A REVIEW OF WATER QUALITY RESPONSES TO AIR TEMPERATURE AND PRECIPITATION CHANGES II: NUTRIENTS, ALGAL BLOOMS, SEDIMENT, PATHOGENS

Online Supporting Information

Glossary

- AVGWLF = ArcView Generalized Watershed Loading Function;
- BGC = Terrestrial ecosystem/biogeochemical cycling model;
- CARA = Consortium for Atlantic Regional Assessment
- CMIP3/CMIP5 = Coupled Model Intercomparison Project Phase 3 or Phase 5 Archive;
- GCM = General Circulation Model
- GEV = Generalized Extreme Value;
- GWLF-VSA = The Generalized Watershed Loading Functions Variable Source Area model;
- HSPF = Hydrologic Simulation Program Fortran;
- ICLUS = Integrated Climate and Land-Use Scenarios;
- INCA-P = Integrated Catchment Model
- LHS = Latin Hypercube Sampling and calculation of 95% confidence interval;
- NARCCAP = North American Regional Climate Change Assessment Program;
- PnET- PDLU = Percentage of developed land use;
- RCP = Representative Concentration Pathway (2.6, 4.5, 6.0, 8.5);
- SRES = Special Report on Emissions Scenarios (B1, A1B, A2, A1FI);
- SWAT = Soil and Water Assessment Tool
- SWAT-WB = Soil and Water Assessment Tool Water Balance;
- SPARROW = Spatially-Referenced Regression On Watershed attributes;
- VIC = Variable Infiltration Capacity Model;
- VSA = Variable Source Area;
- WEPP-CO2 = Water Erosion Prediction Project CO2
- WEPP-WQ = Water Erosion Prediction Project Water Quality

 Table S-1. Projected nitrogen load responses to future climate changes scenarios. Information is

 adapted from published scientific literature identified in this review.

Watershed (Drainage	Future	Water Model(s)	Scenarios Used to Drive Water Model	Projected Cha		
(Dramage Area)	Period*			Annual Median (Range)	Seasonal Median (Range)	
Sleepers River, VT (0.405 km ²)	Late Century	Empirical Regression Models	Climate Number: 9 Emissions: A1FI, B1 GCM: CMIP3	Nitrate: -2%	Nitrate: Growing: +57% Dormant: -21%	Sebestyen et al., 2009
Susquehanna River (71,236 km ²)	Late Century		Climate Number: 2 Emissions: 1% per year CO ₂ increase GCM: Hadley Center, Canadian Climate Center	+65% (+26% to +200%)	-	Howarth <i>et al.,</i> 2008
7 unnamed, Eastern Massachusetts (12-105 km ²)	Early Century	Early Sentury AVGWLF	Climate Number: 7 Emissions: A1B, B1, A2 GCM: CMIP3 Land use PDLU extrapolation	A1B Climate: +30% Climate & Land use: +30%	Winter: +25% to +50% Spring: +5% to +10% Summer: -25% to -40% Fall: -50% to +200%	
				B1 Climate: +20%	Winter: +30% to +75% Spring: -10% to +30% Summer: -20% to -50% Fall: -75% to +120%	Tu 2009 a/
				A2 Climate: +30%	Winter: +0% to +80% Spring: +25% to +40% Summer: -25% to -50% Fall: -50% to +160%	

Watershed (Drainage	Future	Water Model(s)	Scenarios Used to Drive Water Model	Projected Cha	Citation	
(Drainage Area)	Period*			Annual Median (Range)	Seasonal Median (Range)	
WE-38 experimental watershed, Mahantango Creek, PA (73 km ²)	Mid Century	SWAT	Climate Number: 7 Emissions: A2 GCM: CMIP3 Downscaled: NARCAAP	+7% (0% to +19%)	Winter/spring: +17% Summer/fall: -29%	Wagena <i>et al.,</i> 2018
Hubbard Brook Experimental Forest, NH (0.132 km ²)	Late Century	PnET-BGC	Climate Number: 3 Emissions: A1, B1 GCM: GFDL, HADCM3, and PCM	Increases in nitrate concentrations Increases in nitrate export	-	Pourmokh tarian <i>et</i> <i>al.</i> , 2012
Merrimack, NH/NE (12,965 km ²)	Mid		ClimateNumber: 6Emissions: A2(Future CO2 effects onET also simulated)GCM: CMIP3Downscaled:NARCCAPLand useEPA ICLUS	+18% (+1% to +28%)	Winter: +34% (+17% to +42%) Spring: +15% (-16% to +21%) Summer: +14% (+4% to +28%) Fall: +6% (-4% to +30%) Winter: +102% (+85% to +141%) Spring: +27% (+8% to +40%) Summer: +15% (-3% to +28%) Fall: +70% (+36% to +120%)	Johnson et al.,
Susquehanna River, PA (71,236 km ²)	Century	SWAT		+51% (+34% to +65%)		2015; USEPA 2013
Susquehanna	Mid Century	SWAT	Climate Number: 6 Emissions: RCP 8.5,	+9% (+4% to +14%)		Wagena & Faston
Kiver, PA (71,236 km ²)	Late Century	SWAI	RCP 2.6 GCM: CMIP5 Downscaled: WCRP	+12% (+5% to +20%)		2018
Tuckahoe Creek, MD (221 km ²)	Late Century	SWAT	Climate Number: 5 Emissions: RCP 8.5	Nitrate: +66% (+58% to +76%)	Winter: increase Spring: increase Summer: increase Fall: increase	Lee <i>et al.,</i> 2018

Watershed (Drainage Area)	Future	Future Water	Scenarios Used to Drive Water Model	Projected Cha	nges in Load (%)	- Citation
	Period*	Model(s)		Annual Median (Range)	Seasonal Median (Range)	
Greenboro Watershed, MD, DE (290 km ²)			(Future CO ₂ effects on ET also simulated) <i>GCM:</i> CMIP5 <i>Downscaled:</i> WCRP	+56% (+47% to 68%)	Winter: increase Spring: increase Summer: increase Fall: increase	
Neuse, NC (25,828 km ²)				+31% (-1% to +88%)	Winter: +28% (+20% to +34%) Spring: +26% (+11% to +31%) Summer: +8% (-40% to +130%) Fall: +40% (-22% to +193%)	
Suwannee, FL/GA (25,765 km ²)	Mid Century		Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3	+31% (-15% to +66%)	Winter: +39% (-14% to +98%) Spring: +31% (-7% to +44%) Summer: +27% (-27% to +75%) Fall: +28% (-19% to +86%)	Johnson et al., 2015:
Apalachicola, GA/FL/AL (49,943 km ²)			Downscaled: NARCCAP Land use EPA ICLUS	+16% (-5% to +25%)	Winter: +16% (-8% to +31%) Spring: +21% (+7% to +30%) Summer: +13% (-8% to +23%) Fall: +12% (-14% to +26%)	USEPA 2013
Amite, LA/MS (15,157 km ²)				+21% (-12% to +51%)	Winter: +9% (-8% to +53%) Spring: +45% (-22% to +98%) Summer: -16% (-30% to +40%) Fall: +24% (-16% to +99%)	
Little Miami, OH (5,840 km ²)	Mid Century	HSPF	Climate (Synthetic Scenarios) <i>Temperature:</i> +2°C, +4°C	Wettest Climate: +8% Climate & Land use: +12%	-	Tong <i>et</i> <i>al.</i> , 2012

