 
targeted either by HNF4A or TFAP2B. These are interesting and meaningful findings. However, a 
chromatin-immunoprecipitation qPCR experiment is required to validate identified interactions.. 
 
A Cis-coaccessibility network is reported, indicating that families of chromatin-chromatin 
interactions regulate gene expression by approximating enhancers and promoters. The authors 
should provide some verification for proposed interactions, i.e. apply epigenetic modulation 
approaches such as dCas9-DNMT1 or dCas9-KRAB to alter the chromatin accessibility of HNF4 
promoter region to verify correlation of gene expression and chromatin accessibility. 
 
There should be some additional validation of identified cell populations in the kidney. 
 
Were the samples processed in the same time or in different bathes? Was batch correction analysis 
performed to minimize the batch effect? 
 
The authors should provide a more detailed analysis information regarding the trajectiory analysis 
with Cicero. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
In the manuscript entitled “Single cell transcriptional and chromatin accessibility profiling redefine 
cellular heterogeneity in the adult human kidney”, Muto and colleagues collect paired single 
nucleus RNA-seq and ATAC-seq data on 5 human adult kidney samples. They use information from 
both data sets to define cell types and they take a deeper dive into cells of the thick ascending 



limb and the proximal tubule. As my expertise is in single cell genomics and not kidney biology, 
my comments will be largely restricted to this domain. Overall, the data appear to be of sufficient 
quality and the analysis rests firmly in conventional methods. However, as one of only a few 
instances in the literature of paired data of this nature, I felt the authors could do more to directly 
integrate the two data types. In addition, while the sample size is small, there is an opportunity to 
explore genetic variation in this population that the authors did not address. Finally, some of the 
figures were not up to the standard, and some of the methods were insufficiently described. Below 
I address the major and minor criticisms: 
 
Major criticisms 
1) Integration of data. The authors do use the standard “integration” strategy from the Seurat 
pipeline to annotate cell types in addition to pulling a few anecdotes where change in transcription 
factor activity is correlated with change in TF expression level. However, this is one of only a 
handful of existing data sets where both types of data have been collected on the same samples 
and an opportunity to explore how complementary the data really are is missed here. One could 
use changes in expression across cell types and changes in co-accessibility to evaluate how well 
Cicero does in identifying promoter-enhancer links. One could look in a global way at how well TF 
expression level is correlated with TF activity level (from chromVAR). Are there factors that have 
low correlation? Or negative correlation? One could explore ways to overlay the pseudotime 
trajectories to get a better handle on direct and secondary targets of TFs in these differentiation 
pathways. There are a lot of directions left to explore the combination of the two data types that 
are left on the table here. It would be a shame not to push this a little further given the relative 
novelty of the data. 
2) The authors make the case that the ATAC data may be a better cell type definer than the RNA 
data. To my knowledge this is different than what is generally observed in other data sets. It 
would be worthwhile to further explore this. In particular, the number of cells collected in the two 
data sets is significantly different (there are ~25% more cells in the ATAC data set). To support 
this observation, the authors should subset both data sets to the same number of cells (probably 
the same number of cells from each donor) and confirm that ATAC is still more informative. In 
addition, it would be interesting to look at how consistent the cell type proportions are across 
individuals for the two data types. Furthermore, the authors integrate with mouse data in one 
section and they acknowledge that mouse kidney atlases of RNA and ATAC exist. How comparable 
are the cell type compositions of mouse samples and human samples? Do differences tell us 
anything about biological differences between the two species? 
3) The sample size here is obviously too small to do any association testing, but there are genetic 
differences between donors and the authors don’t do anything to address whether genetic 
variation might be impacting gene regulation. However, methods exist to explore the impact of 
genetic variation on gene expression and chromatin in small samples (even in individual samples) 
– so-called allele-specific expression analysis and allele-specific hypersensitivity analysis. I would 
like to see the authors explore this further and at least comment on whether the relative influence 
of genetic variation seems consistent with published results in other tissues/cell lines. 
4) QC Measures and Figures. Finally, there aren’t sufficient QC metrics presented to really evaluate 
the quality of the data. How many cells were loaded in each 10X lane? How many reads were 
sequenced per cell? What was the estimated complexity? What was the fraction of reads in cells 
like? What did the distribution of fraction of reads in peaks look like? And what did the distribution 
of number of UMIs per cell and number of genes per cell look like? Etc. In addition, many of the 
main figures had inappropriately small labels, missing labels, etc. Specific critiques of figures will 
be listed in the minor criticisms below. 
 
Minor criticisms 
Lines 50-92: The logic of the Intro didn’t flow that smoothly to me. I would recommend starting 
with the third paragraph (lines 68-77), then the first paragraph (lines 51-59). I would incorporate 
lines 78-82 into this new second paragraph. Then lines 60-67, and finally lines 83-91. 
Lines 85 – 88: More important than the interactive website would be data matrices of read counts 
by gene or peak and metadata tables that include your final cell type assignments that people 
could download to explore the analyses on their own and to allow for label transfer to future 
projects. 
Line 95/Fig. 1a: The schematic under “Multimodal single cell analysis” appears to just be a Cicero 
output. Please replace with something that indicates integrated analysis. 



Line 101: The authors reference the R package used for analysis in the rest of the Results, so they 
should call out Seurat specifically here. Also, for Figure 1b, I’d like to see either a legend for the 
colors or have the cell type annotation text colored by the cluster it’s defining. 
Line 114: Here again, I would recommend the authors explicitly state that they used Seurat for 
label transfer. 
Line 122: The axes labels for Fig. 1d are unreadable in the “pre-integration” UMAPs. Also, the 
same issue of legend or text color applies for the labels for cell type annotation in the last panel 
and Fig. 1e as in Fig. 1b. 
Lines 122-124: I’d like to see boxplots of cell type proportions by individual for both technologies 
(RNA and ATAC) in the supplement. I’d also like to see the comparison after subsampling to the 
same number of cells. 
Lines 131-134: As I mentioned in the major criticisms section, to make these claims about 
differences in power to observe cell types, the authors should subsample the data so that they 
have the same number of cells in the two analyses at a minimum. 
Lines 149-152: The significance threshold for identifying differential expression or accessibility 
needs to be defined here and in the Methods. What FDR? What fold-change? 
Lines 173-180: As mentioned in major criticisms, this section would be greatly improved by 
comparing globally the correlation structure between activity scores and gene expression. 
Lines 182-183: The definition of CCANs is not accurate. CCANs just identify clusters of sites that 
co-vary. We infer that this implies a regulatory interaction. Please re-phrase. 
Lines 192-198: The scale of Supp. Fig 7 are a little misleading to me. I would plot on a scale of 0 
to 1, which will make the difference look much smaller. It’s unclear to me how a paired t-test was 
implemented here. I think a Fisher’s Exact Test or Mann–Whitney U test might be more 
appropriate. 
Lines 202-204: This manuscript is not dedicated to evaluating the robustness of Cicero. I would 
just remove this last sentence of the paragraph. 
Lines 207-217: Most of this is a discussion of the literature. The authors could more briefly 
introduce the topic here and move much of this section to the Intro or Discussion. 
Line 227: Was the differential activity significant? Please state how that is defined. 
Line 228: For Supp Fig. 9e, please change the color scheme so that it is not red and green (for 
people who are color blind). 
Line 253: How many genes are differentially expressed at what FDR? 
Lines 414 and 432: In these sections, we need to know how many cells were loaded on each lane. 
Also, what was the read configuration for each? How many cycles for Read 1 and Read 2? 
Line 454: What was the FDR for significance? Was there a fold-change threshold as well? 
Lines 467-468: What was the FDR for differential activity? 
Line 487: What FDR for DARs? 
Lines 495-497: FDR for differential expression? Same with Lines 500-502. 
Line 730: I think you mean UMAP plot (singular). Same with Line 737. 
Lines 734, 739: Define what’s plotted in the dot plots more explicitly. 
Lines 742-743: Be more explicit about what the color scale represents in Fig. 2a. Also label the 
color ramp in 2a. Is this a z-score? 
Line 743: The axis label for the Y axis in the right panel is way too small. 
Line 744: Pie charts are not appropriate ways to display data. I recommend converting 2b to a 
stacked bar chart and merging with 2c. 
Line 748: Please label the color ramp in 3a and define in the figure legend. Same for 3b. 
Line 750: Please define the Y axes for 3c. Make sure they are clearly labelled in the figure as well. 
Line 754: I find the circus plots here and in Fig. S8 distracting. A barplot, or an UpSet plot, or a 
tanglegram would be more straightforward here. 
Lines 758,765: Axes labels in a and c are way too small. 
 
