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S1. Peak picking parameters
Parameters Settings

Mass Detector Centroid

Mass Detector Noise Level 1000.0

Chromatogram Builder ADAP

Min Group Size 3

Group Intensity Threshold 1000.0

Min Highest Intensity 1000.0

m/z Tolerance (ppm) 10.0

Deconvolution Method Wavelets (ADAP)

S/N Threshold 5.0

S/N Estimator Intensity Window SN

Min feature height 1000.0

Coefficient / Area Threshold 1.0

Peak Duration Range (0.0, 5.0)

RT Wavelet Range (0.1, 1.0)



Table SI-1: MZMine2 settings used for the peak picking used for evaluation.

Parameters Value

algorithm CentWave

ppm 15

peakwidth (15, 80)

snthresh 5

noise 1000

prefilter (3, 500)

Table SI-2: XCMS parameters used in peak picking. All other parameters were XCMS defaults.

S2. Scan timing analysis and comparison with vendor 
method.
Timings were compared for different methods to understand the difference in the number of scans 
that each method achieves for a given sample on the real MS hardware. Timings for each scan were 
calculated by looking at the resulting mzML file and computing the difference in scan start times for 
successive scans. We adopted this approach as we were interested in the full duty cycle, including 
any processing in ViMMS. Figure SIAA shows these times plotted against the retention time (RT) of 
the start of the scan for 6 different methods. These methods included 3 methods that worked through 
the Thermo Fusion IAPI: a full scan controller in C# (csharp_full) bypassing VIMMS and directly 
using IAPI, a full scan controller in Python using ViMMS (python_full), and a Top-N controller in 
Python using ViMMS (python_topn). These were compared against 3 vendor methods created using 
the Xcalibur software suite: a full scan method (fusion_full), a Top-N method (fusion_topn) and a 
Top-N method with background exclusion (fusion_topn_be). All methods used the same scan 
parameters, as detailed in the main paper.

The full scan methods in Figure SIAA allow us to compare the comparative speed of the vendor 
method with those written in C# and Python as part of ViMMS and hence assess any timing overhead 
introduced by our use of the IAPI. The results show that there is a small difference (around 0.05) 



seconds between the time taken for a vendor scheduled scan andscans produced by ViMMS. The 
difference appears to be as a result of the delay in using the IAPI in order to schedule scans. Our 
implementation requires a bridge between the IAPI (C#) and python (ViMMS). The very small 
difference between csharp_full and python_full suggest that this additional translation is not costly.

Comparison of the TopN methods is more difficult. The vendor TopN method makes use of some 
level of parallelisation (Senko et al., 2013). The MS2 scans scheduled from a particular MS1 are 
started after the next MS1 scan has been injected. This means that the time between successive 
scan start times doesn’t always reflect that actual time a scan takes but, for most MS1 scans, just 
gives the injection time. This can be seen in the vendor scenario 1 in Figure SI-1.

Figure SI-1: Schematic of scan ordering for vendor (top) and our methods (bottom). In both cases, 
two scenarios are shown, differing in whether any MS2 scans are scheduled from MS1 scan 1. In 
Scenario 1 scans are scheduled. In Scenario 2, they are not. Note that this scheme is slightly different 
from that shown in (Senko et al., 2013) where they have full parallelisation due to the MS2 scans 
being performed in the linear ion trap whereas we perform MS2 scans in the orbitrap. This is also 
why the first MS2 scans in the vendor setup take longer than subsequent ones: they can start 
injection after the MS1 injection, but scanning cannot start until the MS1 scanning is finished.

Scenario 1 in the vendor block of Figure SI-1 shows how the first MS2 scan scheduled from MS1 
scan 1 starts after the injection of MS1 scan 2 (the time labeled A). Direct comparison of scan times 
is therefore not possible. However, we can compare the MS1 scan cycle time in situations where no 
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MS2 are scheduled from the previous MS1 scan. This is shown in vendor scenario 2. Here, no scans 
are scheduled from MS1 scan 1 meaning that the time from the start of MS1 scan 2 to the start of 
MS1 scan 3 does give us an indication of the MS1 cycle time. As we do not make use of 
parallelisation in our methods, the times are consistent, regardless of whether or not MS2 scans are 
scheduled.

