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In this supplementary appendix, we first present additional simulation results, then
provide a collection of technical lemmas and the proofs of the theorems in the paper.
Note that the proof of Proposition 1 follows that of Theorem 1, and is thus omitted.

A1 Additional Simulation Results

We further consider the setting when the variables within Xk are correlated. Note that,
by construction, the variables within Y k are always correlated. Specifically, we adopt a
similar simulation setup as in Section 4.1 of the paper, and add a covariance structure ΣX

for the entries of Xk. We set ΣX = c−1Cov(Xk) = (σX,i,j), where c = Var{N(0, 1)} = 1
for Distribution 1 and c = Var{t(10)} = 1.25 for Distribution 2, and σX,i,i = 1, σX,i,j =
0.5 for 5(k− 1) + 1 ≤ i, j ≤ 5k, with k = 1, . . . , [p/5], and σX,i,j = 0 otherwise. We have
chosen this block covariance structure mostly to simplify the computation in the data
generation step, since it allows us to efficiently compute the true covariance structure in
the simulations. Then we generate n copies of the second modality, {Y k}nk=1 in the same
way as the paper. In this case, we have Cov(Xk,Y k) = cΣXΣ1,2, with the following
three covariance structures similar as those in the paper:

Structure 1: Σ1,2 = (σi,j) where σi,j = 0.8 Bernoulli(1, 0.05) for 1 ≤ i, j ≤ p;

Structure 2: Σ1,2 = (σi,j) where σi,i =Uniform(0.5, 2), σi,j = 0.8 for 5(k − 1) + 1 ≤
i, j ≤ 5k, with k = 1, . . . , [p/5], and σi,j = 0 otherwise;

Structure 3: Σ1,2 = (σi,j) where σi,i =Uniform(0.5, 2), σi,i+1 = σi+1,i = 0.8 for i =
1, . . . , p− 1, and σi,j = 0 otherwise.

For those pairs of regions with fewer or equal than 5 nonzero correlations, we set the
corresponding submatrix equal to zero. We report the empirical FDR and power, both
in percentages, based on 100 data replications, in Table S1 for n = 100, and in Table
S2 for n = 150. We observe essentially the same pattern as before, in that our proposed
test obtains an empirical FDR well controlled under the nominal level, and achieves a
much higher empirical power than the competing methods.
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Normal distribution Scenario 1 Scenario 2

Covariance Struct-1 Struct-2 Struct-3 Struct-1 Struct-2 Struct-3

Empirical FDR

Xie and Kang 0.0 0.0 0.0 0.3 0.0 0.0
Sparse CCA 97.3 17.6 10.8 96.1 16.6 14.1

Our test 5.4 4.3 4.5 5.1 4.3 4.4

Empirical power

Xie and Kang 5.8 28.9 17.2 33.2 44.2 26.8
Sparse CCA 19.3 2.9 1.4 20.0 1.2 1.6

Our test 37.1 99.6 90.6 84.4 99.6 91.2

t distribution Scenario 1 Scenario 2

Covariance Struct-1 Struct-2 Struct-3 Struct-1 Struct-2 Struct-3

Empirical FDR

Xie and Kang 0.0 0.0 0.0 0.5 0.0 0.0
Sparse CCA 96.8 14.2 15.3 98.3 21.0 12.8

Our test 3.1 3.3 3.2 2.0 3.2 3.4

Empirical power

Xie and Kang 4.3 19.0 13.3 10.2 28.6 17.7
Sparse CCA 14.6 1.7 2.0 21.4 1.3 0.7

Our test 44.2 97.0 80.2 47.5 96.8 79.5

Table S1: Empirical FDR and empirical power, in percentages, for the proposed testing
procedure. It is also compared with the testing method of Xie and Kang (2017) and sparse
CCA. The results are based on 100 data replications. The significance level is set at α = 5%.
The sample size is n = 100.

A2 Technical Lemmas

Lemma 1 (Bonferroni inequality) Let A = ∪pt=1At. For any k < [p/2], we have

2k∑
t=1

(−1)t−1Et ≤ P(A) ≤
2k−1∑
t=1

(−1)t−1Et,

where Et =
∑

1≤i1<···<it≤p P(Ai1 ∩ · · · ∩ Ait).

Lemma 2 (Berman, 1962) If X and Y have a bivariate normal distribution with ex-
pectation zero, unit variance and correlation coefficient ρ, then

lim
c→∞

P(X > c, Y > c)