 
Reviewer #3 (Remarks to the Author): 
 
Using multi-omics integrated analysis approach, the authors show unique cell states within the 
kidney and redefines cellular heterogeneity in the proximal tubule and thick ascending limb. The 
authors claim to have identified a novel renal progenitor cell type that are CD24+, CD133+ and 
VCAM+. They further claim that NF-κB plays a role in the maintenance of these cells, which may 
be of clinical interest in designing therapies for acute kidney injury. In addition, through 



multimodal approach, the authors demonstrate the hetegeneity within the thick ascending limb of 
loop of Henle at transcriptomic and chromatin accessibility level. Some of the key findings of this 
integrated analysis including the presence of a novel progenitor cells in adult human kidney is of 
great interest to nephrologist community. Moreover, this integrated study is first of its kind and 
was able to successfully identify and integrate complimentary features using computational tools. 
However, there are some concerns in this study, they are 
1. Authors did provide immunofluorescence evidence for VCAM+ proximal cells. However, it would 
have been very helpful if authors had included CD24, CD133 along with VCAM1 in the 
immunofluorescence study. This is critical because the PT_VCAM cluster that the authors identified 
could in fact be a heterogeneous cell cluster. Based on the supplementary data, VCAM1 is 
expressed only in 39.6% of the cells in PT_VCAM1 cluster. 
 
2. A key renal cell type that is missing in the cell clusters is the descending loop of Henle (DTL) 
cells. Studies have shown VCAM1 expression in this cell type. Due the proximity of these cell types 
to proximal cells, the authors have to make sure that novel cell cluster does not contain DTL cells. 
 
3. In vitro study in which NFKB signaling was induced by TNF alpha in RPTEC does not directly 
provide evidence for the enrichment of this signaling pathway in Proximal_VCAM1 or for the 
transition of proximal cells to PT_VCAM1 state. 
 
4. Supporting validations for some of the other key computational findings in the study would have 
significantly increased the impact of the study. For example, experimental validation of the 
regulatory role of HNF1B in CLDN10 expression. 



New data for the revision: 

Figures 4b, 4c, 4d, 5e and 5f 

Supplementary Figures 5a, 5b, 5c, 5d, 5e, 5f, 8a, 8b, 8c, 8d, 8e, 9a, 9b, 10a, 10b, 10c, 10d, 10e, 

10f, 14, 15c, 19a, 19b ,21a, 21b, 21c, 21d, 21e, 21f, 22a and 22b 

Supplementary Tables 5, 6 and 7. 

Supplementary Data 4, 7 and Source Data were also added. 

 

Reviewer #1 (Remarks to the Author): 

In this manuscript, Muto et al., utilized single nucleus RNA sequencing (snRNA-seq) and single 

nucleus ATAC sequencing (snATAC-seq) simultaneously to study the transcriptional and 

chromatin accessibility landscape of the adult human kidney. Joint profiling by scRNA-seq and 

snATAC-seq provided a framework for understanding how chromatin accessibility regulates 

transcription and this is the first study describing the single-cell epigenomic landscape of the 

human kidney. The authors applied this integration approach to highlight functional 

heterogeneity in the proximal tubule and thick ascending limb. They demonstrate that snATAC-

seq provided additional information as compared to scRNA-seq and snATAC-seq. 

 

The authors applied previously established R packages such as “chromVAR” to infer 

transcription-factor-associated chromatin accessibility, which means individual cell types are 

classified by transcription factor activity. The results are in agreement with previous finding that 

HNF4A binding motifs are enriched within differentially accessible chromatin regions (DAR) in 

the proximal tubule. Next, the authors applied the R package “Cicero” to predict cis-regulatory 

chromatin interactions for individual cell types. In order to study the cellular heterogeneity in 

the thick ascending limb, the authors performed unsupervised clustering analysis on the thick 

ascending limb in snRNA-seq dataset and identified 3 groups of cells: cortical thick ascending 

limb (CLDN16, KCNJ10 and PTH1R), medullary thick ascending limb (CLDN10) and ascending 

thin limb. Consistently, 3 groups of identified cells were also shown in the snATAC-seq dataset, 

suggesting that thick ascending limb subpopulations can be defined by either transcription or 

chromatin accessibility profiles. Furthermore, the authors detected a subset of proximal tubule 

cells with increased expression as chromatin accessibility of VCAM1 (2% of total cells) which 

also express Vimentin, CD24, and CD133, indicating that VCAM1 positive cell cluster may 

represent an injured or regenerative subpopulation. 

 

Overall this is an important study, which could serve as reference for many studies to come. To 

qualify as reliable reference there needs to be some additional validation of the bioinformatics 

data though. 

 

[Response] We thank the reviewer for the careful evaluation of our manuscript and for the 

positive comments. Our specific responses to the points raised follow: 

 

1. Based on the ChromVAR motif activity analysis, authors have identified several genes, which 

are targeted either by HNF4A or TFAP2B. These are interesting and meaningful findings. 

However, a chromatin-immunoprecipitation qPCR experiment is required to validate 

identified interactions. 

 



[Response] We selected primary renal proximal tubule epithelial cells (RPTEC) to perform our 

validation. HNF4A expression was detectable in RPTEC, however, at a much lower level than 

kidney cortex (new Supplementary Fig. 9b). This limited our sensitivity to detect changes in 

chromatin accessibility for HNF4A. 
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New Supplementary Fig. 9b and 19a: Representative immunostaining images of HNF4A (red) 

in the kidney cortex or primary RPTEC, and VCAM1 (green) in the primary RPTEC. Scale bar 

indicates 100 m. 

 



We were able to validate HNF4A binding within open chromatin regions of multiple 

differentially expressed genes (SLC34A1, SLC5A2 and HNF4A) using ChIP followed by 

quantitative polymerase chain reaction (qPCR) analysis (ChIP-PCR) in RPTEC. We found that 

open chromatin regions with HNF4A motifs that were predicted to interact with a promoter via a 

cis-coaccessibility network were significantly enriched for HNF4A binding within the SLC34A1 

and SLC5A2 locus when compared to a negative control (new Supplementary Fig. 9a). Again, 

the relatively low enrichment likely reflects the low absolute expression of HNF4A in cultured 

RPTEC. 
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New Supplementary Fig. 9a: ChIP followed by quantitative PCR (ChIP-qPCR) analysis of 

HNF4A binding within the promoter, first exon or the open chromatin regions that were 

predicted to interact with a promoter via a CCAN in the differentially expressed gene loci 

(SLC34A1, SLC5A2 and HNF4A) in RPTEC (n = 3). ChIP-qPCR was performed with an open 

chromatin region without HNF4A motif on the intronic region of SLC34A1 gene as a 

background control. Data are mean±s.d. *P<0.05 (two-sided one sample t-test). 

 



In addition to HNF4A, RPTEC expresses a pro-inflammatory marker (VCAM1) (new 

Supplementary Fig. 19a). We hypothesize that VCAM1 expression in tissue culture reflects an 

injury/dedifferentiation response of RPTEC grown on hard plastic. Although we do not expect 

RPTEC to fully capture the biology of PT_VCAM1, we used it as a model to investigate the role 

of RELA (NF-kB) in predicted cis-regulatory interactions. We observed that an open chromatin 

region located 60 KB distal to the VCAM1 promoter that has a RELA motif predicted to interact 

with the promoter (via a cis-coaccessibility network) was enriched for RELA binding near the 

VCAM1 locus by ChIP-PCR (new Fig.5f, Supplementary Fig. 19). 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collectively, these findings are consistent with our hypothesis that HNF4A and RELA bind open 

chromatin regions and that chromVAR motif activity can predict genes targeted by specific 

transcription factors. Unfortunately, there is no suitable cell line for TAL or DCT, so we could 

not validate TFAP2B binding. However, there are existing reports that AP-2 family transcription 

factor (Tfap2a and Tfap2b) conditional knockout in mice affects distal convoluted tubule 

development [Chambers et al., PMID:31160420, Wang et al., PMID:29804851]. We have now 

addressed these points in the revised manuscript (page 6 line 14-19, line 23-25; page 9 line 30-

36). 
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New Supplementary Fig. 19b Graphical abstract of experimental methodology for RELA 

ChIP-qPCR. New Fig. 5f: ChIP followed by quantitative PCR (ChIP-qPCR) analysis of RELA 

binding within the promoter or the open chromatin region that was predicted to interact with a 

nearby promoter via a CCAN in the VCAM1 locus in RPTEC (n = 3). The background control 

was set on the region without RELA motif at the upstream of VCAM1 promoter. Data are 

means±s.d. *P<0.05 (two-sided one sample t-test). 