Figure SI-2 shows a comparison of MS1 times for TopN methods where vendor times are limited to 
only the MS1 scan times for scans where no MS2 were scheduled from the previous MS1 scan (time 
B in vendor scenario 2 in Figure SI-1). We see roughly the same 0.05 second overheard for our 
methods (compare python_topn with fusion_topn_be). As we only plot vendor instances when no 
MS2 are scheduled, these are concentrated to the edges of the plot where the chromatogram is less 
busy. Fusion_topn_be is a machine TopN method with background exclusion turned on. Fusion_topn 
has no background exclusion and as such we see very few instances when it doesn’t fragment and 
therefore very few points on this plot.

This analysis allows us to conclude that there is very little overhead associated with our use of the 
IAPI but there may be benefits in the future of implementing similar parallelisation to that provided in 
the vendor method in our controllers as the parallelisation allows the vendor method to produce 
many more scans in total. For example, where our TopN controller did 6786 scans in total for Beer 
(652 MS1 and 6134 MS2), the vendor controller (fusion_topn) with the same scan parameters 
managed 9901 scans (1299 MS1 and 8602 MS2).

Figure SI-2: Plot showing the timings for 6 different methods against the retention time (RT) of the 
scan. For Top-N methods only points that are above the threshold of 0.4 are plotted in order to 
enhance the visualisation of the results.

It is interesting to note that this dramatic increase in number of scans does not translate to a large 
improvement in performance. Table SI-3 shows the coverage of our new controllers as well as the 
vendor TopN method. We can see that it doesn’t outperform any of the proposed methods. It 
improves over our TopN for the Beer but not the Serum sample. This suggests that further 
development (including some level of parallelisation) could further improve our controllers. Indeed, 



the optimal results (shown in Table SI-3) using average timings from the vendor method offer an 
improvement over the optimal results using our TopN timings, particularly for Beer.

Beer (4592 peaks) Serum (3032 peaks)Method

Iter 1 Iter 2 Iter 1 Iter 2

TopN 1046 656

WeightedDEW 1859 1768 1105 1226

SmartROI 1660 1546 991 1015

SmartROI (shift = 1) 1837 1740 1101 1193

SmartROI (shift = 2) 1838 1745 1040 1168

Vendor TopN method 1359 511

Optimal (TopN scan timings) 2955 1542

Optimal (vendor TopN scan timings) 3229 1555

Table SI-3: method coverage including vendor methods.

Parellisation must be used with care however. Studying Figure S1, we can see that the parallelisation 
can lead to a very large time between the survey scan and the later MS2 scans scheduled from it. 
Consider, for example, the large time from MS1 scan 2 until its MS2 scans. Smaller peaks may have 
stopped eluting by the time they are needed for fragmentation. Indeed, in our analysis (and other 
analysis pipelines too), when looking for the precursor m/z for the MS2 scans scheduled from MS1 
scan 2, we would actually look to the most recent MS1 (which in this case would be MS1 scan 3). 
We hypothesis that this may be what is causing the reduction in performance for Serum of the vendor 
TopN over our TopN, but testing that hypotheses is outside the scope of this work.