Watershed (Drainage	Future	Water	Scenarios Used to Drive Water Model	Projected Cha	nges in Load (%)	Citation
(Dramage Area)	Period*	Model(s)		Annual Median (Range)	Seasonal Median (Range)	Chauon
			Precipitation: ±20% Land use CA-Markov Model	Wet Climate: +5% Climate & Land use: +7%		
				Dry Climate: +1% Climate & Land use: +3%		
				Driest Climate: +2% Climate & Land use: +4%		
Little River, NC (203 km ²)	Late	SWAT	Climate Number: 2 Emissions: A2 GCM: CMIP3 Land use ICLUS	Nitrate:	_	Gabriel <i>et</i>
Nahunta, NC (207 km ²)	Century			130% (approx.)		<i>u</i> ., 2018
Upper Mississippi River Basin (492,000 km ²)	Mid Century	SWAT SPARROW	Climate Number: 10 Emissions: A1B GCM: CMIP3	Nitrate: +1 kg/ha basin average (-3 kg/ha to +8 kg/ha across sub watersheds)	-	Jha <i>et al.,</i> 2015
			Climata	Dry-Dry: -34% to +4%		
Saginaw Bay (4 watersheds), MI (22,533 km ²)	Late Century	SWAT	Synthetic Scenarios Number: 16 Emissions: A2 GCM: CMIP3	Wet-Dry: -5% to +29%	-	Hall <i>et</i> <i>al.</i> , 2017
				Wet-Wet: +13% to +41%		

Watershed (Drainage Area)	Future	Water Model(s)	Scenarios Used to Drive Water Model	Projected Ch	Chatler	
	Period*			Annual Median (Range)	Seasonal Median (Range)	Citation
Maumee, OH/MI/IL (17,207 km ²)			Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP Land use EPA ICLUS	+43% (-6% to +91%)	Winter: +82% (+32% to +125%) Spring: +17% (-12% to +79%) Summer: +4% (-58% to +42%) Fall: +69% (-5% to +174%)	Johnson et al., 2015; USEPA, 2013
Illinois, IL/WI/IN (44,040 km ²)	Mid Century	SWAT		+7% (-7% to +18%)	Winter: +9% (-2% to +18%) Spring: +2% (-4% to +9%) Summer: +4% (-13% to +22%) Fall: +16% (-10% to +38%)	
Minnesota, MN (44,002 km ²)				+44% (+5% to +71%)	Winter: +158% (+95% to +249%) Spring: +26% (-7% to +42%) Summer: +35% (-46% to +87%) Fall: +71% (-15% to +160%)	
Maumee,	Mid Century	SWAT	Climate: Number: 3	Nitrate: -10%	Nov. to Apr.: Increase May to Oct.: Decrease	Verma <i>et</i>
OH/MI/IL (17,207 km ²)	Late Century	SWAT	<i>GCM:</i> CMIP3 <i>Downscaled:</i> WCRP	Nitrate: +7%	Oct. to Apr.: Increase May to Sep.: Decrease	<i>al.</i> , 2015
Green Lake,	Early Century	WEDD WO	Climate Number: 2 Emissions: A2, A1B, B1 GCM: CMIP3	A2: +5% A1B: +4% B1: +5%	Winter: increase Spring: increase Summer: decrease Fall: increase	Wang <i>et</i>
WI (1 km ²)	Mid Century	WEPP-WQ		A2: +27% A1B: +38% B1: +30%		Wang <i>et</i> <i>al.</i> , 2018

Watershed (Drainage Area)	Future Period*	Water Model(s)	Scenarios Used to Drive Water Model	Projected Cha	Citation	
				Annual Median (Range)	Seasonal Median (Range)	
	Late Century			A2: +18% A1B: +1% B1: +28%		
	Early Century			A2: +41% A1B: +96% B1: +71%		
Walworth Watershed, WI (1 km ²)	Mid Century			A2: +12% A1B: +45% B1: +8%	Winter: increase Spring: increase Summer: decrease Fall: increase	
	Late Century			A2: +41% A1B: +53% B1: +68%		
Assiniboine River, Lake Winnipeg Watershed, Saskatchewan (13,500 km ²)	Mid Century	SWAT	Climate Number: 3 Emissions: A2 GCM: CMIP3 Downscaled: GCDC/NARR	+33% (+10% to +50%)	-	Shrestha et al., 2012
			Olimete	B1 Nitrate load: -49% conc.: +55%		
James River, ND/SD (53,490 km ²)	Mid Century	SWAT	Number: 6 Emissions: B1, A1B, A2 GCM: CMIP3	A1B Nitrate load: -54%	-	Wu <i>et al.</i> , 2012
				A2 Nitrate load: -55% conc.: +70%		

Watershed (Drainage Area)	Future	re Water 1* Model(s)	Scenarios Used to Drive Water Model	Projected Ch		
	Period*			Annual Median (Range)	Seasonal Median (Range)	Citation
Tongue, MT/WY (14,004 km ²)			Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCAAP Land use EPA ICLUS	+28% (-29% to +220%)	Winter: +157% (+115% to +408%) Spring: +33% (-1% to +183%) Summer: +21% (-49% to +213%) Fall: +45% (-56% to +537%)	Johnson et al., 2015; USEPA, 2013
Elkhorn, NE (18,133 km ²)	Mid Century	SWAT		+1% (-12% to +45%)	Winter: +14% (+9% to +110%) Spring: +2% (-16% to +34%) Summer: -10% (-52% to +9%) Fall: +25% (-15% to +126%)	
Trinity, TX (46,488 km ²)				+30% (-20% to +65%)	Winter: +33% (-19% to +46%) Spring: +31% (-15% to +96%) Summer: +5% (-12% to +134%) Fall: +19% (-41% to +91%)	
South Platte, CO (37,991 km ²)	Mid	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCAAP Land use EPA ICLUS	-12% (-38% to +16%)	Winter: +3% (-6% to +23%) Spring: +12% (-9% to +59%) Summer: -32% (-64% to -6%) Fall: -15% (-36% to +20%)	Johnson <i>et al.,</i> 2015; USEPA, 2013
Upper Colorado, CO (46,271 km ²)	Century			-20% (-27% to +10%)	Winter: -25% (-34% to +11%) Spring: +14% (+11% to +34%) Summer: -36% (-40% to -3%) Fall: -29% (-41% to +15%)	

Watershed (Drainage Area)	Future	Future Water Period* Model(s)	Scenarios Used to Drive Water Model	Projected Cha	Citation	
	Period*			Annual Median (Range)	Seasonal Median (Range)	Citation
Rio Grande, CO/NM (49,104 km ²)				-52% (-63% to +26%)	Winter: -26% (-38% to +19%) Spring: -66% (-81% to +36%) Summer: -44% (-61% to +15%) Fall: -27% (-32% to +2%)	
Salt, AZ (15,025 km ²)				-10% (-16% to +42%)	Winter: -6% (-31% to +15%) Spring: -2% (-27% to +6%) Summer: +1% (-22% to +54%) Fall: -10% (-38% to +130%)	
Los Angeles, CA (2,172 km²)				0% (-10% to +39%)	Winter: +6% (-3% to +57%) Spring: -9% (-29% to +64%) Summer: 0% (-1% to +27%) Fall: -1% (-6% to +11%)	
Sacramento, CA (21,537 km ²)	-			-1% (-12% to +9%)	Winter: -16% (-23% to -8%) Spring: +11% (0% to +19%) Summer: -7% (-19% to +26%) Fall: +14% (-1% to +33%)	-
Sacramento River, CA (23,300 km ²)	Late Century	SWAT & LHS	Climate (Synthetic Scenarios) <i>Temp.:</i> +6.4°C <i>Precip.:</i> ±20%	95%CI: -13% to +13%	95%CI: Winter: -21% to +32% Spring: -16% to +16% Summer: -43% to +13% Fall: -12% to +16%	Ficklin <i>et</i> <i>al.</i> , 2013

Watershed (Drainage Area)	Future	e Water I* Model(s)	Scenarios Used to Drive Water Model	Projected Ch	Citation	
	Period*			Annual Median (Range)	Seasonal Median (Range)	
San Joaquin River, CA (14,983 km ²)				95%CI: -26% to +28%	95%CI: Winter: -34% to +37% Spring: -42% to +26% Summer: -35% to +61% Fall: -16 to +71%	
	Early Century			-33%		
Sycamore Creek, AZ (505 km ²)	Mid Century	SWAT	Climate Number: 1 Emissions: B2 GCM: CMIP3 CGCM2 Downscaled: SDSM	-50%	Greatest decreases in late autumn and early spring	Ye and Grim, 2013 ^{/c}
	Late Century			-60%		
Northern San Joaquin Valley watershed, CA	Late SWAT	SWAT	Climate (Synthetic Scenarios) Temp.: +1.1°C to +6.4°C Precip.: 0%, ±10%, ±20%	-37% to +40%		Ficklin <i>et</i>
(14,976 km ²)			<i>CO</i> ₂ : 970 ppm	+4 % to +37%		
Willamette River, OR (29,031 km ²)	Mid Century	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP Land use	-4% (-11% to +4%)	Winter: -1% (-8% to +8%) Spring: -10% (-19% to +4%) Summer: -7% (-13% to +9%) Fall: +8% (-14% to +11%)	Johnson <i>et al.</i> , 2015; USEPA, 2013

*Early Century: 2020–2040, Mid-Century: 2041–2070, and Late Century: 2071–2100. a/ Approximate values from graph are presented b/ Study assessed nutrient concentrations c/ Study assessment: average daily export (kg) per day

 Table S-2. Projected phosphorus load responses to future climate changes scenarios. Information is

 adapted from published scientific literature identified in this review.