{2π(1− ρ)1/2c2}−1
exp

(
− c2

1+ρ

)
(1 + ρ)3/2

= 1,

2



Normal distribution Scenario 1 Scenario 2

Covariance Struct-1 Struct-2 Struct-3 Struct-1 Struct-2 Struct-3

Empirical FDR

Xie and Kang 0.0 0.0 0.0 0.1 0.0 0.0
Sparse CCA 98.3 13.8 9.5 95.8 14.1 8.5

Our test 4.0 3.9 3.9 4.3 4.0 3.9

Empirical power

Xie and Kang 52.6 93.8 68.7 91.8 98.6 82.3
Sparse CCA 16.4 0.6 0.6 25.8 0.8 0.6

Our test 93.6 100.0 99.9 99.3 100.0 99.9

t distribution Scenario 1 Scenario 2

Covariance Struct-1 Struct-2 Struct-3 Struct-1 Struct-2 Struct-3

Empirical FDR

Xie and Kang 0.0 0.0 0.0 0.0 0.0 0.0
Sparse CCA 92.7 9.8 4.1 96.9 7.7 13.2

Our test 2.7 3.0 3.1 2.5 3.0 2.9

Empirical power

Xie and Kang 46.1 76.6 46.6 67.8 90.8 63.9
Sparse CCA 17.2 1.1 0.1 22.4 1.1 1.2

Our test 95.3 100.0 99.6 97.6 100.0 99.6

Table S2: Empirical FDR and empirical power, in percentages, for the proposed testing
procedure. It is also compared with the testing method of Xie and Kang (2017) and sparse
CCA. The results are based on 100 data replications. The significance level is set at α = 5%.
The sample size is n = 150.

uniformly for all ρ such that |ρ| ≤ δ, for any δ, 0 < δ < 1.

Lemma 3 Under Assumption (A2), there exists a constant C > 0, such that

P

(
max
i,j∈Sl,g

|θ̂i,j − θi,j|/σi,iσj,j ≥ C
εn

log pl,g

)
= O

(
p−1
l,g + n−ε/8

)
,

where εn = max{(log pl,g)
1/6/n1/2, (log pl,g)

−1} → 0 as n, pl,g →∞.

Lemma 3 is about the large deviation for θ̂i,j. Its proof is given in Cai et al. (2013).

Lemma 4 Under Assumption (A2), there exists a constant C > 0, such that

P

(
max

(i,j)∈Λ

(σ̃i,j − σi,j)2

θi,j/n
≥ y2

)
≤ C|Λ|{1− φ(y)}+O

(
p−1
l,g + n−ε/8

)
,
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uniformly for 0 ≤ y ≤ (8 log pl,g)
1/2, and Λ ⊆ {(i, j) : i,∈ Sl, j ∈ Sg}, where Λ denotes

any subset of {(i, j) : i,∈ Sl, j ∈ Sg}, and σ̃i,j is the individual entry of the matrix,

Σ̃l,g = (σ̃i,j)pl,g×pl,g =
1

n

n∑
k=1

{
Z

(l,g)
k − µ(l,g)

}{
Z

(l,g)
k − µ(l,g)

}T

.

Lemma 5 For any random vector W = (w1, . . . , wb) with EW = 0, and W = ξ1 +
· · · + ξn, where {ξk = (ξ1,k, . . . , ξb,k), k = 1, . . . , n} are independent random vectors with
|ξi,k| ≤ τ , for 1 ≤ i ≤ b, we have, for any y, ε > 0,

P (|W | ≥ y) ≤ P (|N | ≥ y − ε) + c1b
5/2 exp

(
− ε

c2b3τ

)
,

P (|W | ≥ y) ≥ P (|N | ≥ y + ε)− c1b
5/2 exp

(
− ε

c2b3τ

)
,

for some absolute constants c1, c2 > 0, where | · | is any vector norm, N is a normal
random vector with EN = 0 and the same covariance matrix as W .

Lemma 5 is based on Theorem 1 of Zäıtsev (1987).

A3 Proof of Theorem 1

To prove this theorem, we truncate the random variables and use the normal approxi-
mation in Lemma 5 to translate the problem into deriving the limiting null distribution
of normal random variables under the same dependence structure. We further divide the
sets of pairs of random variables into small subsets, and show that the behavior of weakly
correlated random variables dominates the rest, and the corresponding extreme value
behavior is asymptotically the same as the maximum of independent normal random
variables.

Without loss of generality, we assume that µ = 0 and σi,i = 1 for 1 ≤ i ≤ 2p. Define

T̂i,j =
σ̂i,j

(θi,j/n)1/2
and T̃i,j =

σ̃i,j
(θi,j/n)1/2

,

Let M̂l,g = maxi∈SXl ,j∈SYg T̂
2
i,j, and M̃l,g = maxi∈SXl ,j∈SYg T̃

2
i,j. By Lemma 3, we focus on

the event that |θ̂i,j − θi,j| ≤ Cεn/log pl,g. We have |Ml,g − M̂l,g| ≤ CM̂l,gεn/ log pl,g, and

|M̂l,g − M̃l,g| ≤ Cnmaxi∈SXl ,j∈SYg X̄
2
i Ȳ

2
j + Cn1/2M̃

1/2
l,g (maxi∈SXl X̄

2
i + maxj∈SYg Ȳ

2
j ). Thus

by the fact that maxi∈SXl |X̄i| + maxj∈SYg |Ȳj| = OP((log pl,g/n)1/2), it suffices to show
that

P
(
M̃l,g − 2 log(plpg) + log log(plpg) ≤ t

)
→ exp{−π−1/2e−t/2}.