S3. Results for alternative peak picking methods
To ensure our results were not biased by a particular peak picking algorithm, we evaluated 
performance using two other methods. The Centwave algorithm from XCMS (Smith et al., 2006) and 
peakonly: a recently proposed method based on a convolutional neural network (Melnikov, 
Tsentalovich and Yanshole, 2020). Peakonly was run with default parameters whilst XCMS 
parameters were tuned to give a roughly comparable number of peaks to those found with MzMine. 
-- the parameters are shown in Table SI-2. Coverage results are shown in Table SI-4. We can see 
that with both peak picking approaches, our new methods all outperform TopN. For peakonly we see 
that the SmartROI (with shifts) outperforms the WeightedDEW, but the differences are rather small.
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XCMS Peak Only

Method Beer (5393 
peaks)

Serum (2739 
peaks)

Beer (1556 
peaks)

Serum (715 
peaks)

TopN 1939 1204 857 470

WeightedDEW 2418 2317 1530 1543 1061 995 465 476

SmartROI 2141 1996 1289 1323 1126 1072 520 555

SmartROI (shift = 1) 2289 2156 1361 1414 1219 1156 573 559

SmartROI (shift = 2) 2334 2186 1351 1378 1254 1181 566 560
Table SI-4: Coverage (number of picked peaks fragmented) for each controller for both beer and 
serum samples, where peaks have been picked using XCMS and PeakOnly. The first five rows show 
the performance of our (Python) controllers, with the shift set to be the same as Table 1 in the main 
paper. The final row gives the performance of the instrument method.

S4. Computing theoretical fragmentation bounds
We here provide more details on the optimal matching.

A graph G=(V,E) is a pair of sets V and E, where V is a set of vertices and E a set of edges. Each 
edge is an unordered pair of vertices. The vertices that are joined by an edge are known as the 
endpoints of the edge.



Figure SI-3: (a) Bipartite graph G and (b) G with a maximum matching shown in red. 
W={w1,w2,w3,w4,w5} corresponds to MS2 scans, U={u1,u2,u3,u4,u5,u6} corresponds to peak 
bounding boxes (from peak picking). Edges are drawn for MS2 scans that can be connected to 
bounding boxes if certain conditions are met to produce the fragmentation events.

A bipartite graph is a graph for which V is the union of two distinct sets, W and U, say, and for which 
every edge has one endpoint in W, and one endpoint in V.  Figure SI-3(a) shows a bipartite graph G1 
where W={w1,w2,w3,w4,w5} and U={u1,u2,u3,u4,u5,u6}. Here W corresponds to MS2 scans, while U 
corresponds to the peak boxes. A matching (Erciyes, 2018) of graph G is a subset M of E such that 
no two edges in M share an endpoint. A maximum matching M is a matching such that no matching 
Mʹ of G contains more edges. Figure SI-3(b) shows a maximum matching of G1 (red edges). 
Polynomial time algorithms exist to find maximum matchings. The problem can be solved by adding 
source and sink nodes and then using an optimised version of the Ford-Fulkerson algorithm (Ford 
and Fulkerson, 1956) to solve the resulting maximum network flow problem. This algorithm runs in 
O(|V|.|E|) time. An alternative, faster (O(√|V|.|E|)algorithm is the Hopcroft-Karp algorithm 
(Hopcroft and Karp, 1973), on which we base our implementation. 

S5. Optimality results
Average Scan time (s) CoverageSample

MS1 MS2 Observed Optimal

Beer (4592 peaks) 0.56 0.19 1046 2955

Serum (3032 peaks) 0.59 0.19 656 1542
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Table SI-5: Observed and optimal coverages for Beer and Serum for a TopN method.

S6. Scan timings for different controller methods
Beer Serum

Method MS1 MS2 MS1 MS2

Fullscan 0.54 0.56

TopN 0.56 0.19 0.59 0.19

SmartROI 0.68 0.19 0.67 0.18

WeightedDEW 0.61 0.19 0.61 0.19

Table SI-6: Scan timings for the different controller methods implemented on top of ViMMS. All times 
are averaged over one injection (iter 1), in seconds. Time for scan A is computed from the .mzML 
file as the difference between the scan start time of scans A and A+1 and therefore include both the 
time required to scan and process. As expected, MS2 times are constant, but MS1 times vary 
depending on the computation required to process the MS1 scan. 

