
SUPPLEMENTARY METHODS, DATA, AND FIGURES 

 

Whole-Slide High-Resolution Image Acquisition 

Images were acquired using the Olympus FV3000 laser scanning confocal microscope, with 

motorized stages and 2x PlanApo N and 40x UPlanSApo objective microscope lenses. The 

system used all diode lasers with a galvanometer scanner and multi-alkali photomultiplier spectral 

detectors. The Multi-Area Time Lapse (MATL) acquisition feature was utilized with the 2x 

magnification objective lens and 1.5x digital zoom to acquire the whole tissue using transmitted 

light and DAPI to produce a 10% overlapped stitched image as a reference map. Transmitted 

light and DAPI were used to identify the tissue area and nuclear staining, respectively. 

Subsequently, the 40x objective lens and a 1.5x digital zoom were used to define regions of 

interest for acquisition on the 2x reference map. Each region created on the reference map for 

acquisition implemented the Z Drift Compensator (ZDC) and focus map feature. ZDC and focus 

map compensated for varying imaging focal points throughout the tissue with a +/- 100 µm search 

zone for upper and lower limits. A FITC dye channel setting was used to image CD42b for platelets 

and AF647 channel for CD31 blood vessels. Exposure time was set to 8.0 µs/pixel along with a 

1024 x 1024 resolution and a 0.65 Airy Disk pinhole to obtain a 0.21 µm/pixel size. Although the 

total number of images per region of interest varies, a whole-tissue imaging experiment usually 

captures over 1,000 small image tiles and then montages them to create a single high-resolution 

digital image file, with a 10% overlap for stitching using the higher objective. Individual image tiles 

were saved and used for image analysis. 

 

Automated Image Reconstruction 

 Deep Learning Modeling: 



Each small image tile was segmented and manually labeled into four categories (benign tissue, 

cancer tissue, blood vessels, and background), and then one-hot-coding transformation was 

performed on the labeled images 1. While the core of the convolutional neural network (CNN) 

model of deep learning extracted the relative position in the picture, over-cropping of the image 

resulted in the severe loss of the position information affecting the performance of the model 2-4. 

In principle, the acquisition of more input image pixels results in more information extraction by 

the convolutional layer; but this requires more computational costs in CNN modeling.  According 

to the ratio of cells and picture pixels, we choose to crop an image tile into a size of 256 x 256 x 

3. The resultant dataset was divided into two parts, the training set and the testing set. The training 

dataset took the original image tiles (256 x 256 x 3) as input and the label image tiles (256 x 256 

x 4) as the model’s training target. In addition to cropping, image data were also augmented by 

rotation and flip 5. With such data augmentation, we generated 4,560 original image tiles as the 

training dataset and 1,184 images as the testing dataset. The image datasets were randomly 

chosen and did not overlap 6,7. 

The deep learning method, U-Net architecture, a fully convolutional neural network, was selected 

based on its excellent accuracy and high efficiency 8-11. In our model, U-Net is composed of two 

parts, the five down sampling layers extracted the features from the input image tiles, and the up 

sampling structures reconstructed the segmentation image tiles. The U-Net was a symmetric 

structure and has the same number of layer blocks for both up and down sampling. The kernel 

size of the convolutional layers was identical, set as 3 x 3 12. The padding within a block was 

always 1, and the channel did not change. Instead, the padding between blocks was set as 2, 

and the channel doubled to ensure that down sampling blocked extract features. To avoid over-

fitting, the dropout layer of a 50% ratio was added at the end layer of the last down sampling 

block. Symmetrically, the up sampling section started from the last layer of the deepest blocks 

(dropout layer) 13. Similar to the down sampling section, the padding within a block was set as 1, 



and the channel of layers stayed the same while the padding between blocks was two, and the 

channel was divided by 2. 

Moreover, the skip connections were set between corresponding down sampling blocks and up 

sampling blocks to help the reconstruction 14. However, the skip connection between the input 

block and the output block was canceled because of the robustness. With this structure, the output 

image size could be identical with the input image; therefore, the input image segmentation 

became the classification on every pixel (normal, cancer, vessel, and background). The batch 

normalization layers were set at the start of each layer except the input and the output block to 

help the model convergence, which was not shown in the schema. The activation function of all 

the convolutional layers was set as ReLU 15-17. The last layer predicted the probability of being 

normal, cancer, vessel, or background for each pixel in the input image 18. Therefore, the 

categorical cross-entropy was the best option for loss function because the segmentation became 

a four-category classification for every pixel of the input image tile 18,19. 