 

 



2. A Cis-coaccessibility network is reported, indicating that families of chromatin-chromatin 

interactions regulate gene expression by approximating enhancers and promoters. The authors 

should provide some verification for proposed interactions, i.e. apply epigenetic modulation 

approaches such as dCas9-DNMT1 or dCas9-KRAB to alter the chromatin accessibility of 

HNF4 promoter region to verify correlation of gene expression and chromatin accessibility. 

 

[Response] As suggested by the reviewer, we attempted to apply dCas9-KRAB to alter 

accessibility of the HNF4A promoter and additional chromatin regions that were predicted to 

interact with the promoter via a cis-coaccessibility network.  We performed lentiviral 

transduction of guide RNA cloned into CRISPR-repression optimized vector (CROP-seq-opti) 

and Lenti-dCas9-KRAB-blast in RPTEC, and confirmed transduction of dCas9-KRAB (Fig. R1, 

for reviewing purposes only). 
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Fig. R1: Representative immunostaining 

images of dCas9-KRAB fusion protein (red) in 

primary RPTEC with or without lentiviral 

transduction. The data were obtained 48 h after 

lentiviral transduction.  Cells were fixed with 

4% PFA, blocked with 1% bovine serum 

albumin, permeabilized with 0.1% Triton-X100 

in PBS and incubated for 1 h with primary 

antibodies for CRISPR-Cas9 Antibody (clone 

7A9-3A3, Novus Biologicals) followed by 

staining with secondary antibodies (Cy3-

conjugated, Jackson ImmunoResearch). Scale 

bar indicates 100 m. 

 



We investigated the effects of CRISPR interference on HNF4A expression in RPTEC, but our 

results were indeterminate due to the low expression of HNF4A in cultured RPTEC. We 

hypothesize that dCas9-KRAB and guide RNA transduction may adversely affect HNF4A 

expression because RPTEC are sensitive to stress responses, including lentiviral transduction. In 

order to achieve 100% transduction we also had to add spinfection, which may have further 

caused RPTEC injury/dedifferentiation, reducing HNF4A expression even further. 

 

We have made some progress towards developing this technique and have successfully 

decreased HNF4A expression in HepG2 cells (Fig. R2) using gRNA targeted to the promoter or 

first exon of HNF4A. Similarly, we were able to downregulate PTEN expression in either 

HepG2 or RPTEC (as a positive control). However, gRNA targeted to distal sites predicted to 

regulate HNF4A expression had no effect. These results are difficult to interpret because HepG2 

cells likely do not have the same cis-regulatory architecture as RPTEC.  We appreciate the 

reviewers’ constructive suggestions and hope to further develop these techniques for future 

studies but are currently limited by the absence of human proximal tubule cell lines that retain 

their differentiated state in culture. We discussed the potential of epigenetic modulation 

approaches such as dCas9-DNMT1 or dCas9-KRAB to validate snATAC-seq data in the revised 

manuscript (page 12 line 27- 29). 
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Fig. R2: RT and real-time PCR analysis of mRNAs for HNF4A or PTEN in HepG2 cells 

or RPTEC infected with dCas-KRAB and guide RNA. The data were obtained from 

50,000 cells 96 h after lentiviral transduction. Guide RNAs were designed for HNF4A 

promoter, 1st exon and open chromatin regions predicted to interact with the promoter in 

CCAN (distal 1-4) with CHOPCHOP (https://chopchop.cbu.uib.no/), and cloned into 

Crop-seq-opti. Guide RNAs for PTEN were used as positive controls (Lalli et al., 

PMID:32887689).  NT, Nontargeting control gRNA. 

 

 



3. There should be some additional validation of identified cell populations in the kidney. 

 

[Response] We obtained additional lines of evidence to validate cell populations in the kidney. 

For PT_VCAM1, we performed immunostaining of human adult kidney cortex and found that 

VCAM1+ tubular cells were observed in 4.19 +/- 1.58% of LTL+ PT cells, whereas no 

VCAM1+ cells were detected in UMOD+ TAL cells in the kidney cortex (new Fig. 4b). These 

data suggest that PT_VCAM1 is a subpopulation of PT cells. Importantly, co-staining VCAM1 

with AQP1 excluded the possibility that they might be mainly dTL cells (new Fig. 4c). 

Furthermore, costaining of CD24 or CD133 with VCAM1 on the human kidney sections 

revealed PT_VCAM1 is also a heterogeneous subset (new Fig. 4d). For validation of TAL 

subpopulations, we provide additional data showing that PTH1R and KCNJ10, which were 

predicted to be expressed in a subset of TAL, were detected in a subset of TAL (New 

Supplementary Fig.14c). We have now addressed these points in the revised manuscript (page 7, 

line 43- page 8, line 24; page 8, line 32 - 38; page 8, line 44 - page 9, line 2). 

 

4. Were the samples processed in the same time or in different bathes? Was batch correction 

analysis performed to minimize the batch effect? 

 

[Response] We processed samples at different time points (both nuclei prep and library 

construction). Batch correction was performed with the R package "Harmony" using the 

"RunHarmony" function in Seurat for both snATAC-seq and snRNA-seq datasets. We have now 

addressed these points in the revised manuscript (page 4, line 6-7; page 13, line 40-41; page14, 

line 27-28). 

 

5. The authors should provide a more detailed analysis information regarding the trajectiory 

analysis with Cicero. 

 

[Response] We have expanded the description in the original manuscript. First, the CDS was 

constructed from the peak count matrix in the Seurat object of aggregated snATAC-seq data with 

"make_atac_cds" function with binarize = F. Next, the cds was preprocessed (num_dim = 50), 

aligned to remove batch effect (Laleh et al., PMID: 29608177) and reduced onto a lower 

dimensional space with the "reduce_dimension" function (reduction_method = 'UMAP', 

preprocess_method = "Aligned"). After filtering low quality cells, the cells were clustered 

(cluster_cells) and visualized. Subsequently, the dataset was subsetted for the PCT, PST and 

PT_VCAM1 clusters to perform cell ordering with the learn_graph function. We used the 

"order_cell" function and indicated three of the most distant cells from PT_VCAM1 in PCT and 

PST as "start points" of the trajectories. The data were visualized with 

"plot_accessibility_in_pseudotime" or "plot_cells" functions. Code is available in our online 

repository (https://github.com/p4rkerw/Muto_Wilson_NComm_2020). We have now addressed 

these points in the revised method section of manuscript (page 15, line 26-36). 

 

  



Reviewer #2 

In the manuscript entitled “Single cell transcriptional and chromatin accessibility profiling 

redefine cellular heterogeneity in the adult human kidney”, Muto and colleagues collect paired 

single nucleus RNA-seq and ATAC-seq data on 5 human adult kidney samples. They use 

information from both data sets to define cell types and they take a deeper dive into cells of the 

thick ascending limb and the proximal tubule. As my expertise is in single cell genomics and not 

kidney biology, my comments will be largely restricted to this domain. Overall, the data appear 

to be of sufficient quality and the analysis rests firmly in conventional methods. However, as one 

of only a few instances in the literature of paired data of this nature, I felt the authors could do 

more to directly integrate the two data types. In addition, while the sample size is small, there is 

an opportunity to explore genetic variation in this population that the authors did not address. 

Finally, some of the figures were not up to the standard, and some of the methods were 

insufficiently described. Below I address the major and minor criticisms: 

 

[Response] We thank the reviewer for the careful evaluation of our manuscript and for the 

experimental suggestions that we feel have helped us to greatly improve our paper. Our specific 

responses to the points raised are as follows: 

 

Major criticisms 

1. Integration of data. The authors do use the standard “integration” strategy from the Seurat 

pipeline to annotate cell types in addition to pulling a few anecdotes where change in 

transcription factor activity is correlated with change in TF expression level. However, this is 

one of only a handful of existing data sets where both types of data have been collected on the 

same samples and an opportunity to explore how complementary the data really are is missed 

here. One could use changes in expression across cell types and changes in co-accessibility to 

evaluate how well Cicero does in identifying promoter-enhancer links. One could look in a 

global way at how well TF expression level is correlated with TF activity level (from chromVAR). 

Are there factors that have low correlation? Or negative correlation? One could explore ways to 

overlay the pseudotime trajectories to get a better handle on direct and secondary targets of TFs 

in these differentiation pathways. There are a lot of directions left to explore the combination of 

the two data types that are left on the table here. It would be a shame not to push this a little 

further given the relative novelty of the data. 