S7. In-silico optimisation of controllers
In order to optimise the parameters for the SmartROI and WeightedDEW methods we completed a 
grid search of a some possible parameters in simulation within the ViMMS framework. We firstly 
converted an .mzml file from a recent real TopN run for each sample into ViMMS chemicals, allowing 
us to run in-silico simulations for each method and dataset. For each method we then chose a 
number of possible values for the parameters as given on the x and y axes of the plots. For each 
combination of parameters and dataset we then ran a simulation in ViMMS and calculated the 
coverage (colour scale on right hand side of the plots) based on peaks picked from the original .mzml 
file. The final choice of parameter to use on the real sample were chosen such that they had 
consistent high performance across both samples for each method.



Figure SI-4: Heatmaps of simulated coverage for SmartROI (top) and WeightedDEW (bottom). The 
simulated results could be used to suggest appropriate parameters to use for validation on the actual 
instruments. White cells in the WeightedDEW results indicate invalid parameter combinations.

S8. Performance comparison for different dataset sizes
We have compared the performance of the WeightedDEW, SmartROI and Top-N methods as the 
complexity of the sample increased. Dataset were generated with 250, 500, 750, 1000, 1250, 1500, 
1750, 2000, 2250, 2500, 2750 and 3000 Gaussian shaped chemicals using ViMMS, with 3 replicates 
in each case. Each method was ran with each samples with the resulting average coverage 
calculated. In Figure SI-5 we can see the comparative performance, with the left plot showing the 
average number of chemicals fragmented and the right figure showing the percentage of possible 
chemicals fragmented. The results of Figure SI-5 show that the methods are approximately equal in 
terms of performance for 1000 chemicals or less. As the number of chemicals increases both the 
WeightedDEW and SmartROI method outperform Top-N, with WeightedDEW then outperforming 
SmartROI when there are more than 2000 chemicals or more.



Figure SI-5: Plots showing the comparative average performance of the WeightedDEW, SmartROI 
and Top-N methods on dataset a varying number of true chemicals.

S9. Intensity analysis of fragmented precursor peaks
We evaluated how WeightedDEW, SmartROI and Top-N methods varied in terms of the precursor 
peak intensity at fragmentation. For each picked peak using MZMine2, we determined the intensity 
of the precursor ions when fragmentation events occurred (if multiple fragmentation events were to 
occur within a single picked peak, the one with the largest precursor intensity was selected). It is 
important to note that all methods were set to never fragment below a minimum MS1 intensity (5000).

Figure SI-6 shows the cumulative plots of fragmented precursor peaks intensities. The results in 
Figure SI-6A and C demonstrated that the SmartROI and WeightedDEW methods were able to 
fragment more precursor peaks of lower intensities that Top-N missed (right hand region of the plots) 
for Serum and Beer respectively. The results here agree with the increased coverage in Table 1 of 
the main text. Note that all fragmentation events are already above the minimum intensity for 
fragmentation defined by the user during the acquisition, so increased coverage means a greater 
number of potentially useful fragmentation spectra could be obtained.



To determine if there is a consistent difference in fragmented precursor intensities, we identified 429 
and 779 common peaks that were fragmented by all three methods in the Serum and Beer samples 
respectively. Plotting the same cumulative plots for these common peaks (Figure SI-6 B and D), we 
see that the increased coverage from SmartROI and WeightedDEW comes at the cost of a slight 
reduction of precursor intensities at the time of fragmentation compared to Top-N (Top-N curve 
slightly higher than others in left-hand region). This is not surprising, as Top-N is a method that 
prioritises based on intensity, while the other two methods attempt to balance coverage and intensity.

Figure SI-6: Plots showing the cumulative count of fragmented picked peaks with intensities above 
log(intensity). In A and C, all picked peaks fragmented by each method were counted, while in B and 
D, only shared common peaks fragmented across the three methods were evaluated. 
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