Supplementary Information for

Engineering Cofactor Specificity of a Thermostable Phosphite Dehydrogenase for a Highly-efficient and Robust NADPH Regeneration System

Gamal Nasser Abdel-Hady^{1,2}, Takeshi Ikeda^{1,3}, Takenori Ishida^{1,3}, Hisakage Funabashi^{1,3} Akio Kuroda^{1,3}, Ryuichi Hirota^{1,3*}

¹ Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan

² Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt

³ Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan

* Correspondence :

Ryuichi Hirota hirota@hiroshima-u.ac.jp

Supplementary Figure 1. Sequence alignment of phosphite dehydrogenases from *Ralstonia* sp. 4506 (RsPtxD) and *P. stutzeri* WM88 (PsePtxD). The alignment was generated using ESPrint 3.0 (Robert and Gouet 2014; http://espri pt.ibcp.fr/ESPri pt/cgi-bin/ESPri pt.cgi). The α -helixes (coiled lines) and β -sheets (solid arrows) are shown at the top of the alignment sequence. The GxxGxGxxG motif and the target site for the amino acid substitutions are shown below the alignment by a red dashed line and solid red line, respectively.

Supplementary Figure 2. Purification of the recombinant RsPtxD proteins using a nickel column. Indicated fractions by black dots were collected, buffer exchanged, and concentrated for the analysis. C: crude extract, Th: through fraction. AR, RsPtxD_{AR}. HAR, RsPtxD_{HAR}. HARKA, RsPtxD_{HARKA}. HARRA, RsPtxD_{HARRA}.

Supplementary Figure 3. Batch production of SA from 3-DHS with regeneration of NADPH using RsPtxD_{HARRA} mutant. The reaction mixture contained 100 mM 3-DHS, 0.1 mM NADP, 150 mM phosphite, 40 μ g mL⁻¹ SDH, and 160 μ g mL⁻¹ RsPtxD_{HARRA}.

Supplementary Figure 4. Proposed model structures of the NAD-binding pocket of RsPtxD (WT), RsPtxD_{AR} (AR), RsPtxD_{HAR} (HAR), and RsPtxD_{HARRA} (HARA) (Top panels). The side chains of amino acid residues at 174, 175, 176, 177, 178, and 213 are shown in cyan. The protein structures were modeled by the Molecular Operating Environment software (MOE; Chemical Computing Group Inc., Montreal, Canada) using the PDB 6IH3 structure (Liu et al., ACS Catalysis 9: 1893-1887, 2019) as a template. The distance between the residues at 174 and 213 was shown with a red dotted line. The NAD moiety was shown in light brown and the 2'-phosphate group was shown in dark red. Note that the distances between the residues 174 and 213 in RsPtxD_{HAR} and RsPtxD_{HARRA} are shorter than that in RsPtxD and RsPtxD_{AR}. Hydrogen bonding between residues and cofactor were shown as black dotted lines. The numbers (S values) in the parenthesis are binding energy (kcal/mol) of NADP and RsPtxDs calculated by the GBVI/WSA dG scoring function of the MOE software. The electrostatic surface potentials of the proposed model structures of the NAD-binding pocket of RsPtxD and its mutants (Bottom panels). Positively charged region is indicated in blue and negatively charged region in red.

Supplementary Figure 5. pH dependent profile (A) and thermal stability (B) of RsPtxD_{AR} mutant (AR). (A) PtxD activity was measured using 0.5 mM (circles), 1.0 mM (triangles), and 1.5 mM (squares) of NADP. The data are shown as means \pm standard deviation obtained from three independent experiments. (B) Thermal inactivation of RsPtxD_{AR} was performed with 0.5 mM (open circles) and 1.5 mM (closed circles). The data was representative of two independent experiments, with essentially the same results.

Supplementary	Table 1.	The oligonucl	eotides and p	plasmids used	in this study
		U	1		2

Primers	Sequence 5'-3'*			
D175A/P176R_fw	TTGC GCACGT ATTCCGCTCAATGCCGAA			
D175A/P176R_rv	GGAAT ACGTGC GCAATACCAGAGATTCA			
C174H/D175A/P176R _fw	TGTAT CAC GCACGTATTCCGCTCAATG			
C174H/D175A/P176R _rv	ACGTGC GTG ATACAAGAGATTCATTTC			
C174H/D175A/P176R/ I177K/P178A_fw	GCACGT AAAGCG CTCAATGCCGAACAAG			
C174H/D175A/P176R/ I177K/P178A_rv	TGAG CGCTTT ACGTGCGTGATACAAGAG			
C174H/D175A/P176R/ I177R/P178A_fw	GCACGT CGCGCG CTCAATGCCGAACAAG			
C174H/D175A/P176R/ I177R/P178A_rv	TGAG CGCGCG ACGTGCGTGATACAAGAG			
Plasmids	Descriptions			
<i>RsptxD</i> /pET21b	pET21b (Novagen) containing RsptxD			
	(Hirota et al., 2012)			
<i>RsptxD</i> _(D175A/P176R) /pET21b	pET21b containing a mutant <i>RsptxD</i> gene for			
	RsPtxD _{AR} expression			
<i>RsptxD</i> _(C174H/D175A/P176R) /pET21b	pET21b containing a mutant <i>RsptxD</i> gene for			
	RsPtxD _{HAR} expression			
<i>RsptxD</i> _(C174H/D175A/P176R/I177K/P178A) /pET21b	pET21b containing a mutant <i>RsptxD</i> gene for			
	RsPtxD _{HARKA} expression			
<i>RsptxD</i> _{(C174H/D175A/P176R/1177R/P178A})/pET21b	pET21b containing a mutant <i>RsptxD</i> gene for			
	RsPtxD _{HARRA} expression			
sdh/pET11a	pET11a plasmid containing shikimate			
-	dehydrogenase gene from T. thermophilus			
	(Yokoyama et al., 2000)			

*Boldface nucleotide sequences indicate mutation positions.

	NADP					
Enzyme	<i>K</i> _M (μM, NADP)	$K_{\rm cat}$ (min ⁻¹)	$K_{ m cat}/K_{ m M}$ ($\mu { m M}^{-1}$ min ⁻¹)	<i>K</i> _M (μM, Pt or formate)	Assay conditions	References
PsePtxD _{E175A/A176R}	3.5 ± 0.5	114 ± 33.0	32.5	21 ± 3.0	25 °C, pH 7.25	Woodyer et al., 2003
PsePtxD _{12x-A176R}	5.5 ± 0.7	82 ± 4.0	14.9	36 ± 14.0	25 °C, pH 7.25	Johannes et al., 2007.
mut PseFDH	150 ± 25	150 ± 9.0	1.0	9000 ± 3000	30 °C, pH 7.0	Serov et al., 2002.
BstFDH _{G146M/A287G}	90 ± 0.0	529 ± 1.8	5.9	31700 ± 3700	30 °C, pH 7.0	Jiang et al., 2020.
PseFDH-V9	26 ± 1.0	221 ± 1.8	8.5	24000 ± 2400	30 °C, pH 7.0	Calzadiaz-Ramirez et al., 2020.

Supplementary Table 2. Comparison of kinetic parameters of NADP-dependent enzymes previously reported