 
[Response] We agree with reviewer 2 that data integration is a critical aspect of this manuscript 

that would benefit from further exploration and have incorporated multiple new analyses. In 

particular, we have explored gene-enhancer pairs, transcription factor expression and activity, 

pseudotemporal ordering of in the distal nephron and allele-specific expression. We have 

outlined our response to each of the major criticisms below: 

 

1A. One could use changes in expression across cell types and changes in co-accessibility to 

evaluate how well Cicero does in identifying promoter-enhancer links.  

 

[Response] To examine the relationship between Cicero co-accessibility and gene expression, 

we generated a plot of Cicero gene activity score relative to average log fold-change of cell-

specific gene expression for all cell types (Fig. R3 left: Cicero Gene Activity vs. Gene 

Expression). Overall, we observed poor correlation between Cicero gene activity and gene 



expression (Pearson r^2=0.12). These observations are consistent with previous reports that 

Cicero gene activity is a modest estimate of gene expression (Pliner et al PMID: 30078726). 

Interestingly, a minority of genes showed significant positive correlation between Cicero gene 

activity and gene expression (Fig. R3 right: DACH1), however, this was not typical. We have 

incorporated these data into our section on chromatin accessibility, TF activity, and chromatin 

interaction networks.  

Fig. R3: Correlation between Cicero gene activity and gene expression across cell types.  

 

Subsequently, we narrowed our analysis to predicted Cicero connections between enhancers and 

promoters. We annotated ATAC peaks to determine which peaks overlap with FANTOM 

enhancers (Andersson et al PMID:24670763) and then filtered Cicero connections for those that 

contain an enhancer-promoter pair. We compared enhancer-promoter co-accessibility to gene 

expression across cell types (Fig. R4). Similar to what we observed for Cicero gene activity 

scores, mean enhancer-promoter gene activity did not correlate well with gene expression 

(Pearson r^2=0.075). A limitation of this analysis is that available annotation databases do not 

have high-quality enhancer maps of the adult human kidney. Future analyses may benefit from 

kidney cell-type-specific profiling of enhancer-associated histone modifications (eg. H3K27ac). 

 

 
 

Fig. R4: Correlation between enhancer-promoter co-accessibility and gene expression across all 

cell types. 



1B. One could look in a global way at how well TF expression level is correlated with TF 

activity level (from chromVAR). Are there factors that have low correlation? Or negative 

correlation? 

 

[Response] We generated a plot to examine the relationship between TF expression and TF 

chromVAR activity (new Supplementary Fig. 8a) and observed a modest correlation between 

the two variables (Pearson r^2=0.36). 

 

 
New Supplementary Fig. 8a: Correlation between transcription factor chromVAR activity and 

gene expression across all cell types 

 

However, as reviewer 2 suggested, it’s likely that some transcription factors are acting as 

transcriptional repressors (rather than activators) and are negatively correlated with gene 

expression. Subsequently, we separated transcription factors into positively-correlated and 

negatively-correlated groups (new Supplementary Fig. 8b,c). Within each group, the 

correlation improved for both the positively-correlated and negatively-correlated TF relative to 

the overall comparison. Among the 452 TF in the JASPAR database, 11 TF showed significant 

negative correlation with gene expression and 38 showed significant positive correlation 

(Pearson p<0.05) across all kidney cell types. In contrast, some TF (Fig. R5: HIF1A) showed no 

correlation between expression and chromVAR activity. 

 

 

 



 
New Supplementary Fig. 8b:  Positively-correlated transcription factor motif – gene 

combinations across all cell types. 

 

 
New Supplementary Fig. 8c: Negatively-correlated transcription factor motif – gene 

combinations across all cell types. 

 

 
Fig. R5: Example of a transcription factor motif (HIF1A) that does not correlate with gene 

expression. 

 

Interestingly, closely-related TF with important biologic function in the kidney may act in 

opposition to each other. For example, NR3C1 encodes the glucocorticoid receptor and NR3C2 



encodes the mineralocorticoid receptor. The sequence motifs for these TF are extremely similar 

(Fornes et al. PMID:31701148, JASPAR2020), however, they have different roles. Aldosterone 

is the ligand for the mineralocorticoid receptor, which is abundantly expressed in the distal 

nephron and serves to regulate sodium reabsorption. Importantly, the mineralocorticoid receptor 

can also be activated by corticosteroids, which are the ligand for glucocorticoid receptors. 

Specific enzymes are expressed in the distal nephron (eg. HSD11B2) that metabolize 

corticosteroids to prevent activation of the mineralocorticoid receptor. In this manner, NR3C1 

and NR3C2 can be thought of as having opposing effects. In our data set, we observed a positive 

correlation between NR3C1 expression and chromVAR motif activity, whereas NR3C2 showed 

a negative correlation (new Supplementary Fig. 8d,e).  

 

 
New Supplementary Fig. 8d,e: (d) Correlation between glucocorticoid receptor (NR3C1) motif 

activity and gene expression. (e) Correlation between mineralocorticoid receptor (NR3C2) motif 

activity and gene expression 

 
These data may reflect cell-specific chromatin accessibility profiles that bias the cellular 

response to closely-related TF. We have now addressed these points in the revised manuscript 

(page 5, line 41 -page 6, line 10). 

 

 

1C.  One could explore ways to overlay the pseudotime trajectories to get a better handle on 

direct and secondary targets of TFs in these differentiation pathways 

 

[Response] We employed pseudotemporal ordering within the distal nephron to identify TF or 

signaling pathways associated with different cell fates. Some of the cell types in the distal 

nephron include distal convoluted tubule (DCT), connecting tubule (CNT), and principal cells 

(PC), which are closely-related cell types oriented in series. Pseudotemporal ordering of the 

snATAC data for these cell types identified chromatin regions that either open or close from 

proximal to distal (new Supplementary Fig. 10a,b).  



 

 

New Supplementary Fig. 10a,b: Pseudotemporal ordering of the distal nephron snATAC 

dataset. PC-principal cells, CNT-connecting tubule, DCT – distal convoluted tubule   
e   

www 

 

We performed a transcription factor motif enrichment analysis of pseudotime-dependent peaks to 

identify enriched transcription factors. Among the 452 TF motifs that we evaluated, we 

identified 24 TF that were significantly enriched (FDR < 0.05) with a fold-enrichment greater 

than two. Within this family of enriched TF, we identified TFAP2B, which we previously-

described as associated with distal nephron fate. In addition, we identified a candidate list of TF 

(ZBTB33, CREB3, E2F1, etc.) that potentially regulate distal nephron fate. Subsequently, we 

performed pseudotemporal ordering of the distal nephron cells in our snRNA dataset (new 

Supplementary Fig. 10c,d) to determine if these TF are differentially expressed or if there is 

enrichment of downstream signaling pathways.  

 

 

 

 

 

 

 

 

 

 

 

 

 

New Supplementary Fig. 10c,d: Pseudotemporal ordering of the distal nephron snRNA dataset. 

PC-principal cells, CNT-connecting tubule, DCT – distal convoluted tubule   

 

We clustered the pseudotime-dependent genes into gene modules to determine which modules of 

genes are preferentially expressed as we progress from proximal to distal nephron (new 



Supplementary Fig. 10e).  We plotted three gene modules (6,8,12) to visualize where they lie 

along the pseudotemporal trajectory. Module 6 has the highest activity in PC and CNT among all 

the gene modules, and it was selected for further interrogation (new Supplementary Fig. 10f) 

 

 
New Supplementary Fig. 10e,f: Pseudotime-dependent gene modules that are significantly up- 

or down-regulated in the distal nephron progressing from proximal to distal. 

 

We intersected the genes in module 6 with our list of enriched transcription factors obtained 

from pseudotemporal ordering of the snATAC data to determine if any of the enriched TF also 

showed differential expression. As a result, we obtained a short list of TF that change both their 

expression and motif accessibility (EGR1, TFAP2A, TFAP2C, ZSCAN4, STAT1, STAT3, 

KLF9, NR2F2, IRF1) during the transition from distal convoluted tubule to principal cell within 

the distal nephron. Not surprisingly, several of the top GO enriched pathways for the genes 

within module 6 include 1) regulation of metanephric nephron tubule epithelial cell 

differentiation 2) positive regulation of hormone metabolic process and 3) collecting duct 

development. We have now addressed these points in the revised manuscript (page 6, line 25-

41). 

Module 6 Activated in Principal Cells 



2. The authors make the case that the ATAC data may be a better cell type definer than the RNA 

data. To my knowledge this is different than what is generally observed in other data sets. It 

would be worthwhile to further explore this. In particular, the number of cells collected in the 

two data sets is significantly different (there are ~25% more cells in the ATAC data set). To 

support this observation, the authors should subset both data sets to the same number of cells 

(probably the same number of cells from each donor) and confirm that ATAC is still more 

informative. In addition, it would be interesting to look at how consistent the cell type 

proportions are across individuals for the two data types. Furthermore, the authors integrate 

with mouse data in one section and they acknowledge that mouse kidney atlases of RNA and 

ATAC exist. How comparable are the cell type compositions of mouse samples and human 

samples? Do differences tell us anything about biological differences between the two species? 