Recall that A(l,g) =
{

(i, j) : i ∈ SXl , j ∈ SYg
}

. Define

E0 =
{

(i, j) : i ∈ D0 ∩ SXl , j ∈ SYg
}
∪
{

(i, j) : j ∈ D0 ∩ SYg , i ∈ SXl
}
,

with |D0| = o(min{pl, pg}).
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Let M̃
A(l,g)\E0

l,g = max(i,j)∈A(l,g)\E0
T̃ 2
i,j, and M̃E0

l,g = max(i,j)∈E0 T̃
2
i,j. Let y2

l,g = 2 log(plpg)−
log log(plpg) + t. Then we have∣∣∣P(M̃l,g ≥ y2

l,g

)
− P

(
M̃
A(l,g)\E0

l,g ≥ y2
l,g

)∣∣∣ ≤ P
(
ME0

l,g ≥ y2
l,g

)
.

Noting that |E0| ≤ min{o(pg)pl, o(pl)pg} = o(plpg). Thus by Lemma 4, we have

P
(
ME0

l,g ≥ y2
l,g

)
≤ C|E0|(plpg)−1 + o(1) = o(1).

Thus it suffices to prove that, for any t ∈ R,

P
(
M̃
A(l,g)\E0

l,g − 2 log(plpg) + log log(plpg) ≤ t
)
→ exp{−π−1/2e−t/2},

as n, pl,g → ∞. We rearrange the two-dimensional indices A(l,g) \ E0 in an arbi-
trary order and set them as {(im, jm) : 1 ≤ m ≤ q} with q = |A(l,g) \ E0|. Define
θm = θim,jm . Let Wk,m = (Xk,imYk,jm − σim,jm), and Ŵk,m = Wk,mI(|Wk,m| ≤ τn) −
E{Wk,mI(|Wk,m| ≤ τn)}, Vm = 1/(nθm)1/2

∑n
k=1Wk,m, and V̂m = 1/(nθm)1/2

∑n
k=1 Ŵk,m,

where τn = η−18 log(pl,g + n) if a sub-gaussian tail is assumed, and τn = n1/2/(log pl,g)
8

if a polynomial tail is assumed. Then we have, under the null,

M̃
A(l,g)\E0

l,g = max
1≤m≤q

V 2
m.

We next show that E{Wk,mI(|Wk,m| ≤ τn)} is negligible. That is, we have

max
1≤m≤q

n−1/2

n∑
k=1

E{|Wk,m|I(|Wk,m| ≤ τn)} ≤ Cn1/2 max
1≤k≤n

max
1≤m≤q

E{|Wk,m|I(|Wk,m| ≤ τn)}

≤ Cn1/2(pl,g + n)−4 max
1≤k≤n

max
1≤m≤q

E{|Wk,m| exp(η|Wk,m|/2)} ≤ Cn1/2(pl,g + n)−4.

if a sub-gaussian tail is assumed, and

max
1≤m≤q

n−1/2

n∑
k=1

E{|Wk,m|I(|Wk,m| ≤ τn)} ≤ Cn1/2 max
1≤k≤n

max
1≤m≤q

E{|Wk,m|I(|Wk,m| ≤ τn)}

≤ Cn1/2E(|Wk,m||Wk,m|2γ0+1+ε/2)

(n1/2/(log p)8)2γ0+1+ε/2
≤ Cn−γ0−ε/8,

if a polynomial tail is assumed. This in turn yields that

P

(
max

1≤m≤q
|Vm − V̂m| ≥ (log pl,g)

−1

)
≤ P

(
max

1≤m≤q
max

1≤k≤n
|Wk,m| ≥ τn

)
≤ npl,g

{
max
i∈SXl

P(X2
i ≥ τn/2) + max

j∈SYg
P(Y 2

j ≥ τn/2)

}
= O(p−1

l,g + n−ε/8).

Due to the fact that

| max
1≤m≤q

V 2
m − max

1≤m≤q
V̂ 2
m| ≤ 2 max

1≤m≤q
|Vm| max

1≤m≤q
|Vm − V̂m|+ max

1≤m≤q
|Vm − V̂m|2,
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it is sufficient to show that, for any t ∈ R,

P

(
max

1≤m≤q
V̂ 2
m − 2 log(plpg) + log log(plpg) ≤ t

)
→ exp{−π−1/2e−t/2},

as n, pl,g →∞. By Lemma 1, for any integer s with 0 < s < q/2,

2s∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P

(
d⋂
j=1

Emj

)
≤ P

(
max

1≤m≤q
V̂ 2
m ≥ y2

l,g

)

≤
2s−1∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P

(
d⋂
j=1

Emj

)
, (S1)

where Emj = {V̂ 2
mj
≥ y2

l,g}. Let W̃k,m = Ŵk,m/(θm)1/2 for 1 ≤ m ≤ q and W k =

(W̃k,m1 , . . . , W̃k,md), for 1 ≤ k ≤ n. Define |a|min = min1≤i≤d |ai| for any vector a ∈ Rd.
Then we have

P

(
d⋂
j=1

Emj

)
= P

(∣∣∣n−1/2

n∑
k=1

W t

∣∣∣
min
≥ yl,g

)
.