Watanahad	Futuro	Water	Scenarios Used to	Projected Chang	es in Load (%)		
(Drainage Area)	Period*	Model(s)	Drive Water Model	Annual Median (Range)	Seasonal Median (Range)	Citation	
Merrimack, NH (12,965 km ²)	Mid	SWAT	ClimateNumber: 6Emissions: A2(Future CO2effects on ET alsosimulated)GCM: CMIP3Downscaled:NARCCAPLand useEPA ICLUS	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated)	+11% (-6% to +18%)	Winter: +24% (+3% to +28%) Spring: 0% (-27% to +8%) Summer: +10% (+0% to +23%) Fall: +10% (-3% to +29%)	Johnson <i>et</i>
Susquehanna River, PA (71,236 km ²)	Century			+15% (+6% to +28%)	Winter: +30% (+22% to +40%) Spring: +16% (-8% to +30%) Summer: +11% (-7% to +26%) Fall: +11% (+3% to +28%)	USEPA, 2013	
WE-38 experimental watershed, Mahantango Creek, PA (73 km ²)	Mid Century	SWAT	Climate Number: 7 Emissions: A2 GCM: CMIP3 Downscaled: NARCAAP	+1% (0% to +43%)	Winter/spring: +17% Summer/fall: - 29%	Wagena <i>et</i> al., 2018	
Susquehanna River PA	Mid Century	SWAT	Climate Number: 6 Emissions: RCP 8 5 RCP 2 6	-5% (-15% to +5%)		Wagena &	
River, PA (71,236 km ²)	Late Century	SWAT	8.5, RCP 2.6 GCM: CMIP5 Downscaled: WCRP	-2% (-11% to +7%)		Easton, 2018	
Neuse, NC (25,828 km ²)	Mid Century	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP	+43% (-6% to +129%)	Winter: +32% (+24% to +47%) Spring: +30% (+11% to +39%) Summer: +7% (-48% to +172%) Fall: +46% (-28% to +262%) Winter: +44%	Johnson <i>et</i> <i>al.</i> , 2015; USEPA, 2013	
FL/GA (25,765 km ²)			Land use EPA ICLUS	+25% (-24% to +73%)	(-26% to +142%)		

Watanahad	Enderse	Water	Scenarios Used to	Projected Change	es in Load (%)	
(Drainage Area)	Period*	Model(s)	Drive Water Model	Annual Median (Range)	Seasonal Median (Range)	Citation
					Spring: +27% (-22% to +49%) Summer: +14% (-35% to +93%) Fall: +18% (-40% to +115%)	
Apalachicola, GA/FL/AL (49,943 km ²)				+36% (+6% to +51%)	Winter: +37% (-8% to +71%) Spring: +42% (+24% to +56%) Summer: +29% (-7% to +45%) Fall: +29% (-14% to +63%)	
Amite, LA/MS (15,157 km ²)				+15% (-12% to +42%)	Winter: +5% (-11% to +51%) Spring: +37% (-21% to +83%) Summer: -16% (-31% to +30%) Fall: +17% (-17% to +82%)	
Little Miami, OH (5,840 km²)	Mid Century	HSPF	Climate (Synthetic Scenarios) <i>Temperature:</i> +2°C, +4°C <i>Precipitation:</i> ±20% Land use CA-Markov Model	Wettest Climate: +14% Climate & Land use: +21% Wet Climate: +6% Climate & Land use: +8% Dry Climate: +8% Climate & Land use: +12% Driest Climate: +3% Climate & Land use: +7%	-	Tong <i>et al.</i> , 2012 ^{b/}
Black River Watershed, Ontario (322 km ²)	Mid Century	INCA-P	Climate Number: 7 GCM: CGCM3 Downscaled:	A1B: +22% A2: +19%	A1B Summer: +25% Winter: +25% A2 Summer: +15% Winter: +40%	Cross-man <i>et</i>
	Late Century		SDSM4.2 Emissions: A1B, A2	A1B: +32% A2: +33%	A1B Summer: +25% Winter: +35% A2 Summer: +25%	<i>al.</i> , 2015

	Entra	Water	Scenarios Used to	Projected Chang		
(Drainage Area)	Future Period*	Water Model(s)	Drive Water Model	Annual Median (Range)	Seasonal Median (Range)	Citation
					Winter: +40%	
Maumee, OH/MI/IL (17,207 km ²)			Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP Land use EPA ICLUS	+25% (-12% to +50%)	Winter: +23% (+1% to +38%) Spring: +9% (-13% to +54%) Summer: +21% (-53% to +91%) Fall: +80% (+29% to +136%)	
Illinois, IL/WI/IN (44,040 km ²)	Mid Century	SWAT		+8% (-1% to +13%)	Winter: +14% (+4% to +19%) Spring: +9% (+7% to +19%) Summer: -1% (-14% to +12%) Fall: +9% (-5% to +29%)	Johnson <i>et</i> <i>al.</i> , 2015; USEPA, 2013
Minnesota, MN (44,002 km ²)				+26% (-3% to +60%)	Winter: +108% (+82% to +167%) Spring: -6% (-31% to +20%) Summer: +49% (-50% to +138%) Fall: +38% (-44% to +163%)	
			Climate Synthetic Scenarios	Dry-Dry: -45% to -21%		
Saginaw Bay (4 watersheds), MI (22,533 km ²)	Late Century	SWAT	Number: 16 Emissions: A2	Wet-Dry: -16% to +11%	-	Hall <i>et al.,</i> 2017
			GCM: CMIP3	Wet-Wet: +2% to +15%		
Maumee, OH/MI/IL (17,207 km ²)	Mid Century	CALAT	Climate Number: 3 Emissions: A1B	-9%	Nov. to Apr.: Increase May to Oct.: Decrease	Verma <i>et al.</i> ,
	Late Century	SWAI	GCM: CMIP3 Downscaled: BCSD	+4%	Oct. to Apr.: Increase May to Sep.: Decrease	2015
Green Lake, WI (1 km ²)	Early Century	WEPP- WQ	Climate Number: 2	A2: +42% A1B: +28% B1: +38%	<i>Winter:</i> increase <i>Spring</i> : increase	Wang <i>et al.,</i> 2018