 

[Response] We have outlined our response to each of the major criticisms below: 

 

2A. To support this observation, the authors should subset both data sets to the same number of 

cells (probably the same number of cells from each donor) and confirm that ATAC is still more 

informative 

 

[Response] We have subsampled our data as Reviewer 2 suggested to determine if the snATAC 

dataset is able to distinguish between the proximal convoluted tubule (PCT) and proximal 

straight tubule (PST) when it has the same number of cells as the snRNA dataset. The initial 

distribution of cells in the snRNA and snATAC datasets by donor is depicted in Table R1 and 

the distribution after subsampling is shown in Table R2. 

 

 

 

 

 

 

 

 

 

 

 

 

The downsampled snATAC dataset was able to clearly distinguish between PCT and PST (new 

Supplementary Fig. 5a).  

 

 

Table 1  

snRNA snATAC donor 

4114 4166 Control_1 

2920 4072 Control_2 

5464 7381 Control_3 

3683 5280 Control_4 

3804 6135 Control_5 

19985 27034  

Table 2 – Downsample  

snRNA snATAC donor 

4114 4114 Control_1 

2920 2920 Control_2 

5464 5464 Control_3 

3683 3683 Control_4 

3804 3804 Control_5 

19985 19985  



 

 
New Supplementary Fig. 5a: Differentiating between the proximal convoluted tubule (PCT) 

and proximal straight tubule (PST) in a downsampled snATAC dataset.  

 

To further explore the ability of snATAC to resolve the difference between PCT and PST we 

further subsampled the snATAC dataset to 50% total cells compared to the snRNA dataset as 

detailed in Table R3. 

 

Table R3 – Downsample 50% 

snRNA snATAC donor 

4114 2057 Control_1 

2920 1460 Control_2 

5464 2732 Control_3 

3683 1841 Control_4 

3804 1902 Control_5 

19985 9992  

 



 
New Supplementary Fig. 5b: Differentiating between the proximal convoluted tubule (PCT) 

and proximal straight tubule (PST) in a downsampled snATAC dataset with 50% as many cells 

as the snRNA dataset. 

 

The snATAC subset with half as many cells is still able to resolve the difference between PCT 

and PST (new Supplementary Fig. 5b). We have now addressed these points in the revised 

manuscript (page 4, line 43- page 5, line 2). 

 

 

2B.  In addition, it would be interesting to look at how consistent the cell type proportions are 

across individuals for the two data types. 

 

[Response] The below are the tables for the distribution of our snRNA and snATAC datasets by 

cell type and donor. The box-and-whisker plots were included 

in the new Supplementary Fig. 22 and the tables were in the 

Source data. 

 
Distribution of snATAC dataset by cell type and donor 

snATAC Control_1 Control_2 Control_3 Control_4 Control_5 Total 

PCT 629 1352 2015 1163 1109 6268 

PST 355 429 1558 977 961 4280 

PT_VCAM1 83 137 247 83 124 674 



PEC 137 71 41 71 83 403 

TAL 1203 450 1858 1967 2284 7762 

DCT 511 825 638 368 435 2777 

CNT 260 169 152 96 221 898 

PC 324 177 251 222 328 1302 

ICA 106 121 181 44 159 611 

ICB 227 106 124 46 117 620 

PODO 14 23 30 12 56 135 

ENDO 170 58 181 180 170 759 

MES_FIB 81 100 69 34 68 352 

LEUK 66 54 36 17 20 193 

Total 4166 4072 7381 5280 6135 27034 

 

Distribution of snRNA dataset by cell type and donor 

snRNA Control_1 Control_2 Control_3 Control_4 Control_5 Total 

PT_VCAM1 59 66 213 70 41 449 

PT 765 1190 1433 613 1035 5036 

PEC 178 54 121 65 134 552 

TAL 1017 393 628 1995 402 4435 

DCT1 721 365 714 257 704 2761 

DCT2 97 63 75 65 189 489 

CNT 336 272 631 124 442 1805 

PC 131 199 368 109 215 1022 

ICA 153 124 546 75 209 1107 

ICB 150 30 93 19 57 349 

PODO 93 34 182 72 82 463 

ENDO 312 100 290 156 150 1008 

MES 70 19 67 36 47 239 

FIB 22 3 84 22 76 207 

LEUK 10 8 19 5 21 63 

Total 4114 2920 5464 3683 3804 19985 

 
2C. Furthermore, the authors integrate with mouse data in one section and they acknowledge 

that mouse kidney atlases of RNA and ATAC exist. How comparable are the cell type 

compositions of mouse samples and human samples? Do differences tell us anything about 

biological differences between the two species? 

 

[Response] In our experience with single cell profiling in mouse and human kidney tissue, the 

proportion of each cell type is heavily influenced by sample type (fresh vs frozen), dissociation 

method (single cell vs. single nucleus), and library preparation technique (drop-seq vs. 10X). It is 

difficult to directly compare cell type proportions between human and mouse samples because 

human samples are heterogeneous and subject to sampling bias. For example, the relative 

quantity of cortex vs. medulla can have a huge effect on the observed proportion of cells. 

Previously-published mouse scRNA atlases (Ransick et al PMID: 31689386, Park et al. PMID: 



29622724) do not include a table of relative cell type proportions or cell barcode annotations, but 

appear roughly equivalent to our human and mouse datasets. That being said, it may be more 

instructive to compare healthy human kidney to diseased human kidney (or healthy to diseased 

mouse) to determine if the proportion of cells change or if new cell types emerge. 

 

3. The sample size here is obviously too small to do any association testing, but there are genetic 

differences between donors and the authors don’t do anything to address whether genetic 

variation might be impacting gene regulation. However, methods exist to explore the impact of 

genetic variation on gene expression and chromatin in small samples (even in individual 

samples) – so-called allele-specific expression analysis and allele-specific hypersensitivity 

analysis. I would like to see the authors explore this further and at least comment on whether the 

relative influence of genetic variation seems consistent with published results in other tissues/cell 

lines. 

 

[Response] We agree with Reviewer #2 that genetic variation plays a critical role in the 

regulation of gene expression and have examined allele-specific expression in our dataset. We 

followed GATK best practices (Poplin et al https://doi.org/10.1101/201178) to identify 

heterozygous germline variants within coding regions using HaplotypeCaller. We implemented 

the WASP allele specific pipeline (Geijn et al PMID: 26366987) to mitigate read mapping bias 

prior to generating allele specific read counts with GATK ASEReadCounter. Subsequently, we 

examined allele-specific expression using ASEP (Fan et al PMID: 32392242), which is a method 

that performs gene-based allele-specific expression analysis across a population. In our first 

experiment, we incorporated all cell types into a ‘pseudo-bulk’ sample and examined reads that 

mapped to coding transcripts (5’UTR, exons, 3’UTR). In the pseudo-bulk dataset we had 401 

genes that met our filtering criteria to examine allele-specific expression. Among these 401 

genes, we identified 84 that showed allele-specific expression after Benjamini-Hochberg 

adjustment for multiple comparisons (FDR<0.05). A subset of these genes have important 

functions in the kidney, including CLCNKB and SLC12A3 (new Supplementary Fig. 14). 

 

 

 
New Supplementary Fig. 14: Allele-specific expression of CLCNKB and SLC12A3 among all 

cell types in the snRNA dataset. 

 

We compared our list of pseudo-bulk allele-specific genes to a previously-published list of 

allele-specific genes obtained from bulk RNA-seq of human kidney (Fan et al PMID: 32392242). 

Fan et al reported a total of 304 genes that showed allele-specific expression among the 6,540 



genes they analyzed. Ten of the allele-specific genes in our dataset were also reported in their 

dataset. Subsequently, we demultiplexed our dataset using our cell type barcode annotations to 

investigate allele-specific expression in individual cell types. Within the proximal tubule, there 

were 77 genes that met filtering criteria and 17 showed allele-specific expression. The majority 

of the proximal tubule allele-specific genes (n=12/17) were also detected in our pseudo-bulk 

dataset. 