By Lemma 5, we have

P

(∣∣∣∣∣n−1/2

n∑
k=1

W k

∣∣∣∣∣
min

≥ yl,g

)
≤ P

(
|N d|min ≥ yl,g − εn{log(plpg)}−1/2

)
+c1d

5/2 exp

(
− n1/2εn
c2d3τn{log(plpg)}1/2

)
, (S2)

where c1 > 0 and c2 > 0 are absolute constants, εn → 0 and is to be specified later, and
N d = (Nm1 , . . . , Nmd) is a normal vector with E(N d) = 0 and Cov(N d) = Cov(W 1).
Note that d is a fixed integer not depending on n and pl,g. Because log pl,g = o(n1/5), we
can let εn → 0 sufficiently slow such that

c1d
5/2 exp

(
− n1/2εn
c2d3τn{log(plpg)}1/2

)
= O

(
p−Ml,g

)
(S3)

for any large M > 0. Combining (S1), (S2) and (S3), we have

P

(
max

1≤m≤q
V̂ 2
m ≥ y2

l,g

)
≤

2s−1∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P
(
|N d|min ≥ yl,g − εn{log(plpg)}−1/2

)
+ o(1).(S4)

Similarly, using Lemma 1 again, we get

P

(
max

1≤m≤q
V̂ 2
m ≥ y2

l,g

)
6



≥
2s∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P
(
|N d|min ≥ yl,g + εn{log(plpg)}−1/2

)
− o(1). (S5)

Then it suffices to prove that, for any fixed integer d ≥ 1 and any t ∈ R,∑
1≤m1<···<md≤q

P
(
|N d|min ≥ yl,g ± εn{log(plpg)}−1/2

)
=

1

d!

(
−π−1/2e−t/2

)d {1 + o(1)}.

(S6)
When d = 1, we have that,

P
(
|N 1|min ≥ yl,g ± εn{log(plql)}−1/2

)
= {1 + o(1)}(plpg)

−1

√
π

exp(−t/2).

This yields (S6).
When d ≥ 2, noting that for any (i, j) ∈ A(l,g) \ B0 and (i′, j′) ∈ A(l,g) \ B0, we

have Cov(XiYj, Xi′Yj′) = E(XiYjXi′Yj′) + O((log pl,g)
−2−2α0). Define a graph Gabcd =

(Vabcd, Eabcd), where Vabcd = {a, b, c, d} is the set of vertices, and Eabcd is the set of edges.
There is an edge between i 6= j ∈ {a, b, c, d} if and only if |σi,j| ≥ (log pl,g)

−1−α0 . We
say Gabcd is a three-vertice graph (3-G) if the number of different vertices in Vabcd is 3.
Similarly, Gabcd is a four-vertice graph (4-G) if the number of different vertices in Vabcd
is 4. A vertex in Gabcd is said to be isolated if there is no edge connected to it. Note
that for any 1 ≤ s1 6= s2 ≤ q, Gis1js1 is2js2

is a 3-G or 4-G. We say a graph G satisfies
(S7) if the following statement holds:

If G is a 4-G, then there is at least one isolated vertex in G;
Otherwise G is a 3-G and Eis1js1 is2js2 = ∅. (S7)

Note that, under the null, we have E(Xis1
Yjs1 ) = E(Xis2

Yjs2 ) = E(Xis1
Yjs2 ) = E(Xis2

Yjs1 )
= 0. That is, there is no edge between Xim and Yjm . Thus there are at most 2 edges if
it is 4-G, and there are at most 1 edge if it is 3-G. For any Gis1js1 is2js2

satisfying (S7),
by Assumption (A3),

|E(Xis1
Yjs1Xis2

Yjs2 )| = O((log p)−1−α0), (S8)

where O(1) is uniformly for is1 , js1 , is2 , js2 . Denote by

F = {1 ≤ m1 < · · · < md ≤ q},
F0 = {1 ≤ m1 < · · · < md ≤ q : for some s1, s2 ∈ {m1, · · · ,md} with s1 6= s2

G := Gis1js1 is2js2
does not satisfy (S7)},

F c0 = {1 ≤ m1 < · · · < md ≤ q : for any s1, s2 ∈ {m1, · · · ,md} and s1 6= s2,
G satisfies (S7)}.

It is easy to see that F = F0 ∪ F c0 . For any subset S of {m1, . . . ,md}, we say that S
satisfies (S9) if the following statement is true:

For any s1 6= s2 ∈ S, Gis1js1 is2js2
satisfies (S7). (S9)
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For 2 ≤ t ≤ d, let

F0t = {1 ≤ m1 < · · · < md ≤ q : the largest cardinality of S is t, where
S is any subset of {m1 < · · · < md} satisfies (S9)},

F01 = {1 ≤ m1 < · · · < md ≤ q : for any s1, s2 ∈ {m1, · · · ,md} with s1 6= s2

G := Gis1js1 is2js2
does not satisfy (S7)}.