	T (Watar	Scenarios Used to	Projected Change	es in Load (%)	
Watershed (Drainage Area)	Future Period*	Water Model(s)	Drive Water Model	Annual Median (Range)	Seasonal Median (Range)	Citation
	Mid Century		Emissions: A2, A1B, B1 GCM: CMIP3	A2: +54% A1B: +44% B1: +41%	Summer: decrease Fall: increase	
	Late Century			A2: +89% A1B: +75% B1: +72%		
	Early Century			A2: +31% A1B: +27% B1: +25%	Winter: increase	
Walworth Watershed, WI (1 km ²)	Mid Century			A2: +81% A1B: +88% B1: +72%	<i>Spring</i> : increase <i>Summer</i> : decrease	
	Late Century			A2: +109% A1B: +96% B1: +106%	Fall: increase	
Tongue, MT/WY (14,004 km ²)			Climate Number: 6 Emissions: A2 (Future CO ₂	+28% (-33% to +224%)	Winter: +151% (+88% to +428%) Spring: +29% (-11% to +173%) Summer: +21% (-50% to +224%) Fall: +50% (-59% to +576%)	
Elkhorn, NE (18,133 km ²)	Mid Century	SWAT	effects on ET also simulated) <i>GCM:</i> CMIP3 <i>Downscaled:</i> NARCCAP Land use EPA ICLUS	+31% (-35% to +47%)	Winter: +46% (+6% to +69%) Spring: +39% (-18% to +58%) Summer: +6% (-62% to +32%) Fall: +61% (-34% to +91%)	Johnson <i>et</i> <i>al.</i> , 2015; USEPA, 2013
Trinity, TX (46,488 km²)	-		LIAICLOS	+32% (-17% to +63%)	Winter: +31% (-22% to +43%) Spring: +30% (-11% to +88%) Summer: +13% (+2% to +132%) Fall: +21% (-42% to +85%)	
Lake Winnipeg Watershed, Saskatchewan (13,500 km ²)	Mid Century	SWAT	Climate Number: 3 Emissions: A2 GCM: NARCCAP Downscaled: GCDC/NARR	+5% (-18% to +19%)	-	Shrestha <i>et</i> <i>al.</i> , 2012

Watanahad	F 4	Watar	Scenarios Used to	Projected Chang		
(Drainage Area)	Period*	Model(s)	Drive Water Model	Annual Median (Range)	Seasonal Median (Range)	Citation
South Platte, CO (37,991 km ²)	Mid Century SWAT			-6% (-28% to +10%)	Winter: +4% (0% to +18%) Spring: +7% (-11% to +43%) Summer: -19% (-51% to 0%) Fall: -9% (-17% to +15%)	
Upper Colorado, CO (46,271 km ²)				-16% (-21% to +19%)	Winter: -13% (-18% to +25%) Spring: -5% (-9% to +28%) Summer: -26% (-30% to +8%) Fall: -18% (-24% to +22%)	
Rio Grande, CO/NM (49,104 km ²)		Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also	-47% (-59% to +27%)	Winter: -20% (-24% to +13%) Spring: -64% (-78% to +38%) Summer: -37% (-55% to +16%) Fall: -5% (-10% to +4%)	- Johnson <i>et</i>	
Salt, AZ (15,025 km ²)		SWAT	SWAT simulated) <i>GCM:</i> CMIP3 <i>Downscaled:</i> NARCAAP Land use EPA ICLUS	-15% (-30% to +54%)	Winter: -18% (-64% to +32%) Spring: -38% (-66% to -8%) Summer: +50% (-75% to +449%) Fall: -14% (-44% to +193%)	<i>al.</i> , 2015; USEPA, 2013
Los Angeles, CA (2,172 km ²)				-39% (-48% to -13%)	Winter: -42% (-53% to -23%) Spring: -45% (-59% to -11%) Summer: +1% (-12% to +32%) Fall: -2% (-8% to +33%)	
Sacramento, CA (21,537 km ²)				+1% (-15% to +14%)	Winter: -17% (-27% to -9%) Spring: +4% (-7% to +29%) Summer: 0% (-7% to +56%) Fall: +19% (-3% to +42%)	

	T (Water	Scenarios Used to Drive Water Model	Projected Change		
(Drainage Area)	Future Period*	Model(s)		Annual Median (Range)	Seasonal Median (Range)	Citation
Northern San Joaquin Valley watershed, CA (14,976 km ²)	Late Century	SWAT	Climate (Synthetic Scenarios) Temp.: +1.1 °C to +6.4 °C Precip.: 0%, ±10%, ±20%	-37% to 40%	_	Ficklin <i>et al.,</i> 2010
Willamette River, OR (29,031 km ²)	Mid Century	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP Land use EPA ICLUS	-3% (-6% to 0%)	Winter: -6% (-8% to -2%) Spring: -2% (-9% to +6%) Summer: -1% (-5% to +3%) Fall: 0% (-10% to +2%)	Johnson <i>et</i> <i>al.</i> , 2015; USEPA, 2013
Tualatin, OR (4781 km ²)	Mid century	HEDE	Climate Number: 8 Emissions: A1B, B1 GCM: CMIP3	+12%	Winter: +16% Spring: -2% Summer: -8% Fall: +43%	Praskievicz
	Late Century	HSPF		+21%	Winter: +26% Spring: +4% Summer: -9% Fall: +62%	and Chang, 2011

*Early Century: 2020–2040, Mid-Century: 2041–2070, and Late Century: 2071–2100.

 Table S-3. Projected sediment load responses to future climate changes scenarios. Information is

 adapted from published scientific literature identified in this review.

Watershed	Future	Water	Scenario(s) Used to Drive Water Models	Projected Loa		
(Drainage Area)	Period*	Model(s)		Annual Median (Range)	Seasonal Median (Range)	Citation
Merrimack River, NE (12,965 km ²)	Mid Century S	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP Land use EPA ICLUS	+18% (-15% to +28%)	Winter: +90% (+52% to +123%) Spring: -5% (-41% to +9%) Summer: +6% (-9% to +57%) Fall: -2% (-20% to +54%)	USEPA,
Susquehanna River, PA (71,236 km ²)		y SWAI		+12% (-16% to +18%)	Winter: +67% (+40% to 93%) Spring: 0% (-32% to +13%) Summer: -15% (-33% to +28%) Fall: -1% (-28% to +34%)	2013
Susquehanna	Mid Century	SWAT	Climate Number: 6 Emissions: RCP 8.5, RCP 2.6 GCM: CMIP5 Downscaled: WCRP	+26% (+9% to +60%)	- <u>-</u>	Wagena & Easton, 2018
$(71,236 \text{ km}^2)$	Late Century	SWAI		+31% (+14% to +72%)		
St. Lawrence River, Canada (19 watersheds)	Early Century	Statistical	Climate Emissions: B1, A1B, A2 GCM: CGCM3 Downscaled: CCCma	B1: +1.7% ^{a/} A1B: +1.6% ^{a/} A2: +1.8% ^{a/}	Winter: 1% to +3% ^{a/} Spring: 1% to +4% ^{a/} Summer: -2% to +3% ^{a/} Fall: 0.25% to +1% ^{a/}	Delpla and Rodriguez, 2014
WE-38 experimental watershed, Mahantango Creek, PA (73 km ²)	Mid Century	SWAT	Climate Number: 7 Emissions: A2 GCM: CMIP3 Downscaled: NARCAAP	+8% (-10% to +32%)	Winter/spring: +25% (+7% to +44%) Summer/fall: -9% (-30% to +5%)	Wagena <i>et</i> <i>al.</i> , 2018

Watershed	Future	Water	Scenario(s) Used to	Projected Loa		
(Drainage Area)	Period*	Model(s)	Drive Water Models	Annual Median (Range)	Seasonal Median (Range)	Citation
Cannonsville Reservoir Watershed, NY (891 km ²)	Late Century	SWAT- WB	Climate Number: 9 Emissions: A1B GCM: CGCM3	+4% (-7% to +26%)	Winter/Spring: increase Summer/Fall: decrease	Mukundan <i>et al.,</i> 2013a
Esopus Creek, NY	Mid Century	GWLF-	Climate Number: 5 Emissions: B1, A1B,	+3% ^{a/}	Winter: +45% ^{a/}	Mukundan et al.,
(493 km ²)	Late VSA A2 Century	+5% ^{a/}	Winter: +68% ^{a/}	2013b		
Neuse River, NC (25,828 km ²)				+29% (-18% to +99%)	Winter: +24% (-5% to +36%) Spring: +15% (+5% to +29%) Summer: +24% (-57% to +161%) Fall: +43% (-34% to +216%)	
Suwannee River, FL (25,765 km ²)	Mid	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP Land use EPA ICLUS	+30% (-26% to +81%)	Winter: +43% (-34% to +159%) Spring: +30% (-28% to +53%) Summer: +23% (-26% to +66%) Fall: +27% (-35% to +155%)	USEPA, 2013
Apalachicola River, FL (49,943 km²)	Century			+27% (-47% to +46%)	Winter: +29% (-50% to +78%) Spring: +31% (-26% to +42%) Summer: +14% (-69% to +27%) Fall: +27% (-66% to +97%)	
Amite River, LA (8,606 km ²)				+8% (-30% to +31%)	Winter: +7% (-24% to +51%) Spring: +14% (-32% to +56%) Summer: -50% (-69% to +10%) Fall: +7% (-13% to +68%)	

