| Category          | Total no. | ssSPTa <sup>+/+</sup> | ssSPTa+/- | ssSPTa-/- | No. absorbed | ND |
|-------------------|-----------|-----------------------|-----------|-----------|--------------|----|
| Live births       | 289       | 105                   | 184       | 0         | -            | -  |
| Blastocyst (F3 5) | 10        | 3                     | 5         | 2         | _            |    |
|                   | 10        | 3                     | 5         |           |              | _  |
| Embryos (E6.5)    | 24        | 3                     | 12        | 4         | 3            | 2  |
| Embryos (E7.5)    | 62        | 18                    | 33        | 1         | 8            | 2  |
| Embryos (E8.5)    | 20        | 5                     | 12        | 0         | 3            | -  |

**Supplemental Table1.** Matings were set between  $ssSPTa^{+/-}$ . Blastocyst and embryos were harvested at E3.5, E6.5, E7.5 and E8.5 to ascertain the time of embryonic lethality of  $ssSPTa^{-/-}$ . The table lists the genotypes obtained from ssSPTa heterozygous crosses.



**Figure S1.** *ssSPTa* deletion cause embryonic lethality at E6.5. **A.** *ssSPTa*<sup>+/+</sup> and *ssSPTa*<sup>-/-</sup> embryos harvested at E6.5 stained with hematoxylin and eosin. **B.** *ssSPTa*<sup>+/+</sup> and *ssSPTa*<sup>-/-</sup> embryos were harvested at E6.5 and stained for **a** lysotracker; red **b** DAPI; blue, **c** DIC, **d** merge of lyso tracker and DAPI, **e** merge of lyso tracker, DAPI and DIC. **C.** *ssSPTa*<sup>-/-</sup> embryos at E6.5 showed more Tunel positive cells indicative of apoptosis than control. **D.** *ssSPTa*<sup>-/-</sup> embryos at E6.5 showed less uptake of BrdU than control indicative of reduced cell proliferation. All graphs are represented as mean ± SEM. P value <0.05 is significant, calculated from unpaired t-test. **Scale bar 100 µm**.



15-

10-

5-

0

55SPTa1

55SPTa





С ssSPTa<sup>+/+</sup>

**40** 

20·

0

55SPTa

55.5PTa

ssSPTa<sup>-/-</sup>



**40** 

20

n

55SPTA

55SPTa

30·

20

10·

55SPTat





**Figure S2.** Deletion of ss*SPTa* using *Mx1-Cre* compromises hematopoiesis. **A.** PCR based genotyping of ss*SPTa* wildtype and its floxed allele. Flox allele PCR for *ssSPTa<sup>flox/flox</sup>*:*Mx-1 Cre* (1 & 2, Flox band) mice. *Cre* allele PCR for *ssSPTa<sup>flox/flox</sup>*:*Mx-1 Cre* (3 & 4, Cre band) mice. Wild type allele PCR for *ssSPTa<sup>+/+</sup>:Mx-1 Cre* (5 & 6, Wild type band) mice. *Cre* allele PCR for *ssSPTa<sup>+/+</sup>:Mx-1 Cre* (7 & 8, Cre band) mice. The flox, wild type and Cre PCR amplicons appear at 397, 575 and 700bp, respectively. **B.** Photograph of ss*SPTa<sup>+/+</sup>* and ss*SPTa<sup>-/-</sup>* mice four days after poly(I:C) injection showing fluid accumulation in the mutant small intestine. **C.** H&E-staining of small intestine from ss*SPTa<sup>+/+</sup>* and ss*SPTa<sup>-/-</sup>* mice visualized at 10X (scale bar 500 µm) and rectangular marqueed area magnified to 40X (scale bar 100 µm). **D.** BM cellularity from two femurs and two tibia on day eight in the ss*SPTa<sup>+/+</sup>* and ss*SPTa<sup>-/-</sup>* mice (n = 5). **E.** The total numbers of CD71<sup>+</sup>Ter119<sup>+</sup> BMCs, **G.** The percent of CD71<sup>-</sup>Ter119<sup>+</sup> BMCs were plotted for the ss*SPTa<sup>+/+</sup>* and ss*SPTa<sup>-/-</sup>* mice (n = 5). **H.** Spleen cellularity was determined on day eight in the ss*SPTa<sup>-/-</sup>* mice (n = 5). **L.** The total numbers of CD4<sup>+</sup> CD8<sup>+</sup> cells from thymus were plotted (n = 5). **L.** The total numbers of CD4<sup>+</sup> cells from thymus were plotted (n = 5). **N.** The total numbers of IgM<sup>+</sup> BM cells were plotted. All graphs are represented as mean ± SEM. P value <0.05 is significant, calculated from unpaired t-test.