 Model Training:  

All training programs were run on the cloud computing environment of Amazon web services 

(AWS). The models were compiled with Adam optimizer (learning rate = 1e-5) and certain cross-

entropy loss function 20,21. The batch size of each training step equaled to 8, and the epoch 

number equaled 50. At the end of each training step, 100 testing samples randomly chosen from 

the testing dataset were used as the validation to guarantee that models converge. 

After accomplishing the training procedure (the categorical cross-entropy variation was 

less than 1e-4), the U-net model was tested on the whole test dataset. The accuracy 

(90.06%±0.27) and the confusion matrix (Supplementary Figure 1a) were calculated for every 

testing image. Our testing samples showed that the model indeed learned the platelet pattern. 

For example, 3 in Supplementary Figure 1b, even the manual label did not distinguish platelets 



from the vessel background area due to the low contrast, but the model still could identify platelets 

from blood vessels. In other words, the model performed even better than labels. Supplementary 

Figure 2 shows the process and the result of a full montage tissue image in the size of 30,000 x 

30,000 pixels. The model segmented the original image (Supplementary Figure 2b) 

successfully, and an image of the cancerous region was generated accurately and automatically. 

 

Platelets Quantification 

To accurately detect the platelet signal distributed in the entire tissue microscopic images, platelet 

signal processing and detection methods were applied. Supplementary Figure 3 shows the 

flowchart of our platelet quantification procedure. Platelet segmentation was the first step. In this 

step, the original input image (clear cancerous region image) was filtered to remove any random 

noise. We used an average filter of window size 3 x 3 since higher window size caused severe 

smoothening 22-24. The general equation to filter an input image, I(x,y), using the average filter is 

given in equation ℎ[𝑖𝑖, 𝑗𝑗] = 1
𝑀𝑀∑ 𝐼𝐼(𝑥𝑥,𝑦𝑦) , 𝑥𝑥,𝑦𝑦 ∈ 𝑁𝑁, where M is the total number of pixels in local 

neighborhood N 2,25.  The filtered image was then converted into a grayscale image. The RGB 

image consisted of intensity values of three color spaces or channels – Red, Green, and Blue. 

The platelet signals were only contained in the green channel. Therefore, RGB images were 

converted into grayscale images with green channel signals only. The platelet segmentation was 

done by histogram-based thresholding 26-28. The histogram of the pre-processed image was 

generated. The x-axis in the histogram had 250 bins, and each of the bins corresponded to a 

gray-level value. The y-axis showed the total number of pixels corresponding to a particular bin. 

The number of cells presented in the input image was much higher, whereas the platelets were 

less in number. Some bins did not have any pixels. We eliminated all such bins because bins with 

zero count indicated that no pixels in the resulted image had such gray-level intensities. Also, bins 



with high pixel counts ≥3,500 were eliminated since bins with such high pixel counts corresponded 

to cell nuclei pixels reflecting the abundancy of cell nuclei in the input image. After eliminating 

bins with zero and very high count, only bins containing the platelet and cell membrane pixels 

were acquired. Further segmentation was done by histogram-based thresholding. To set the 

proper threshold for binarization, we scanned all the left-over bins, and their corresponding pixel 

counts. The last bin represented the maximum gray level intensity that the platelets and cell 

membrane pixels possessed. This gray-level intensity was then used as a threshold for the 

segmentation of platelets and cell membrane pixels. All pixels with intensities less than the 

threshold were set to 1, since these pixels represented the platelet, and cell membrane pixels and 

others were set to 0. This process eliminated the cell nuclei leaving behind platelets and cell 

membranes. Then we used a cell membrane removal block to remove all cell membranes from 

the image. The cell membranes were eliminated by the area. Otsu’s thresholding was used to 

remove all objects from the binary image (BW1) obtained from the previous step 29-31. The resulted 

binary image (BW2) consisted of only cell membranes. To analyze only platelets and not cell 

membranes, we performed a binary “exclusive or” (xor) operation between the two binary images, 