In our second experiment, we expanded the analysis to include reads that map to introns. Our 

samples were obtained from nuclear preps and a significant proportion of our reads map to 

unspliced pre-mrna. This approach increased the number of genes that met our filtering criteria 

to 1430 in the pseudobulk analysis. Among these genes, we observed 432 with allele-specific 

expression.  Overall, our estimate of the proportion of genes that show allele-specific variation 

ranged from 20.9 to 30.2%. This estimate is significantly greater than the 4.6% reported by Fan 

et al using bulk RNA-seq. Notably, Fan et al reported that sequencing depth has a significant 

effect on the sensitivity of their method to detect allele-specific expression. Their dataset 

contained 121 tubule compartment samples sequenced to a median depth of 35 million reads. In 

contrast, our samples were sequenced to a mean depth of 377 million reads. In addition, our 

samples were obtained from a nuclear preparation and captured the entire kidney cortex rather 

than just the tubulointerstitium. These factors may partially explain the difference in our ability 

to detect allele-specific expression. Genes that were evaluated for allele-specific expression were 

now listed as new Supplementary Data 4. We have now addressed these points in the revised 

manuscript (page 7, line 19- 42; page 16, line 8 -32). 

  



4. QC Measures and Figures. Finally, there aren’t sufficient QC metrics presented to really 

evaluate the quality of the data. How many cells were loaded in each 10X lane? How many reads 

were sequenced per cell? What was the estimated complexity? What was the fraction of reads in 

cells like? What did the distribution of fraction of reads in peaks look like? And what did the 

distribution of number of UMIs per cell and number of genes per cell look like? Etc. In addition, 

many of the main figures had inappropriately small labels, missing labels, etc. Specific critiques 

of figures will be listed in the minor criticisms below. 

 

[Response] We have included all of the requested QC metrics in our manuscript (method 

section) or supplementary figures. Please see a detailed response below.  

 

4A. How many cells were loaded in each 10X lane? 

 

[Response] 10,000 cells were loaded in each 10X lane (page 13, line 19; page 14, line 12). 

 

4B. How many reads were sequenced per cell? 

 

[Response] A mean of 377,573,305 reads (SD = 76,365,483) were sequenced for each snRNA 

library corresponding to a mean of 70,886 reads per cell (SD=8633). A mean of 318,097,692 

reads were sequenced for each snATAC library (SD=54,357,210) corresponding to a mean of 

12,946 fragments per cell (SD=2,960). See table below. (page 14, line 16-18,  new 

Supplementary table 5). 

 

Donor Total RNA 

reads 

RNA reads per 

cell 

Total ATAC 

reads 

ATAC fragments per 

cell 

Healthy_1 499801345 72383 343687555 13892 

Healthy_2 317710661 74844 269154397 12611 

Healthy_3 391611498 59344 396525222 17493 

Healthy_4 368420549 81944 314024252 10567 

Healthy_5 310322473 65915 267097032 10168 

mean 377573305.2 70886 318097691.6 12946.2 

stdev 76365483 8632 54357209 2960 

 

4C. What was the estimated complexity? What was the fraction of reads in cells like? 

 

[Response] The library complexity for the snRNA libraries was estimated with sequencing 

saturation. The mean sequencing saturation was 81.4 +/- 2.4 %. The mean fraction of reads with 

a valid barcode (fraction of reads in cells) was 88.2 +/- 5.9%. See Table below. (page 13, line 

35-36,  new Supplementary table 6). 

 



  

 

Quality Control for snRNA Libraries 

Donor Sequencing 

Saturation 

Fraction reads with Valid 

Barcode 

Healthy_1 77.5 89.6 

Healthy_2 83.4 77.9 

Healthy_3 83 92.5 

Healthy_4 82.6 91.7 

Healthy_5 80.5 89.7 

mean 81.4 88.28 

stdev 2.4 5.9 

 

The mean sequencing saturation for snATAC libraries was 37.3 +/- 2.2 % and the mean fraction 

of reads with a valid barcode was 97.3 +/- 1.2 %. See table below. (page 14, line 18-19, new 

Supplementary table 7). 

 

 

Quality control for snATAC libraries 

Donor Sequencing 

Saturation 

Fraction reads with Valid 

Barcdode 

Healthy_1 36.2 98.3 

Healthy_2 35.1 98.3 

Healthy_3 37.1 98.3 

Healthy_4 41.1 95.8 

Healthy_5 37.3 95.8 

mean 37.36 97.3 

stdev 2.2 1.3 

 

4D.  What did the distribution of fraction of reads in peaks look like? 

 

[Response] Fraction of reads in peaks, number of reads in peaks per cell and ratio reads in 

genomic blacklist region per cell were included (new Supplementary Fig. 21). We have now 

addressed these points in the revised manuscript (page 14, line 24- 26). 

 



 
 

New Supplementary Figure 21 – QC metrics for snATAC-seq dataset: (d) Fraction of reads 

in peaks, (e) number of reads in peaks per cell and (f) ratio of reads in genomic blacklist region 

per cell in snATAC-seq data were shown. 

 

 

4E. And hat did the distribution of number of UMIs and genes per cell look like? 

 

[Response] Number of genes per cell, number of UMIs per cell and fraction of mitochondrial 

genes per cell were included (new Supplementary Fig. 21). We have now addressed these 

points in the revised manuscript (page 13, line 42- page14 line 2). 

 

 

 
New Supplementary Figure 21 – QC metrics for snRNA- dataset: (a) Number of genes per 

cell, (b) number of UMIs per cell and (c) fraction of mitochondrial genes per cell in snRNA-seq 

data were shown. 
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Minor criticisms 

Lines 50-92: The logic of the Intro didn’t flow that smoothly to me. I would recommend starting 

with the third paragraph (lines 68-77), then the first paragraph (lines 51-59). I would 

incorporate lines 78-82 into this new second paragraph. Then lines 60-67, and finally lines 83-

91. 

[Response] We have made the suggested changes to the introduction.  

 

Lines 85 – 88: More important than the interactive website would be data matrices of read 

counts by gene or peak and metadata tables that include your final cell type assignments that 

people could download to explore the analyses on their own and to allow for label transfer to 

future projects. 

[Response] Read count matrices have been uploaded to GSE151302 and include outputs from 

cellranger (snRNA-seq) and cellranger-atac (snATAC-seq) data. For snATAC data, the filtered 

peak barcode matrix and fragments files are made available. For snRNA data, the filtered feature 

barcode matrix file is made available. Additional cellranger outputs (eg. Coordinate-sorted bam 

files) and metadata are made available through the Human Cell Atlas www.humancellatlas.org.  

 

Line 95/Fig. 1a: The schematic under “Multimodal single cell analysis” appears to just be a 

Cicero output. Please replace with something that indicates integrated analysis. 

[Response] – We have made the requested change to Figure 1A.  

 

Line 101: The authors reference the R package used for analysis in the rest of the Results, so 

they should call out Seurat specifically here. Also, for Figure 1b, I’d like to see either a legend 

for the colors or have the cell type annotation text colored by the cluster it’s defining. 

[Response] We have made the requested edits to specifically mention Seurat. We have modified 

Figure 1B to change the annotation text colors.  

 

Line 114: Here again, I would recommend the authors explicitly state that they used Seurat for 

label transfer. 

[Response] – We have explicitly mentioned Seurat as suggested. 

 

Line 122: The axes labels for Fig. 1d are unreadable in the “pre-integration” UMAPs. Also, the 

same issue of legend or text color applies for the labels for cell type annotation in the last panel 

and Fig. 1e as in Fig. 1b. 

[Response] – We have modified the figures as suggested. 

 

Lines 122-124: I’d like to see boxplots of cell type proportions by individual for both 

technologies (RNA and ATAC) in the supplement. I’d also like to see the comparison after 

subsampling to the same number of cells. 

[Response] A table of cell type proportions by individual for snRNA and snATAC libraries is 

included in response 2B along with boxplots. The comparison after subsampling to the same 

number of cells is shown in response 2A. These data are included as Supplementary Tables 2 and 

3 along with the boxplots.  

 

http://www.humancellatlas.org/


Lines 131-134: As I mentioned in the major criticisms section, to make these claims about 

differences in power to observe cell types, the authors should subsample the data so that they 

have the same number of cells in the two analyses at a minimum. 

[Response] The comparison after subsampling to the same number of cells is shown in response 

2A. 

 

Lines 149-152: The significance threshold for identifying differential expression or accessibility 

needs to be defined here and in the Methods. What FDR? What fold-change? 

[Response] The significance threshold for both differential expression and differential 

accessibility is defined as a Bonferroni adjusted p-value < 0.05. Similarly, the positive (and 

negative) fold-change threshold is the natural log of 0.25 with an additional requirement that at 

least 20% of cells express the target gene (or ATAC peak). These definitions have been added to 

the main text and methods sections.  

 

Lines 173-180: As mentioned in major criticisms, this section would be greatly improved by 

comparing globally the correlation structure between activity scores and gene expression. 

[Response] See response to major criticism 1. 