Watershed	Future	Water	Scenario(s) Used to	Projected Loa	d Changes (%)	
(Drainage Area)	Period*	Model(s)	Drive Water Models	Annual Median (Range)	Seasonal Median (Range)	Citation
Apalachicola River, FL (49,943 km ²)	Late Century	SWAT	Climate Emissions: A2, A1B, B1 GCM: HadCM3, IPCM4, MPEH5		HASCM3 ^{b/} <i>Winter</i> : increase <i>Spring</i> : increase <i>Summer</i> : decrease <i>Fall</i> : increase <i>Spring</i> : decrease <i>Spring</i> : decrease <i>Summer</i> : decrease <i>Summer</i> : decrease <i>Summer</i> : decrease <i>Summer</i> : decrease <i>Summer</i> : increase <i>Spring</i> : little change <i>Summer</i> : increase <i>Summer</i> : increase <i>Spring</i> : little change <i>Summer</i> : increase <i>Summer</i> : increase <i>Spring</i> : little change <i>Summer</i> : increase <i>Summer</i> : increase	Hovenga <i>et</i> <i>al.</i> , 2016
Big Sunflower River	Mid Century	SWAT	Climate Emissions: A1B, A2, and B1	+6.3% to +6.4%		Parajuli <i>et</i>
Watershed, MS (7,660 km ²)	Late Century	JWAI	GCM: CCSM3	+12.7% to +15.6%		al., 2016
Apalachicola River, FL (3,589 km ²)	Mid Century	SWAT	Climate GCM: CMIP3 Downscaled: NARCCAP	-	Min: -15% in October Max: +30% in July	Chen <i>et al.</i> , 2014
Maumee, OH/MI/IN (17,207 km ²)	Mid Century	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP	+28% (-14% to +69%)	Winter: +46% (+14% to +84%) Spring: +21% (-17% to +52%) Summer: +10% (-60% to +85%) Fall: +59% (-7% to +163%)	USEPA, 2013

Watershed	Future	Water	Scenario(s) Used to	Projected Loa		
(Drainage Area)	Period*	Model(s)	Drive Water Models	Annual Median (Range)	Seasonal Median (Range)	Citation
Illinois, IL/WI/IN (44,040 km²)			Land use EPA ICLUS	+18% (-10% to +42%)	Winter: +24% (-11% to +56%) Spring: +23% (+6% to +41%) Summer: +14% (-13% to +41%) Fall: +12% (-32% to+55%)	
Minnesota, MN (44,002 km ²)				+53% (-23% to +125%)	Winter: +262% (+153% to +460%) Spring: +21% (-27% to +69%) Summer: +45% (-66% to +164%) Fall: +103% (-47% to +406%)	
Maumee, OH/MI/IN (17,207 km ²)	Mid Century	SWAT	Climate Number: 6 Emissions: RCP 2.6, 4.5, 6.0, 8.5 GCM: CMIP5 (19) Downscaled: NARCCAP	RCP 2.6: -26% RCP 4.5: -24% RCP 6: -25% RCP 8.5: -3%	Winter: -33% to +10% Spring: -18% to +1% Summer: -40% to -26% Fall: -30% to -20%	Cousino et al., 2015
	Late Century	SWAT		RCP 2.6: -26% RCP 4.5: -12% RCP 6: -10% RCP 8.5: +11%	Winter: -37% to +58% Spring: -20% to +12% Summer: -51% to -18% Fall: -29% to -17%	
Cedar Creek (3 watersheds), IN (679 km ²)	Late Century	SWAT	Climate Number: 17 Emissions: RCP 6.0 GCM: CMIP5	+1% to +139%	-	Wallace at al., 2017
			Climate Synthetic Scenarios	Dry-Dry: -58% to -16%		
Saginaw Bay (4 watersheds), MI (22,533 km ²)	Late Century	SWAT	Number: 16 Emissions: A2	Wet-Dry: -31% to +28%	-	Hall <i>et al.</i> , 2017
			GCM: UMIP3	Wet-Wet: -7% to +27%		

Watershed	Future	Water	Scenario(s) Used to	Projected Loa	d Changes (%)	
(Drainage Area)	Period*	Model(s)	Drive Water Models	Annual Median (Range)	Seasonal Median (Range)	Citation
Little Miami River, OH (5,840 km ²)	Mid Century	SWAT	Climate (Synthetic Scenarios) <i>Air temp</i> : +2 to +4°C <i>Precipitation</i> : ±20%	Wettest: +47% Wet: +46% Dry: -41% Driest: -41%	-	Tong <i>et al.,</i> 2007
Eagle Creek	Early Century		Climate Number: 16	Increases		
watershed, Indiana (248	Mid Century	SWAT	Emissions: A2, A1B, B1 GCM: CMIP3	Increases	-	Ahmadi <i>et</i> <i>al.</i> , 2014
km ²)	Late Century			Increases*	-	
Central WI				+150%	-	
East central IN /West central OH				+34%		O'Neal <i>et</i> <i>al.</i> , 2005
Eastern IL				+32%		
Eastern WI				+129%		
MI Thumb			Climata	+105%		
North western OH /South eastern MI	Mid Century	WEPP- CO2	<i>Emissions</i> : IS95a <i>GCM</i> : HadCM3	+273%		
South central MI /Northern IN				-3%		
Southern IL				+37%		
South western IN				+18%		
South western WI				+147%		
Western IL				+18%		
Maumee,	Mid Century	SWAT	Climate Number: 3 Emissions: A1B	-10% (-82% to +90%)	Summer: decreases	Verma <i>et</i> al., 2015
(16,395 km ²)	Late Century	5.41	Emissions: A1B GCM: CMIP3 Downscaled: BCSD	+10% (-84% to +138%)	Summer: decreases	

Watershed	Future	Water	Scenario(s) Used to	Projected Load Changes (%)		
(Drainage Area)	Period*	Model(s)	Drive Water Models	Annual Median (Range)	Seasonal Median (Range)	Citation
Tongue River, WY/MT (14,004 km ²)			Climate	+31% (-34% to +251%)	Winter: +143% (+79% to +318%) Spring: +33% (-18% to +170%) Summer: +25% (-50% to +273%) Fall: +36% (-61% to +554%)	
Elkhorn River, NE (18,133 km ²)	Mid Century	SWAT	<i>Emissions</i> : A2 (Future CO ₂ effects on ET also simulated) <i>GCM</i> : CMIP3 <i>Downscaled</i> : NARCAAP Land use EPA ICLUS	+39% (-40% to +62%)	Winter: +121% (+39% to +204%) Spring: +47% (-13% to +77%) Summer: +6% (-74% to +39%) Fall: +92% (-46% to +148%)	USEPA, 2013
Trinity River, TX (46,488 km²)				-27% (-73% to +25%)	Winter: -23% (-70% to +3%) Spring: -21% (-71% to +55%) Summer: -52% (-75% to +93%) Fall: -43% (-82% to +52%)	
South Platte, CO (37,991 km ²)			Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCAAP Land use EPA ICLUS	-7% (-20% to +4%)	Winter: +5% (-4% to +11%) Spring: -2% (-9% to +19%) Summer: -17% (-33% to -6%) Fall: -9% (-24% to -1%)	
Upper Colorado River, CO/UT (46,271 km ²)	Mid Century	SWAT		-13% (-20% to +24%)	Winter: -6% (-16% to +38%) Spring: +28% (+26% to +55%) Summer: -36% (-39% to +4%) Fall: -21% (-35% to +35%)	USEPA, 2013
Rio Grande Valley, NM, CO (49,104 km ²)				-41% (-51% to +14%)	Winter: -45% (-49% to +14%) Spring: -24% (-48% to +19%) Summer: -33% (-51% to +14%) Fall: -49% (-55% to +12%)	