**Figure S3.** ssSPT*a* deletion impairs myeloid differentiation and spares erythroid differentiation in chimeric mice. **A.** Survival graph of ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> BMT mice after poly(I:C) injection in chimeric mice. **B.** BMT cellularity was determined for the ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> twenty-one days after poly(I:C) injection in chimeric mice (n = 5). **C.** The percent CD71<sup>+</sup>Ter119<sup>+</sup> cells were plotted for the transplanted ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> mice (n=5). **D.** The total numbers of CD71<sup>-</sup>Ter119<sup>+</sup> cells were plotted for the transplanted ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> mice (n=5). **E.** The percent CD71<sup>-</sup>Ter119<sup>+</sup> cells were plotted for the transplanted ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> mice (n=5). **E.** The percent CD71<sup>-</sup>Ter119<sup>+</sup> cells were plotted for the transplanted ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> mice (n=5). **E.** The percent CD71<sup>-</sup>Ter119<sup>+</sup> cells were plotted for the ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> mice (n=5). **F.** Thymus cellularity of BMT was determined for the ssSPT*a*<sup>+/+</sup> and ssSPT*a*<sup>-/-</sup> twenty-one days after poly(I:C) injection (n = 5). **G.** The total numbers of donor CD4<sup>+</sup>CD8<sup>+</sup> cells from thymus were plotted (n = 5). **H.** The total numbers of donor CD4<sup>+</sup> cells from the thymus were plotted (n = 5). **I.** The total numbers of IgM<sup>+</sup> BMT cells were plotted. All graphs are represented as mean ± SEM. P value <0.05 is significant, calculated from unpaired t-test.

Α



В



Figure S4. Stem cell analysis of transplanted bone marrow cells and western blot of bone marrow cells . A. The LSK population was sub-gated for LT-HSCs, ST-HSCs and MPPs by Flt3 and CD34 staining for the ssSPTa <sup>+/+</sup> and ssSPTa -/- mice. B. The LK population was sub-gated for CMPs, GMPs and MEPs by FcR and CD34 staining for the ssSPTa<sup>+/+</sup> and ssSPTa<sup>-/-</sup> mice. C. Western blot analysis of bone marrow cell extracts of ssSPTa<sup>+/+</sup> and ssSPTa<sup>-/-</sup> mice four days after poly(I:C) injection probed for p-IRE1a, PERK and Grp78. C'. Quantitative data representative of three independent experiments. All graphs are represented as mean ± SEM. P value <0.05 is significant, calculated from unpaired t-test.



**Figure S5.** SPT complex stability and activity. **A.** Real time qPCR analysis of ss*SPTa* mRNA expression in liver, brain, lung, kidney, spleen and bone marrow isolated from wild type mice. Gene expression was normalized to  $\beta$ -actin. qPCR results were from three independent experiments. **B.** Real time qPCR analysis of ss*SPTb* mRNA expression in liver, brain, lung, kidney, spleen and bone marrow isolated from wild type mice. Gene expression was normalized to  $\beta$ -actin. qPCR results were from three independent experiments (n = 3). **C.** The percentage of SPT activity from liver microsome preparation from wild type, ss*SPTa<sup>-/-</sup>* and *SPTLC1<sup>-/-</sup>*. The results were from three independent experiments. **D.** Western blot analysis of bone marrow cell extracts of ss*SPTa<sup>+/+</sup>*(1,2,3), ss*SPTa<sup>-/-</sup>*(4,5,6) and *SPTLC1<sup>-/-</sup>* (7) mice four days after poly(I:C) injection probed with SPTLC1 and SPTLC2 antibodies. All graphs are represented as mean ± SEM. P value <0.05 is significant, calculated from unpaired t-test.





**Figure S6.** Deletion of ssSPTb does not compromise hematopoiesis. PCR based genotyping of ssSPTb <sup>+/+</sup> and ssSPTb <sup>-/-</sup> **A.** Deletion of exon 3 knocks the ssSPTb gene out. **B.** PCR for ssSPTb<sup>+/+</sup> (1&2) and ssSPTb<sup>-/-</sup> (3&4) alleles. The Control and ssSPTb mutant PCR amplicons appear at 250 and 350bp, respectively. **C.** Bone marrow tissue isolated from ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice. **D.** Wright-Giemsa staining of BMCs from the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice. 1 - RBC, and 2metamyelocyte, and 3-segmented band cell. **E.** BM cellularity from two femurs and two tibia in the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice (n = 5). **F.** Ly6C<sup>+</sup>Ly6G<sup>-</sup>, **G.** Mac-1<sup>+</sup>F4/80<sup>+</sup> cells were plotted for the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice (n = 5). **H.** CD71<sup>-</sup>Ter119<sup>+</sup> cells, were plotted for the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice (n = 5). **I.** The LSK population was sub-gated for LT-HSCs, ST-HSCs and MPPs by FI3 and CD34 staining for the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice. **J.** The LK population was sub-gated for CMPs, GMPs and MEPs by FcR and CD34 staining for the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice. **K.** Spleen cellularity was determined in the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice (n = 5). **L.** The total numbers of spleen Mac1<sup>+</sup>Gr1<sup>+</sup> cells were plotted. **M.** Thymus cellularity was determined in the ssSPTb<sup>+/+</sup> and ssSPTb<sup>-/-</sup> mice (n = 5). **N.** The total numbers of CD4<sup>+</sup>CD8<sup>+</sup> cells from thymus were plotted (n = 5). **O.** The total numbers of CD4<sup>+</sup> cells from the thymus were plotted (n = 5). **Q.** The total numbers of IgM<sup>+</sup> BMCs were plotted (n = 5). All graphs are represented as mean ± SEM. P value <0.05 is significant, calculated from unpaired t-test.