 

Lines 182-183: The definition of CCANs is not accurate. CCANs just identify clusters of sites 

that co-vary. We infer that this implies a regulatory interaction. Please re-phrase. 

[Response] We have rephrased the definition of CCANs as suggested.  

 

  



Lines 192-198: The scale of Supp. Fig 7 are a little misleading to me. I would plot on a scale of 0 

to 1, which will make the difference look much smaller. It’s unclear to me how a paired t-test 

was implemented here. I think a Fisher’s Exact Test or Mann–Whitney U test might be more 

appropriate. 

 [Response] We have regenerated the figure with an updated scale as suggested 

(Supplementary Fig. 11). To compare the proportion of Cicero connections identified in the 

GeneHancer database, we created a contingency table by Cicero coaccess threshold to include 

the number of connections identified in the GeneHancer database (In GH) and the number not in 

the database (Not in GH). We performed a chi-squared test and the result was highly significant 

for an association between coaccess threshold and membership in the GeneHancer database (pval 

< 2.2e-16). The table was included in the Source Data. 

 

 

Lines 202-204: This manuscript is not dedicated to evaluating the robustness of Cicero. I would 

just remove this last sentence of the paragraph. 

[Response] We have removed this sentence as suggested. 

 

Lines 207-217: Most of this is a discussion of the literature. The authors could more briefly 

introduce the topic here and move much of this section to the Intro or Discussion. 

[Response] We have moved the majority of these lines to the discussion as suggested. 

 

Line 227: Was the differential activity significant? Please state how that is defined. 

[Response] – Differential activity for HNF1B and ESRRB was assessed with the FindMarkers 

function using the chromVAR assay with default parameters by comparing each TAL subcluster 

to the remaining TAL cells. Bonferroni-adjusted p-values were used to assess FDR (padj < 0.05, 

Supplementary Fig. 15f). Subsequently, we used the Seurat FindMarkers function to identify 

differentially accessible chromatin regions that differentiate between TAL1 and TAL2. We 

performed a transcription factor motif enrichment of these DAR using the Seurat FindMotifs 

function and ranked the top-enriched motifs in open chromatin regions for both cell types 

(Supplementary Fig. 15g). 

 

Cicero Connections in All Cell Types Present in 

GeneHancer Double Elite Stratified by Cicero 

Coaccess Threshold 

Threshold In GH Not in GH 

0.1 642906 303176 

0.2 311546 138076 

0.3 166256 70038 

0.4 89334 36922 

0.5 47360 18784 

0.6 23972 9168 

0.7 10714 3822 

0.8 3484 1108 

Pearson’s chi-squared=1520.8, p-value < 2.2e-16 



Line 228: For Supp Fig. 9e, please change the color scheme so that it is not red and green (for 

people who are color blind). 

[Response] We have changed the color scheme as suggested. 

 

Line 253: How many genes are differentially expressed at what FDR? 

[Response] A total of 463 genes were differentially expressed between PT and PT_VCAM1 at 

an FDR < 0.05 and log-fold-change threshold of +/- 0.25. 

 

Lines 414 and 432: In these sections, we need to know how many cells were loaded on each lane. 

Also, what was the read configuration for each? How many cycles for Read 1 and Read 2? 

[Response] A target of 10,000 nuclei were loaded onto each lane for both snRNA and snATAC 

libraries. For snRNA, libraries 1-3 were sequenced with a 2x100bp and libraries 4-5 were 

sequenced with 2x150bp paired-end configuration. The cDNA for snRNA libraries was 

amplified for 17 cycles. For snATAC, libraries 1-3 were sequenced with a 2x50bp and libraries 

4-5 were sequenced with a 2x150bp paired-end configuration. Sample index PCR was performed 

at 12 cycles.  We have now addressed these points in the revised manuscript (page 13, line 31-

32; page 14 line 14-15). 

 

Line 454: What was the FDR for significance? Was there a fold-change threshold as well? 

[Response] The FDR for significance for all comparisons is padj < 0.05. The fold-change 

threshold is 0.25. 

 

Lines 467-468: What was the FDR for differential activity? 

[Response] The FDR is Bonferroni padj < 0.05.  

 

Line 487: What FDR for DARs? 

[Response] The FDR is Bonferroni padj < 0.05.  

 

Lines 495-497: FDR for differential expression? Same with Lines 500-502. 

[Response] The FDR is Bonferroni padj < 0.05.  

 

Line 730: I think you mean UMAP plot (singular). Same with Line 737. 

[Response] Changes made. 

 

Lines 734, 739: Define what’s plotted in the dot plots more explicitly. 

[Response] We have made changes to the figure legend accordingly.  

 

 

Lines 742-743: Be more explicit about what the color scale represents in Fig. 2a. Also label the 

color ramp in 2a. Is this a z-score? 

[Response] The color scale represents a z-score of the number of Tn5 sites within each DAR. 

We have labeled the color ramp in Fig.2a. 

 

Line 743: The axis label for the Y axis in the right panel is way too small. 

[Response] Axis labels have been enlarged 

 



Line 744: Pie charts are not appropriate ways to display data. I recommend converting 2b to a 

stacked bar chart and merging with 2c. 

[Response] We agree that the pie chart does not add much additional information and have 

eliminated it from the figure.  

 

Line 748: Please label the color ramp in 3a and define in the figure legend. Same for 3b. 

[Response] We have updated the figure and defined the color scale in the legend.  

 

Line 750: Please define the Y axes for 3c. Make sure they are clearly labelled in the figure as 

well. 

[Response] We have defined the Y axes for 3c as peak coverage and Cicero co-accessibility 

score.  

Line 754: I find the circus plots here and in Fig. S8 distracting. A barplot, or an UpSet plot, or a 

tanglegram would be more straightforward here. 

[Response] We prefer to leave the circos plot in Fig. 3d (and Supplementary Fig. 8) unchanged 

because we feel that it best demonstrates links between predicted chromatin interactions. For 

comparison, we have included a representative barplot for predicted interactions in the PCT (Fig. 

R6) and we feel that this is less intuitive than a circos plot. Similarly, we do not think that a 

tanglegram or UpSet plot would better convey the data.  

 
 

Lines 758,765: Axes labels in a and c are way too small. 

[Response] We have enlarged the axes labels as suggested.  

  



Reviewer #3 

Using multi-omics integrated analysis approach, the authors show unique cell states within the 

kidney and redefines cellular heterogeneity in the proximal tubule and thick ascending limb. The 

authors claim to have identified a novel renal progenitor cell type that are CD24+, CD133+ and 

VCAM+. They further claim that NF-κB plays a role in the maintenance of these cells, which 

may be of clinical interest in designing therapies for acute kidney injury. In addition, through 

multimodal approach, the authors demonstrate the hetegeneity within the thick ascending limb of 

loop of Henle at transcriptomic and chromatin accessibility level. Some of the key findings of this 

integrated analysis including the presence of a novel progenitor cells in adult human kidney is of 

great interest to nephrologist community. Moreover, this integrated study is first of its kind and 

was able to successfully identify and integrate complimentary features using computational tools. 

However, there are some concerns in this study, they are: 

 

[Response] We appreciate these positive comments and thank the reviewer. Our point by point 

response to the specific concerns follows:  

 

1. Authors did provide immunofluorescence evidence for VCAM+ proximal cells. However, it 

would have been very helpful if authors had included CD24, CD133 along with VCAM1 in the 

immunofluorescence study. This is critical because the PT_VCAM cluster that the authors 

identified could in fact be a heterogeneous cell cluster. Based on the supplementary data, 

VCAM1 is expressed only in 39.6% of the cells in PT_VCAM1 cluster 

 

[Response] As suggested by the reviewer, we co-stained VCAM1 with CD24 or CD133 in 

acetone-fixed sections of adult human kidney cortex samples. We found that a subset of 

VCAM1+ proximal tubular cells expresses CD24 or CD133 (new Fig. 4d). We also observed 

that CD24+ or CD133+ cells are rare in VCAM1- proximal tubular cells. As Reviewer #3 

suggested, these findings are consistent with the idea that the PT_VCAM1 cluster is a 

heterogeneous population. We have now addressed these points in the revised manuscript (page 

8, line 44 - page 9, line 2). 

 



  
  

Figure XX

VCAM1 / CD24 VCAM1 / CD133 VCAM1 / UMOD / LTL

VCAM1 / HNF4A / LTL

New Fig. 4d: Representative immunostaining images of CD24 or CD133 (red) and VCAM1 

(green) in the cortex of adult human kidney. Arrowheads indicate VCAM1 co-expression 

with CD24 or CD133 in PT and arrows mark VCAM1 expression without CD24 or CD133. 