Watershed	Future	Water	Scenario(s) Used to	Projected Loa		
(Drainage Area)	Period*	Model(s)	Drive Water Models	Annual Median (Range)	Seasonal Median (Range)	Citation
Salt River, AZ (15,025 km ²)				-17% (-34% to +83%)	Winter: -9% (-67% to +41%) Spring: -37% (-74% to +5%) Summer: +95% (-93% to +591%) Fall: -26% (-57% to +248%)	
Los Angeles River, CA (2,172 km ²)				-19% (-35% to +10%)	Winter: -11% (-23% to +24%) Spring: -38% (-57% to -15%) Summer: -2% (-14% to +38%) Fall: -15% (-28% to +41%)	
Sacramento River, CA (21,537 km ²)				+14% (-7% to +38%)	Winter: +26% (-8% to +39%) Spring: -6% (-43% to +51%) Summer: +52% (+28% to +438%) Fall: -6% (-38% to +52%)	
Sacramento River, CA (23,300 km ²)	Late	SWAT	Climate (Synthetic Scenarios) <i>Temp</i> .: +6.4°C <i>Precip</i> .: ±20%	<i>95% CI:</i> -26% to +20%	95%CI Winter: -33% to +36% Spring: -26% to +43% Summer: -27% to +12% Fall: -32% to +13%	Ficklin <i>et</i>
San Joaquin River, CA (14,983 km²)	Century			95% CI: -50% to +73%	95%CI Winter: -52% to +66% Spring: -49% to +94% Summer: -56% to +165% Fall: -57% to +48%	<i>al.</i> , 2013
Sierra Nevada, CA	Mid Century	SWAT	Climate Number: 16		<i>Spring:</i> -46 ^{c/} (-60 to -12) <i>Summer:</i> -50 ^{c/} (-57 to +30)	Ficklin et
CA (703 to 15,789 km ²)	Late Century	SWAT Emissions: A2 GCM: CMIP3 Downscaled: WCRI			<i>Spring</i> : -54 ^{c/} (-65 to -20) <i>Summer</i> : -50 ^{c/} (-60 to -23)	al., 2013

Watershed	Future	Water	Scenario(s) Used to Drive Water Models	Projected Loa		
(Drainage Area)	Period*	Model(s)		Annual Median (Range)	Seasonal Median (Range)	Citation
Northern San Joaquin Valley watershed, CA (14,976 km ²)	Late Century	SWAT	Climate (Synthetic Scenarios) Temp: +1.1 °C to +6.4 °C Precip: 0%, ±10%, ±20%	-27% to +28%	-	Ficklin <i>et</i> <i>al.</i> , 2010
			$Climate + CO_2 (970 ppm)$	-6 % to +25%		
San Francisco Estuary Watershed (Sacramento-San	Late	VIC	Climate Number: 2 Emissions: B1, A2	<i>B1:</i> decreases		Cloern <i>et</i>
Joaquin watersheds and Deltas)	Century		GCM: PCM-B1, GFDL-A2	A2: decreases		al., 2011
Willamette River, OR (29,032 km ²)	Mid Century	SWAT	Climate Number: 6 Emissions: A2 (Future CO ₂ effects on ET also simulated) GCM: CMIP3 Downscaled: NARCCAP Land use EPA ICLUS	+10% (-13% to +19%)	<i>Winter</i> : +10% (-10% to +24%) <i>Spring</i> : +8% (-12% to +40%) <i>Summer</i> : +13% (-27% to +50%) <i>Fall</i> : +21% (-25% to +34%)	USEPA, 2013
	Early Century			+0.30% ^{b/} (0 to +3%)		
Bull Run watershed, OR (264 km ²)	Mid Century	GEV	Climate Emissions: A2 GCM: CMIP3	+0.80% ^{b/} (0 to +7%)	-	Towler <i>et</i> <i>al.</i> , 2010
	Late Century		Downsealed. WCKI	+1.20% ^{b/} (0 to +11%)		
Tucannon, OR (1,116 km ²)	Mid	SWAT	Climate Number: 10 Emission: A2	-18%	Winter: -14% (+24% to +8%) Summer: -5% (-60% to +98%)	Praskievicz,
South Fork Coeur d'Alene, ID (743 km ²)	Century	SWAI	GCM: CMIP3 Downscaled: NARCCAP	-18%	Winter: +88% (+79% to +94%) Summer: -72% (-73% to -60%)	2016

Watershed (Drainage Area)	Future	Water Model(s)	Scenario(s) Used to Drive Water Models	Projected Load Changes (%)		C'te them
	Period*			Annual Median (Range)	Seasonal Median (Range)	Chatlon
Red River, ID (99 km ²)				-8%	Winter: -14% (-24% to -6%) Summer: -26% (-43% to -4%)	
Tualatin, OR (4781 km ²)	Mid century	HODE	Climate Number: 8	+252%	Winter: +261% to +451% Spring: +129% to +164% Summer: -67 to +54% Fall: +430 to +595%	Praskievicz
	Late Century	нэгг	Number: 8 Emissions: A1B, B1 GCM: CMIP3	+245%	Winter: +259% to +436% Spring: +41% to +53% Summer: -81% to -52% Fall: +503% to +812%	and Chang, 2011

*Early Century: 2020–2040, Mid-Century: 2041–2070, and Late Century: 2071–2100. a/ Change in turbidity

b/ Estimated from graph (Figure 3 in Hovenga et al., 2016), values listed for is range of monthly changes (HADCM3, IPCM4, MPEH5).

c/ Study assessed sediment concentrations.

Table S-4. Projected fecal indicator bacteria (FIB) load responses to future climate changes scenarios. Information is adapted from published scientific literature identified in this review.

Watershed (Drainage Area)	Future Period*	Water Model(s)	Scenarios Used to Drive Water Models	Projected FIB Changes (%)		Citation
				Annual Median	Seasonal Median	Citation
Pigg River, VA (1,015 km ²)	Mid Century	HSPF	Climate Number: 7 Emissions: B2 GCM: CMIP3 Land use 1 (many sources)	Low flow years: +49% ^{a/} L	Winter: +41% L Spring: -33% L Summer: +10% L Fall: +212%	Coffey <i>et</i> <i>al.</i> , 2015b
				Average flow years +4% L	Winter: +22% L Spring: -26% L Summer: -22% L Fall: +106% L	
				High flow years: +21% L	Winter: +81% L Spring: -17% L Summer: -14% L Fall: +50% L	
Upper Pearl River, MS (7,588 km²)	Mid Century	SWAT	Climate Number: 1 Emissions: A1B GCM: CMIP3	+175% ^{b/} C (< 0% to > +900%)	Winter/Spring: decreases Summer/Fall: increases	Jayakody et al., 2015
	Late Century			+297% C (< 0% to > +900%)	Winter/Spring: decreases Summer/Fall: increases	

*Early Century: 2020–2040, Mid-Century: 2041–2070, and Late Century: 2071–2100.

a/ L denotes change in load in response to climate change scenarios only.

b/ C denotes change in concentration.

 Table S-5. Occurrence of waterborne disease outbreaks following weather events in the U.S.

 Adapted from Rizak and Hrudey, 2008.