BW1 and BW2, to generate the binary image consisting of only platelets after the elimination of 

cell membranes 32-34. The morphological operation was the final step, where morphological 

operations removed the overlapping cells 35-37. In our work, morphological opening with a disk 

structuring element of radius 4 (the radius was determined experimentally) has been performed 

on the resulting binarized image of the previous step to remove the remaining overlapping cells 

that appeared as thin protrusions. The output image of this phase was a binary image consisting 

of platelets and devoid of any other types of cells or artifacts. After platelet extraction, an 

automated method was built for counting the total number of platelets. The platelet segmentation 

process was first applied, and then the platelet count in each image was found by labeling and 

counting the 8-connected components or direct neighboring pixels (known as 8-connectivity) 38-

41. Platelets were of irregular shape, and also their size was quite various, so 8-connectivity was 



used to count some platelets instead of 4-connectivity. The total count was summed up to find 

the platelet count in the image.  

 

Transwell migration assay 

We used modified Boyden chambers (8mm pore size membrane, Coster) coated with 0.1% 

gelatin. Fifty thousand ID8 cells and five million G-protein-deficient platelets were suspended in 

100 μl serum-free media and added into the upper chamber. Platelets collected from littermates 

with Gfl/fl genotypes were used as controls. Complete media containing 10% FBS (500 μl) were 

added to the bottom chamber as a chemoattractant in a 24-well plate.  The chambers were 

incubated at 37°C in 5% CO2 for 6 hours. After incubation, the cells on the membrane were 

removed with cotton swabs. Migrating cells to the bottom of the membrane were fixed, stained, 

and counted by light microscopy from four random fields per membrane. 

 

Ki67 staining  

Immunostaining of resected tumor nodules for Ki67 was performed on 4-μm thick, formalin-fixed, 

paraffin-embedded tumor nodules. Briefly, slides were deparaffinized, antigen retrieval (pH6.0) 

was performed, and endogenous peroxidases and nonspecific binding were blocked. After 

overnight incubation with the primary Ki 67 antibody (Abcam, 1:500 dilution), slides were washed 

and incubated with horseradish peroxidase-conjugated secondary antibodies for 1 hour, and the 

slides were incubated with 100–200 μl of DAB at room temperature, counterstained with 

hematoxylin for 15 s, and mounted on a bright-field microscope.  The number of Ki67 positive 

cancer cells and the total number of cancer cells in each high power field were recorded, and the 

percentage of Ki67 positive cells in that field was determined and reported.   
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Supplementary Figure 1 

 

Supplementary Figure 1: Automated image reconstruction and modeling. (A) The confusion 
matrix between prediction and gold standards. The x-axis represents the model predictions, and 
the y-axis represents the gold standard. For example, the number of the top-right block means 
the number of pixels classified as background while the true label is normal tissue. The overall 
accuracy robustly achieved 90.06% in the testing dataset despite the similarities between the 
platelet and background. (B) Three samples (256x256 pixels each) were segmented by the deep 
learning model, despite the similarities between platelets and background (many background-like 
spaces in the vessels, the model could distinguish the key platelet pattern from the original 
images. The predicted and labeled images include normal tissue (purple), cancer tissue (blue), 
platelet (green), and background (yellow). 

  



Supplementary Figure 2 

 

Supplementary Figure 2: The automatic segmentation and platelet quantification. During 
the automatic segmentation procedure, the blood vessels and the benign regions of the section 
were removed, and only the cancerous region was reserved, (A) The original images and the 
segmented image, respectively; (B) The overlapped image of the original and the segmented 
image; (C) The output image after segmentation. D and E show the platelets quantification 
procedure; (D) The segmented image C is translated to grayscale, the background at each edge 
is cut to reduce the size of the image; E) The binary map of the platelets after processing, and (F) 
The zoomed-in images of i, ii, iii, and iv regions in E. 

  



Supplementary Figure 3:  

 

 

Supplementary Figure 3: Flowchart of platelet quantification procedure. 
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