Then we have F c0 = F0d and F0 = ∪d−1
l=1F0t. It is easy to show that |F0t| ≤ Cdq

t+2γ(d−t),
and |F c0 | = (1 + o(1))

(
q
d

)
. Thus it suffices to prove the following two statements hold:∑

Fc0

P
(
|N d|min ≥ yl,g ± εn{log(plpg)}−1/2

)
= {1 + o(1)} 1

d!

(
−π−1/2e−t/2

)d
, (S10)

and ∑
F0

P
(
|N d|min ≥ yl,g ± εn{log(plpg)}−1/2

)
= o(1). (S11)

We first prove (S11). For 1 ≤ a 6= b ≤ q, define the indicator function,

d{(ia, ja), (ib, jb)} = 1 if Giajaibjb does not satisfy (S7), and 0 otherwise.

We further divide F0t in the following way. Let (m1, . . . ,md) ∈ F0t and let S? ⊂
(m1, . . . ,md) be the largest cardinality subset satisfying (S9). If there is more than one
subset that attains the largest cardinality, one can choose any one of them. Define

F0t1 = {(m1, . . . ,md) ∈ F0t : there exists an a /∈ S? such that for some b1, b2 ∈ S?
with b1 6= b2, d((ia, ja), (ib1 , jb1)) = 1, d((ia, ja), (ib2 , jb2)) = 1},

F0t2 = F0t \ F0t1.

Note that F011 = ∅, and F012 = F01. Recall that d is fixed and t ≤ d − 1. We then
obtain that |F0t1| ≤ Cqt−1+2γ(d−t+1), and |F0t2| ≤ Cdq

t+2γ(d−t). Write S? = (b1, . . . , bt)
and xl,g = yl,g ± εn(log(plpg))

−1/2. For any (m1, . . . ,md) ∈ F0t,

P
(
|N d|min ≥ yl,g ± εn{log(plpg)}−1/2

)
≤ P (|Nb1| ≥ xl,g, . . . , |Nbt | ≥ xl,g)

=
1

(2π)l/2|U t|1/2

∫
|y|min≥xl,g

exp

(
−1

2
yTU−1

t y

)
dy,

where U t is the covariance matrix of (Nb1 , . . . , Nbt), y = (y1, . . . , yt). By (S8), we have
‖U t − I t‖2 = O((log pl,g)

−1−α0). Let |y|max = max1≤i≤t |yi|. Then

1

(2π)t/2|U t|1/2

∫
|y|min≥xl,g

exp

(
−1

2
yTU−1

t y

)
dy

=
1

(2π)t/2|U t|1/2

∫
|y|min≥xl,g ,|y|max≤(log pl,g)1/2+α0/4

exp

(
−1

2
yTU−1

t y

)
dy
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+ O
(
exp

{
−(log pl,g)

1+α0/2/4
})

=
1 +O((log pl,g)

−α0/2)

(2π)t/2

∫
|y|min≥xl,g ,|y|max≤(log pl,g)1/2+α0/4

exp

(
−1

2
yTy

)
dy

+ O
(
exp

{
−(log pl,g)

1+α0/2/4
})

=
1 +O((log pl,g)

−α0/2)

(2π)t/2

∫
|y|min≥xl,g

exp

(
−1

2
yTy

)
dy

+ + O
(
exp

{
−(log pl,g)

1+α0/2/4
})

= O
(
(plpg)

−t) . (S12)

Note that γ is sufficiently small. Thus it yields that∑
F0t1

P
(
|N d|min ≥ yl,g ± εn{log(plpg)}−1/2

)
≤ C(plpg)

−1+2γ(d−t+1) = o(1). (S13)

For (m1, . . . ,md) ∈ F0t2, let ā = min{a : a ∈ (m1, . . . ,md), a /∈ S?}. Without loss of
generality and for notation briefness, we can assume that d((iā, jā), (ib1 , jb1)) = 1. Then
we have∑
F0t2

P
(
|N d|min ≥ yl,g ± εn{log(plpg)}−1/2

)
≤
∑
F0t2

P (|Nā| ≥ xl,g, |Nb1 | ≥ xl,g, . . . , |Nbt | ≥ xl,g) ,

Because (m1, . . . ,md) ∈ F0t2, by Assumption (A3), we can show that Cov(Nā, Nbj) =
O((log pl,g)

−1−α0) for 2 ≤ j ≤ l. Recall that S? = (b1, . . . , bt). We have Cov(Nbi , Nbj) =
O((log pl,g)

−1−α0) for 1 ≤ i 6= j ≤ l. Let V t be the covariance matrix of (Nā, Nb1 , . . . , Nbt).
It follows that ‖V t − V̄ t‖2 = O((log pl,g)

−1−α0), where V̄ t =diag(D, I l−1) and D is the
covariance matrix of (Nā, Nb1). We say the graph Giājāib1jb1

is aG-bE if Giājāib1jb1
is a-G

and there are b edges in Eiājāib1jb1 for a = 3, 4 and b = 0, 1, 2, 3, 4. Under the null, we
have that Giājāib1jb1

can only be 3G-1E or 4G-2E. Using the similar argument as that in
(S12), we obtain that∑