Year	Location	Pathogen	Outbreak Characteristics/ Contributing Factors	Reference
1999	Washington County Fair, New York	E. coli O157:H7, Campylobacter jejuni	Drought conditions followed by heavy rainfall, sewage contamination	Novello, 2000
1979	Bradford, Pennsylvania	Giardia lamblia	Heavy rainfall, inappropriate treatment	Lippy, 1981
1978	Bennington, Vermont	Campylobacter jejuni	Heavy rainfall, potential sewage contamination	Vogt <i>et al.,</i> 1982
1993	Milwaukee, Wisconsin	Cryptosporidium parvum	Severe winter storms and heavy runoff, sewage effluent contamination	MacKenzie <i>et al.</i> , 1994; Fox and Lytle, 1996; Peng <i>et al.</i> , 1997; Sulaiman <i>et</i>
1989/1990	Cabool, Missouri	<i>E. coli</i> O157:H7	Extreme cold temperatures, sewage contamination	Swerdlow et al., 1992
1993	Gideon, Missouri	Salmonella typhimirium	Extreme cold temperatures, contamination of storage facilities	Clark <i>et al.</i> , 1996; Angulo <i>et</i>
1998	Brushy Creek, Texas	Cryptosporidium parvum	Drought conditions, extreme high temperatures, sewage contamination	TDOH, 1999
1980	Georgetown, Texas	Coxsackievirus B3; hepatitis A	Heavy rainfall, sewage contamination	Hejkal <i>et al.,</i> 1982
1998	Alpine, Wyoming	<i>E. coli</i> O157:H7	Heavy rainfall, potential contamination from wildlife	Olsen <i>et al.,</i> 2002
1980	Red Lodge, Montana	Giardia lamblia	Heavy runoff, volcanic ashfall	Weniger <i>et</i> <i>al.</i> , 1983

Literature Cited

- Ahmadi, M., R. Records, and M. Arabi., 2014. Impact of climate change on diffuse pollutant fluxes at the watershed scale. *Hydrological Processes* 28:1962-1972. https://doi.org/10.1002/hyp.9723
- Angulo, F. J., S. Tippen, D. J. Sharp, B. J. Payne, C. Collier, J. E. Hill, T. J. Barrett, R. M. Clark, E. E. Geldreich, H. D. Donnell, and D. L. Swerdlow. 1997. A community waterborne outbreak of salmonellosis and the effectiveness of a boil water order. *American Journal of Public Health* 87:580-584.
- Chen, X., K. Alizad, D. Wang, and S. C. Hagen., 2014. Climate change impact on runoff and sediment loads to the Apalachicola River at seasonal and event scales. *Journal of Coastal Research* 68:35-42. https://doi.org/10.2112/SI68-005.1
- Clark, R. M., E. E. Geldreich, K. R. Fox, E. W. Rice, C. H. Johnson, J. A. Goodrich, J. A. Barnick, and F. Abdesaken. 1996. Tracking a Salmonella serovar typhimurium outbreak in Gideon, Missouri:
 Role of contaminant propagation modelling. *Journal of Water Supply Research and Technology-Aqua* 45:171-183.
- Cloern, J. E., N. Knowles, L. R. Brown, D. Cayan, M. D. Dettinger, T. L. Morgan, D. H. Schoellhamer, M. T. Stacey, M. van der Wegen, R. W. Wagner, and A. D. Jassby., 2011. Projected evolution of California's San Francisco Bay-Delta-River system in a century of climate change. *PLoS* One 6. https://doi.org/10.1371/journal.pone.0024465
- Coffey, R., B. Benham, K. Kline, M. L. Wolfe, and E. Cummins., 2015. Modeling the impacts of climate change and future land use variation on microbial transport. *Journal of Water and Climate Change* 6:449-471. https://doi.org/10.2166/wcc.2015.049
- Cousino, L. K., R. H. Becker, and K. A. Zmijewski., 2015. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. *Journal of Hydrology: Regional Studies* 4:762-775. https://doi.org/10.1016/j.ejrh.2015.06.017
- Crossman, J., M. N. Futter, S. K. Oni, P. G. Whitehead, L. Jin, D. Butterfield, H. M. Baulch, and P. J. Dillon., 2013. Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada. *Journal of Great Lakes Research* 39:19-32. https://doi.org/10.1016/j.jglr.2012.11.003
- Delpla, I., and M. J. Rodriguez., 2014. Effects of future climate and land use scenarios on riverine source water quality. *Science of the Total Environment* 493:1014-1024. https://doi.org/10.1016/j.scitotenv.2014.06.087
- Ficklin, D. L., Y. Luo, E. Luedeling, S. Gatzke, and M. Zhang., 2010. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California. *Environmental Pollution* 158:223-234. https://doi.org/10.1016/j.envpol.2009.07.016

- Ficklin, D. L., Y. Z. Luo, and M. H. Zhang., 2013. Climate change sensitivity assessment of streamflow and agricultural pollutant transport in California's Central Valley using Latin hypercube sampling. *Hydrological Processes* 27:2666-2675. https://doi.org/10.1002/hyp.9386
- Fox, K. R., and D. A. Lytle. 1996. Milwaukee's crypto outbreak: Investigation and recommendations. *Journal American Water Works Association* 88:87-94. https://doi.org/10.1002/j.1551-8833.1996.tb06615.x
- Hall, K.R., M.E. Herbert, S.P. Sowa, S. Mysorekar, S.A. Woznicki, P.A. Nejadhashemiand and L. Wang., 2017. Reducing current and future risks: using climate change scenarios to test an agricultural conservation framework. *Journal of Great Lakes Research*, 43(1), pp.59-68. https://doi.org/10.1016/j.jglr.2016.11.005
- Hejkal, T. W., B. Keswick, R. L. Labelle, C. P. Gerba, Y. Sanchez, G. Dreesman, B. Hafkin, and J. L. Melnick. 1982. Viruses in a community water-supply associated with an outbreak of gastroenteritis and infectious-hepatitis. *Journal American Water Works Association* 74:318-321. https://doi.org/10.1002/j.1551-8833.1982.tb04930.x
- Hovenga, P. A., D. Wang, S. C. Medeiros, S. C. Hagen, and K. Alizad., 2016. The response of runoff and sediment loading in the Apalachicola River, Florida to climate and land use land cover change. *Earth's Future* 4:124-142. https://doi.org/10.1002/2015EF000348
- Howarth, R. W., D. P. Swaney, E. W. Boyer, R. Marino, N. Jaworski, and C. Goodale., 2006. The influence of climate on average nitrogen export from large watersheds in the Northeastern United States. *Biogeochemistry* 79:163-186. https://doi.org/10.1007/978-1-4020-5517-1_8
- Jayakody, P., P. B. Parajuli, and J. P. Brooks., 2015. Assessing climate variability impact on thermotolerant coliform bacteria in surface water. *Human and Ecological Risk Assessment* 21:691-706. https://doi.org/10.1080/10807039.2014.909188
- Jha, M. K., P. W. Gassman, and Y. Panagopoulos., 2015. Regional changes in nitrate loadings in the Upper Mississippi River Basin under predicted mid-century climate. *Regional Environmental Change* 15:449-460. https://doi.org/10.1007/s10113-013-0539-y
- Johnson, T., J. Butcher, D. Deb, M. Faizullabhoy, P. Hummel, J. Kittle, S. McGinnis, L. O. Mearns, D. Nover, A. Parker, S. Sarkar, R. Srinivasan, P. Tuppad, M. Warren, C. Weaver, and J. Witt., 2015. Modeling streamflow and water quality sensitivity to climate change and urban development in, 20 U.S. watersheds. *Journal of the American Water Resources Association* 51:1321-1341. https://doi.org/10.1111/1752-1688.12308
- Gabriel M., C. Knightes, E. Cooter and R. Dennis., 2018. Modeling the combined effects of changing land cover, climate, and atmospheric deposition on nitrogen transport in the Neuse River Basin. Journal of Hydrology: *Regional Studies*, 18:68-79. https://doi.org/10.1016/j.ejrh.2018.05.004