Scale bar indicates 20 µm. 



 

 

2. A key renal cell type that is missing in the cell clusters is the descending loop of Henle (DTL) 

cells. Studies have shown VCAM1 expression in this cell type. Due the proximity of these cell 

types to proximal cells, the authors have to make sure that novel cell cluster does not contain 

DTL cells. 

 

[Response] We stained kidney sections with AQP1 to localize the PT, DTL and descending vasa 

recta. We observed that VCAM1 was expressed in a small subset of the DTL (new Fig. 4c). 

 

   
 

 

 

 

 

 

We also confirmed that VCAM1+ tubular cells were observed in 4.19 +/- 1.58% of LTL+ PT 

cells, whereas no VCAM1+ cells were detected in UMOD+ TAL cells in the kidney cortex (new 

Fig. 4b). These data suggest that the majority of VCAM1+ tubular cells are in the PT within the 

cortex.  A small minority of DTL tubules expressed VCAM1 compared to a larger number 

VCAM1+ PT cells. Based on these findings, we concluded that VCAM1+ DTL cells are unlikely 

to be a significant portion of the cells in our dataset. We have now addressed these points in the 

Figure XX

VCAM1 (brown) / AQP1 (blue)VCAM1 (brown) / SLC34A1 (blue) VCAM1 (brown) / UMOD (blue)

CD

PST

New Fig. 4c: Representative immunohistochemical images of SLC34A1, UMOD or AQP1 (blue) and 

VCAM1 (brown) expression in the adult human kidneys. An arrowhead marks VCAM1 expression in 

the DTL and an arrow marks DTL without VCAM1 expression. Scattered brown dots are seen with 

multiple different antibodies and considered non-specific staining. Scale bar indicates 50 m. 

 

New Fig. 4b: Immunofluorescence 

staining for VCAM1 (green), UMOD 

(red) and LTL (white) in the adult 

human kidney sections (left, 

representative image) and quantitation 

of VCAM1-positive cells on the LTL-

positive cells or UMOD-positive cells 

(right). The sections were quantified in 

5 random fields for each patient (n = 3). 

Arrowheads indicate VCAM1-positive 

cells in the LTL-positive PT. Scale bar 

indicates 100 µm. Box-and-whisker 

plots depict the median, quartiles and 

range. ***P<0.001 (Student’s t test). 

 

 



revised manuscript (page 8, line 32 - 38). 

 
3. In vitro study in which NFKB signaling was induced by TNF alpha in RPTEC does not 

directly provide evidence for the enrichment of this signaling pathway in Proximal_VCAM1 or 

for the transition of proximal cells to PT_VCAM1 state. 

 

[Response] As the reviewer points out, in vitro studies do not provide direct evidence for the 

enrichment of this signaling pathway in PT_VCAM1 or for the transition of PT to PT_VCAM1. 

We have removed this figure and related statement. Although the NF-B signaling pathway was 

significantly enriched in PT_VCAM1 in both the snRNA-seq and snATAC-seq analysis (Figure 

4e and Supplementary Fig. 18), we could not detect RELA, RELB, or their phosphorylated 

forms in PT_VCAM1 cells (Table. R7). We hypothesize that NF-kB expression may be too low 

to detect with our methods. As a result, we cannot exclude the potential role of NF-B signaling 

in the transition of PT to PT_VCAM1.  

 

A second transcription factor motif whose activity was predicted to be significantly changed in 

PT_VCAM1 compared to normal PT was HNF4A. We observed that HNF4A protein expression 

was lost in PT_VCAM1 nuclei (new Fig. 5g). These data are consistent with the predicted 

decrease in HNF4A motif activity. We have now addressed these points in the revised 

manuscript (page 9, line 25- 30). 

 

Table R7: REAGENT SOURCE IDENTIFIER 

NF-κB p65 Rabbit mAb (D14E12) Cell Signaling Technology 8242T 

NF-κB p65 Mouse mAb (L8F6) Cell Signaling Technology 6956T 

NF-κB p65 Mouse mAb Millipore 17-10060 

p-NF-κB p65 Antibody mouse mAb (27.Ser 536) Santa Cruz Biotechnology sc-136548 

RELB Mouse mAb (17.3)  Invitrogen 437500 

RELB Rabbit mAb (D7D7W) Cell Signaling Technology 10544 

p-RELB (Ser552) Rabbit mAb  (D41B9) Cell Signaling Technology 5025S 
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New Fig. 5g: Immunofluorescence 

staining for VCAM1 (green), HNF4A 

(red) and LTL (white) in the adult 

human kidney sections (left, 

representative image) and quantitation 

of HNF4A-positive cells on the 

VCAM1-positive or negative subset of 

LTL-positive PT cells (right). The 

sections were quantified in 5 random 
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4. Supporting validations for some of the other key computational findings in the study would 

have significantly increased the impact of the study. For example, experimental validation of the 

regulatory role of HNF1B in CLDN10 expression. 

 

[Response] In response to this comment, we provide new data obtained from human kidney 

samples to validate heterogeneity within the TAL. PTH1R and KCNJ10 were both predicted to 

be expressed in a subset of TAL cells. We used immunohistochemistry to demonstrate that 

PTH1R and KCNJ10 were expressed in a subset of UMOD+ SLC12A1+ cells (new 

Supplementary Fig. 14c). 

 
 

 

 

 

  Figure XX

KCNJ10 / SLC12A1 PTH1R / SLC12A1

KCNJ10 / UMOD PTH1R/ UMOD

New Supplementary Fig. 14c: Representative immunohistochemical images of KCNJ10 or 

PTH1R (brown) and UMOD or SLC12A1 (blue) in the adult human kidneys. Scale bar 

indicates 50 µm. 

 

 



We initially described these subsets as medullary vs cortical TAL based on CLDN10 and 

CLDN16 mRNA expression. However, our new data suggests that both of these TAL subsets 

exist in the cortical TAL, and we have changed our terminology to "TAL1" and "TAL2". We 

have addressed these points in the revised manuscript (page 7, line 43- page 8, line 24). 

 

In general, few TAL cell lines exist. Some rodent medullary TAL cell lines have been 

established previously (Eng et al., PMID: 17670898, Bourgeois et al., PMID: 12836026), 

although they were unlikely to keep all the characteristics of mature TAL cells due to loss of a 

complex physiological organization in vivo. Actually, murine Hnf1b regulates Cldn10b, Cldn19, 

and Cldn3 differently in one of these cell models in vitro than it does in vivo in mouse kidney 

(Kompatscher et al., PMID: 29561186). Hence, we were not able to experimentally validate the 

regulatory role of HNF1B in CLDN10 expression for now. We are sorry not to be able to 

respond to this constructive suggestion of the reviewer, but we will take this advice into 

consideration for our future studies. As a result, we have removed the related statement about the 

potential relationship between HNF1B and CLDN10 (page 10, line 44- page 11, line 5). 

 

Instead, to validate some of our other key computational findings, we additionally performed 

ChIP-qPCR to validate HNF4A and RELA motif analysis (new Fig. 5f, Supplementary Fig.9). 

We have now addressed these points in the revised manuscript ((page 6 line 14-19, line 23-25; 

page 9 line 30-36). 

 



REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors took ask my concerns to heart and provide extensive new data and sufficient 
explanations. I have no further comments. 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have tried to address the comments either by validating or changing the text in the 
manuscript. Although the authors were not able to address all of the reviewers 'comments, the 
study does include two key findings that may have clinical implications. These include: 
1. The finding of PT_VCAM1 as a subpopulation of proximal tubular cells that is undergoing injury 
in situ, and expands in aging and chronic kidney disease. 
2.Role of NF-κB in the maintenance of PT_VCAM1. 
 
 
 
 
Reviewer #4 (Remarks to the Author): 
 
In this manuscript, Yoshiharu Muto et al profiled multiple human kidneys with 10x based single 
nucleus RNA and ATAC-seq. By integrating these two datasets, this study revealed unique 
biological insight including cell type-specific gene expression and regulation mechanisms by cis- 
and trans- factors. Also, this research characterized cell state heterogeneity in the thick ascending 
limb, as well as a unique proximal tubule cell subtype that is related to tubular injury, which is 
novel and could be foundations for therapy development to treat kidney injury. 
 
I am satisfied with the high data quality, detailed analysis, and validation experiments. Also, the 
authors have satisfactorily responded to all major and minor comments from reviewer #2. A minor 
comment is that several supplementary analysis in S8 and S15 are pretty interesting and can be 
considered to be part of the main figure. Overall, I am pretty excited about the release of the 
dataset and believe the publication of this study will benefit both the single-cell genomic field and 
renal research. 
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