F0t2

P (|Nā| ≥ xl,g, |Nb1| ≥ xl,g, . . . , |Nbt| ≥ xl,g)

≤ C
∑
F0t2

[
P (|Nā| ≥ xl,g, |Nb1| ≥ xl,g)× (plpg)

−l+1 + exp
{
−(log pl,g)

1+α0/2/4
}]

≤ C
∑
F0t2

[
(plpg)

−1−(1−r)/(3+r) × (plpg)
−l+1 + exp

{
−(log pl,g)

1+α0/2/4
}]
, (S14)

where the last inequality follows from Lemma 2. Hence it follows from (S14) that∑
F0t2

P (|Nā| ≥ xl,g, |Nb1 | ≥ xl,g, . . . , |Nbt | ≥ xl,g) ≤ C(plpg)
−(1−r)/(3+r)+(d−t)γ = o(1).

(S15)
By (S13) and (S15), (S11) is proved. Next we prove (S10). By (S8), we have ‖Cov(N d)−
Id‖2 = O((log pl,g)

−1−α0) uniformly for (m1, . . . ,md) ∈ F c0 . Then following the same
argument as in (S12), we obtain

P
(
|N d|min ≥ yl,g ± εn{log(plpg)}−1/2

)
= {1 + o(1)}

(
2π−1/2e−t/2

)d
(plpg)

−d
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uniformly for (m1, . . . ,md) ∈ F c0 . Then (S10) holds by the fact |F c0 | = {1 + o(1)}
(
q
d

)
.

Thus (S6) holds, and Theorem 1 follows. �

A4 Proof of Theorem 2

The lower bound result can be directly obtained by Theorem 4 of Cai et al. (2013). Next
we prove the upper bound result. Define

M1
l,g = max

i∈Sl,j∈Sg

(σ̂i,j − σi,j)2

θ̂i,j/n
.

By Lemma 4 and the proof of Theorem 1,

P
(
M1

n ≤ 2 log(plpg)− 1/2 log log(plpg)
)
→ 1

as n, pl,g →∞. Because

max
i∈Sl,j∈Sg

σ2
i,j

θ̂i,j/n
≤ 2M1

l,g + 2Ml,g, and max
i∈Sl,j∈Sg

σ2
i,j

θi,j/n
≥ 16 log(pl,g),

by Lemma 3, we have

P (Ml,g ≥ qα + 2 log(plpg)− log log(plpg))→ 1

as n, pl,g →∞. Then Theorem 2 is proved. �

A5 Proof of Theorem 3

We first show that if t̂ does not exist in the range
[
0, {2 log(L2)− 2 log logL}1/2

]
, the

thresholding of t̂ at {2 log(L2)}1/2 leads to no false rejection with probability tending to
1. Thus we focus on the event A =

{
t̂ exists in the range [0, {2 log(L2)−2 log logL}1/2]

}
,

and prove the FDP results by dividing the pairs of submatrices into small subsets. The
key is to show that the weakly correlated pairs play the dominating role. We then show
that under the condition on |Lρ|, the event A holds with probability tending to 1, and
hence the FDR and FDP converge to α|H0|/L2 asymptotically.

Note that

P

 ∑
(l,g)∈H0

I
(
Nl,g ≥

√
2 logL2

)
≥ 1

 ≤ |H0| max
(l,g)∈H0

P
(
Nl,g ≥

√
2 logL2

)
.

By the proof of Theorem 1, we have

P

 ∑
(l,g)∈H0

I
(
Nl,g ≥

√
2 logL2

)
≥ 1

 ≤ |H0| max
(l,g)∈H0

P
(
Nl,g ≥

√
2 logL2

)
10



≤ |H0|G
(√

2 logL2
)
{1 + o(1)} = o(1),

where G(t) = 1− Φ(t), which shows that if Nl,g are thresholded at level
√

2 logL2, the
probability of false rejection is tending to 0 asymptotically. For that reason, we focus
on the event {t̂ exists in the range [0,

√
2 log(L2)− 2 log logL]}.

Note that, by the definition of t̂, for any t < t̂, we have

G(t)L2

max{
∑

(l,g)∈H I{Nl,g ≥ t, 1}
> α.

Because max{
∑

(l,g)∈H I{Nl,g ≥ t̂}, 1} ≤ max{
∑

(l,g)∈H I{Nl,g ≥ t}, 1}, we have

G(t)L2

max{
∑

(l,g)∈H I{Nl,g ≥ t̂}, 1}
> α.

Thus, by letting t→ t̂,

G(t̂)L2

max{
∑

(l,g)∈H I{Nl,g ≥ t̂}, 1}
≥ α.

On the other hand, based on the definition of t̂, there exists a sequence {tl} with tl ≥ t̂
and tl → t̂, such that

G(tl)L
2

max{
∑

(l,g)∈H I{Nl,g ≥ tl}, 1}
≤ α.