- Lee, S., I.Y. Yeo, A.M. Sadeghi, G.W. McCarty, W.D. Hively, M.W. Lang and A. Sharifi., 2018. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model. *Hydrology & Earth System Sciences*, 22(1). https://doi.org/10.5194/hess-22-689-2018
- Lippy, E. C. 1981. Waterborne disease--Occurrence is on the upswing. *Journal American Water Works* Association 73:57-62.
- MacKenzie, W. R., N. J. Hoxie, M. E. Proctor, M. S. Gradus, K. A. Blair, D. E. Peterson, J. J.
 Kazmierczak, D. G. Addiss, K. R. Fox, J. B. Rose, and J. P. Davis. 1994. A massive outbreak in
 Milwaukee of cryptosporidium infection transmitted through the public water supply. *New England Journal of Medicine* 331:161-167. https://10.1056/NEJM199407213310304
- Mukundan, R., D. C. Pierson, L. Wang, A. H. Matonse, N. R. Samal, M. S. Zion, and E. M. Schneiderman., 2013. Effect of projected changes in winter streamflow on stream turbidity, Esopus Creek watershed in New York, USA. *Hydrological Processes* 27:3014-3023. https://doi.org/10.1002/hyp.9824
- Mukundan, R., S. M. Pradhanang, E. M. Schneiderman, D. C. Pierson, A. Anandhi, M. S. Zion, A. H. Matonse, D. G. Lounsbury, and T. S. Steenhuis., 2013. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. *Geomorphology* 183:110-119. https://doi.org/10.1016/j.geomorph.2012.06.021
- Novello, A., 2000. The Washington County Fair Outbreak Report. New York Department of Health, Albany, NY.
- Olsen, S. J., G. Miller, T. Breuer, M. Kennedy, C. Higgins, J. Walford, G. McKee, K. Fox, W. Bibb, and P. Mead., 2002. A waterborne outbreak of *Escherichia coli* O157:H7 infections and hemolytic uremic syndrome: Implications for rural water systems. *Emerging Infectious Diseases* 8:370-375.
- O'Neal, M. R., M. A. Nearing, R. C. Vining, J. Southworth, and R. A. Pfeifer., 2005. Climate change impacts on soil erosion in Midwest United States with changes in crop management. *CATENA* 61:165-184. https://doi.org/10.1016/j.catena.2005.03.003
- Parajuli, P. B., P. Jayakody, G. F. Sassenrath, and Y. Ouyang., 2016. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin. *Agricultural Water Management* 168:112-124. https://doi.org/10.1016/j.agwat.2016.02.005
- Peng, M. M., L. H. Xiao, A. R. Freeman, M. J. Arrowood, A. A. Escalante, A. C. Weltman, C. S. L. Ong,
 W. R. MacKenzie, A. A. Lal, and C. B. Beard. 1997. Genetic polymorphism among *Cryptosporidium parvum* isolates: Evidence of two distinct human transmission cycles. *Emerging Infectious Diseases* 3:567-573.

- Pourmokhtarian, A., C. T. Driscoll, J. L. Campbell, and K. Hayhoe., 2012. Modeling potential hydrochemical responses to climate change and increasing CO2 at the Hubbard Brook Experimental Forest using a dynamic biogeochemical Model (PnET-BGC). *Water Resources Research* 48. ://WOS:000306702100001
- Praskievicz, S., 2016. Impacts of projected climate changes on streamflow and sediment transport for three snowmelt-dominated rivers in the interior Pacific Northwest. *River Research and Applications* 32:4-17. https://doi.org/10.1002/rra.2841
- Sebestyen, S. D., E. W. Boyer, and J. B. Shanley., 2009. Responses of stream nitrate and DOC loadings to hydrological forcing and climate change in an upland forest of the northeastern United States. *Journal of Geophysical Research: Biogeosciences* 114:n/a-n/a. https://doi.org/10.1029/2008JG000778
- Shrestha, R. R., Y. B. Dibike, and T. D. Prowse., 2012. Modeling climate change impacts on hydrology and nutrient loading in the Upper Assiniboine catchment. *Journal of the American Water Resources Association* 48:74-89. https://doi.org/10.1111/j.1752-1688.2011.00592.x
- Sulaiman, I. M., L. H. Xiao, C. F. Yang, L. Escalante, A. Moore, C. B. Beard, M. J. Arrowood, and A. A. Lal. 1998. Differentiating human from animal isolates of *Cryptosporidium parvum*. *Emerging Infectious Diseases* 4:681-685.
- Swerdlow, D. L., B. A. Woodruff, R. C. Brady, P. M. Griffin, S. Tippen, H. D. Donnell, E. Geldreich, B. J. Payne, A. Meyer, J. G. Wells, K. D. Greene, M. Bright, N. H. Bean, and P. A. Blake. 1992. A waterborne outbreak in Missouri of Escherichia-coli-O157-H7 associated with bloody diarrhea and death. *Annals of Internal Medicine* 117:812-819.
- TDOH (Texas Department of Health). 1999. Cryptosporidiosis at Brushy Creek. Austin, TX.
- Tong, S. T. Y., A. J. Liu, and J. A. Goodrich., 2007. Climate change impacts on nutrient and sediment loads in a midwestern agricultural watershed. *Journal of Environmental Informatics* 9:18-28. https://10.3808/jei.200700084
- Tong, S. T. Y., Y. Sun, T. Ranatunga, J. He, and Y. J. Yang., 2012. Predicting plausible impacts of sets of climate and land use change scenarios on water resources. *Applied Geography* 32:477-489. https://doi.org/10.1016/j.apgeog.2011.06.014
- Towler, E., B. Rajagopalan, E. Gilleland, R. S. Summers, D. Yates, and R. W. Katz., 2010. Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory. *Water Resources Research* 46. https://doi.org/10.1029/2009WR008876
- Tu, J., 2009. Combined impact of climate and land use changes on streamflow and water quality in Eastern Massachusetts, USA. *Journal of Hydrology* 379:268-283. https://doi.org/10.1016/j.jhydrol.2009.10.009

- USEPA (U.S. Environmental Protection Agency)., 2013. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient and Sediment Loads to Potential Climate Change and Urban Development in, 20 U.S. Watersheds. EPA/600/R-12/058F, U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, DC.
- Verma, S., R. Bhattarai, N. S. Bosch, R. C. Cooke, P. K. Kalita, and M. Markus., 2015. Climate change impacts on flow, sediment and nutrient export in a Great Lakes watershed using SWAT. CLEAN -Soil, Air, Water 43:1464-1474. https://doi.org/10.1002/clen.201400724
- Vogt, R. L., H. E. Sours, T. Barrett, R. A. Feldman, R. J. Dickinson, and L. Witherell. 1982.
 Campylobacter enteritis associated with contaminated water. *Annals of Internal Medicine* 96:292-296. https://10.7326/0003-4819-96-3-292
- Wallace, C.W., D.C. Flanagan and B.A. Engel., 2017. Quantifying the effects of future climate conditions on runoff, sediment, and chemical losses at different watershed sizes. *Transactions of the ASABE*, 60(3), pp.915-929. https://10.13031/trans.12094
- Wang, L., D.C. Flanagan, Z. Wang and K.A. Cherkauer., 2018. Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region. *Water*, 10(4), p.442.
- Wagena, M.B. and Z.M. Easton., 2018. Agricultural conservation practices can help mitigate the impact of climate change. *Science of The Total Environment*, 635:132-143. https://doi.org/10.1016/j.scitotenv.2018.04.110
- Wagena, M.B., A.S. Collick, A.C. Ross, R.G. Najjar, B. Rau, A.R. Sommerlot, D.R. Fuka, P.J. Kleinman, and Z.M. Easton., 2018. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. *Science of The Total Environment*, 637, pp.1443-1454. https://doi.org/10.1016/j.scitotenv.2018.05.116
- Weniger, B. G., M. J. Blaser, J. Gedrose, E. C. Lippy, and D. D. Juranek. 1983. An outbreak of waterborne giardiasis associated with heavy-water runoff due to warm weather and volcanic ashfall. *American Journal of Public Health* 73:868-872.
- Wu, Y., S. Liu, and A. L. Gallant., 2012. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. *Science* of the Total Environment 430:150-160. https://doi.org/10.1016/j.scitotenv.2012.04.058
- Ye, L., and N. B. Grimm., 2013. Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest. *Climatic Change* 120:419-431. https://doi.org/10.1007/s10584-013-0827-z