Thus we have max{
∑

(l,g)∈H I{Nl,g ≥ tl}, 1} ≤ max{
∑

(l,g)∈H I{Nl,g ≥ t̂}, 1}, which im-
plies

G(tl)L
2

max{
∑

(l,g)∈H I{Nl,g ≥ t̂}, 1}
≤ α.

Letting tl → t̂, we have

G(t̂)L2

max{
∑

(l,g)∈H I{Nl,g ≥ t̂}, 1}
≤ α.

Thus by focusing on the event {t̂ exists in the range [0,
√

2 log(L2)− 2 log logL]}, we
have

G(t̂)L2

max{
∑

(l,g)∈H I{Nl,g ≥ t̂}, 1}
= α.

Set tL =
√

2 log(L2)− 2 log logL. Then it suffices to show that

sup
0≤t≤tL

∣∣∣∣∣
∑

(l,g)∈H0
I{Nl,g ≥ t} − |H0|G(t)

L2G(t)

∣∣∣∣∣→ 0

11



in probability. Let 0 ≤ t0 < t1 < · · · < tb = tL such that tι − tι−1 = vL for 1 ≤ ι ≤ b− 1
and tb− tb−1 ≤ vL, where vL = 1/

√
log(L2)(log4 L). Then we have b ∼ tL/vL. For any t

such that tι−1 ≤ t ≤ tι, we have∑
(l,g)∈H0

I(Nl,g ≥ tι)

|H0|G(tι)

G(tι)

G(tι−1)
≤
∑

(l,g)∈H0
I(Nl,g ≥ t)

|H0|G(t)

≤
∑

(l,g)∈H0
I(Nl,g ≥ tι−1)

|H0|G(tι−1)

G(tι−1)

G(tι)
.

Thus it suffices to prove

max
0≤ι≤b

∣∣∣∑(l,g)∈H0
[I(Nl,g ≥ tι)−G(tι)]

|H0|G(tι)

∣∣∣→ 0

in probability. Note that

P

(
max
0≤ι≤b

∣∣∣∣∣
∑

(l,g)∈H0
[I(Nl,g ≥ tι)−G(tι)]

|H0|G(tι)

∣∣∣∣∣ ≥ ε

)

≤
b∑
ι=1

P

(∣∣∣∣∣
∑

(l,g)∈H0
{I(Nl,g ≥ tι)−G(tι)}
|H0|G(tι)

∣∣∣∣∣ ≥ ε

)

≤ 1

vL

∫ tL

0

P

(∣∣∣∣∣
∑

(l,g)∈H0
{I(Nl,g ≥ t)−G(t)}
|H0|G(t)

∣∣∣∣∣ ≥ ε

)
dt

+
b∑

ι=b−1

P

(∣∣∣∣∣
∑

(l,g)∈H0
{I(Nl,g ≥ tι)−G(tι)}
|H0|G(tι)

∣∣∣∣∣ ≥ ε

)
.

Recall that Nl,g = Φ−1{1−F ∗(Ml,g)}, where F ∗ is the corrected cumulative distribution
function. Because p ≤ cna for some c > 0 and a > 0, by the proof of (S3) – (S6) in
Theorem 1, we have

P(Nl,g ≥ t) = P
(
Ml,g ≥ F ∗−1{Φ(t)}

)
= {1 + o(1)}G(t).

Thus it suffices to prove the following statements are true for any ε > 0.∫ tL

0

P

(∣∣∣∣∣
∑

(l,g)∈H0
{I(Nl,g ≥ t)− P(Nl,g ≥ t)}

L2G(t)

∣∣∣∣∣ ≥ ε

)
dt = o(vL) (S16)

and

sup
0≤t≤tL

P

(∣∣∣∣∣
∑

(l,g)∈H0
{I(Nl,g ≥ t)− P(Nl,g ≥ t)}

L2G(t)

∣∣∣∣∣ ≥ ε

)
= o(1). (S17)

We next prove (S16), and the proof of (S17) is similar. Note that the variance can
be calculated as follows

E

[∑
(l,g)∈H0

{I(Nl,g ≥ t)− P(Nl,g ≥ t)}
(L2)G(t)

]2

=

∑
(l,g),(l′,g′)∈H0

{P(Nl,g ≥ t, Nl′,g′ ≥ t)− P(Nl,g ≥ t)P(Nl′,g′ ≥ t)}
(L2)2G2(t)

.
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In order to estimate the correlations of Nl,g and Nl′,g′ , we first split the set H0 into three
subsets. Similarly as defined in Theorem 1, let Gabcd = (Vabcd, Eabcd) denote a graph,
where Vabcd = {a, b, c, d} denotes the set of vertices and Eabcd the set of edges. There is
an edge between i 6= j ∈ {a, b, c, d} if and only if |σi,j| ≥ (logL)−2−γ. Note that for any
i ∈ SXl , j ∈ SYg and i′ ∈ SXl′ , j′ ∈ SYg′ , (l, g) 6= (l′, g′), Giji′j′ is a 3-G or 4-G. We say a
graph G = Giji′j′ satisfies (S18) if the following statement holds:

If G is a 4-G, then there is at least one isolated vertex in G;
Otherwise G is a 3-G and Eiji′j′ = ∅. (S18)

Then similarly as in Theorem 1, for any Giji′j′ satisfying (S18), uniformly for i, j, i′, j′,
|E(XiYjXi′Yj′)| = O{(logL)−2−γ}. Based on the definition of (S18), we further divide
H0 into three subsets

H01 = {(l, g), (l′, g′) ∈ H0, (l, g) = (l′, g′)},
H02 = {(l, g), (l′, g′) ∈ H0, (l, g) 6= (l′, g′),∀i ∈ SXl , j ∈ SYg , i′ ∈ SXl′ , j′ ∈ SYg′ ,

Giji′j′ satisfies (S18)},
H03 = {(l, g), (l′, g′) ∈ H0, (l, g) 6= (l′, g′),∃i ∈ SXl , j ∈ SYg , i′ ∈ SXl′ , j′ ∈ SYg′ ,

Giji′j′ does not satisfy (S18)}.

For the subset H01, the cardinality is small, and we have∑
(l,g),(l′,g′)∈H01

{P(Nl,g ≥ t, Nl′,g′ ≥ t)− P(Nl,g ≥ t)P(Nl′,g′ ≥ t)}
(L2)2G2(t)

≤ C

L2G(t)
. (S19)

Recall that

Λl(γ) = {g : 1 ≤ g ≤ L,∃i ∈ SXl ∪ SYl , j ∈ SXg ∪ SYg , s.t. |σi,j| ≥ (logL)−2−γ}.

and max1≤l≤L |Λl(γ)| = o(Lν) for any ν > 0. Thus we have |H03| = O((L2)1+ν). Note
that uniformly for (l, g), (l′, g′) ∈ H03, by Assumption (A1), we have Corr(Nl,g, Nl′,g′) ≤
r′ < 1, for some r < r′ < 1. Thus, by truncations and the application of Lemma 5 to
obtain normal approximations for Nl,g and Nl′,g′ similarly as in the proofs of Theorem
1, we have ∑

(l,g),(l′,g′)∈H03
{P(Nl,g ≥ t, Nl′,g′ ≥ t)− P(Nl,g ≥ t)P(Nl′,g′ ≥ t)}

(L2)2G2(t)

≤ C
(L2)1+νt−2 exp(−t2/(1 + r′))

(L2)2G(t)
≤ C

(L2)1−ν{G(t)}2r′/(1+r′)
. (S20)

It remains to consider subset H02, in which Nl,g and Nl′,g′ are weakly correlated with
each other. By applying Lemma 5, it is straightforward to check that

max
(l,g),(l′,g′)∈H02

P (Nl,g ≥ t, Nl′,g′ ≥ t) = [1 +O{(logL)−1−γ}]G2(t).
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Thus, we have∑
(l,g),(l′,g′)∈H02

{P(Nl,g ≥ t, Nl′,g′ ≥ t)− P(Nl,g ≥ t)P(Nl′,g′ ≥ t)}
(L2)2G2(t)

= O((logL)−1−γ). (S21)

Combining (S19), (S20) and (S21), we have∫ tL

0

[
C

(L2)G(t)
+

C

(L2)1−ν{G(t)}2r′/(1+r′)
+ C(logL)−1−γ

]
dt = o(vL).

Thus (S16) is proved. Accordingly, we have

lim sup
n,L,(pl,g)Ll,g=1→∞

FDR(t̂) ≤ α|H0|/L2,

and for any ε > 0,

lim
n,L,(pl,g)Ll,g=1→∞

P
(
FDP(t̂) ≤ α|H0|/L2 + ε

)
= 1.

Finally we prove the FDR and FDP results under the condition on |Lρ|. It is easy to
check that ∑

(l,g)∈H

I
{
Nl,g ≥

√
2 log(L2)

}
≥
(

1√
8πα

+ δ

)√
logL,

with probability going to 1. Hence with probability going to one, we have

L2∑
(l,g)∈H I{Nl,g ≥

√
2 log(L2)}

≤ L2

(
1√
8πα

+ δ

)−1

(logL)−1/2.

Recall that tL =
√

2 log(L2)− 2 log logL. Because 1− Φ(tL) ∼
(√

2πtL
)−1

exp(−t2L/2),

we have P(0 ≤ t̂ ≤ tL) → 1 according to the definition of t̂ in Algorithm 1 in Section
3.1. Namely, we have P(t̂ exists in [0, tL])→ 1. Henceforth,

lim
n,L,(pl,g)Ll,g=1→∞

FDR(t̂)

α|H0|/L2
= 1,

and
FDP(t̂)

α|H0|/L2
→ 1 in probability, as n, L, (pl,g)

L
l,g=1 →∞.

Then Theorem 3 is proved. �
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Zäıtsev, A. Y. (1987). On the Gaussian approximation of convolutions under multidi-

mensional analogues of S.N. Bernstein’s inequality conditions. Probab. Theory Rel.,

74(4):535–566.

15


	Additional Simulation Results
	Technical Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

