TABLE S1: Bacillus subtilis strains used in this study, related to STAR Methods

Strains	Genotype	Source
bBB042	spolllE-gfp (spec)	(Burton et al., 2007)
bBB069	spollIE36-gfp (kan)	(Besprozvannaya et al., 2014)
bDR2413 (168)	wild-type	(Zeigler et al., 2008)
bCR1557	pbpG::kan	This study
bCR1558	pbpF::tet	This study
bCR1592	spollIM::erm	This study
bCR1600	pbpG::kan, spollIM::erm	This study
bCR1602	pbpF::loxP tet, spollIM::erm	This study
bAT001	pbpG::kan, pbpF::tet	This study
bAT007	ycgO::PspolIIM-spolIIM (spec), spolIIM::erm	This study
bAT010	ycgO::PspoIIIM-spoIIIM (spec), pbpG::kan, spoIIIM::erm	This study
bAT023	ycgO::PspollIM-opt _{RBS} -gfp-spollIM(spec), spollIM::erm	This study
bAT024	ycgO::PspollIM-opt _{RBS} -gfp-spollIM(spec), spollIM::erm, pbpG::kan	This study
bAT087	amyE::PspoIIQ-cfp(Bs) (cat)	This study
bAT088	amyE::PspoIIQ-cfp(Bs) (cat), spoIIIM::erm	This study
bAT089	amyE::PspollQ-cfp(Bs) (cat), pbpG::kan	This study
bAT090	amyE::PspoIIQ-cfp(Bs) (cat), pbpF::tet	This study
bAT091	amyE::PspoIIQ-cfp(Bs) (cat), pbpG::kan, spoIIIM::erm	This study
bAT092	amyE::PspoIIQ-cfp(Bs) (cat), pbpF::tet, spoIIIM::erm	This study
bAT121	ycgO::spollIM-his6 (spec), spollIM::erm	This study
bAT122	ycgO::spollIM-his6 (spec), pbpG::kan, spollIM::erm	This study
bAT440	spoIIIE::neo, spoIIIM::erm, ycgO::PspoIIIM-opt _{RBS} -gfp-spoIIIM-(spec)	This study
bAT353	ycgO::PspoIID-opt _{RBS} -gfp-spoIIIM(spec)	This study
bAT442	spoIIIE::neo, ycgO::PspoIID-opt _{RBS} -gfp-spoIIIM(spec)	This study
bAT455	amyE::PspoIIQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT456	amyE::PspoIIQ-cfp(Bs) (cat), spoIIIM::lox72, pbpG::lox72	This study
bAT457	spolllE::neo, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT458	spolllE::neo, amyE::PspollQ-cfp(Bs) (cat), spolllM::lox72	This study
bAT459	spoIIIE::neo, amyE::PspoIIQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT460	spoIIIE::neo, amyE::PspoIIQ-cfp(Bs) (cat), spoIIIM::lox72, pbpG::lox72	This study
bAT469	spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT470	spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72	This study
bAT471	spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT472	spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72, pbpG::lox72	This study
bAT475	spolllE::neo, spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT476	spollQ::erm, spollIE::neo, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT478	spollQ::erm, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT479	spollQ::erm, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72	This study
bAT480	spollQ::erm, amyE::PspollQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT481	spollQ::erm, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72, pbpG::lox72	This study
bAT490	spollQ::erm, spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT491	spollQ::erm, spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72	This study
bAT492	spollQ::erm, spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT493	spollQ::erm, spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72, pbpG::lox72	This study
bAT497	spolllE::neo, spollQ::erm, spollP::tet, spollD::spec, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT498	ycgO::PspolllE-spolllE*D584A(phleo), spolllE::neo, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT499	ycgO::PspolllE-spolllE*D584A(phleo), spolllE::neo, spolllM::lox72, amyE::PspollQ- cfp(Bs) (cat)	This study
bAT500	ycgO::PspoIIIE-spoIIIE*D584A(phleo), spoIIIE::neo, pbpG::lox72, amyE::PspoIIQ- cfp(Bs) (cat)	This study
bAT501	ycgO::PspoIIIE-spoIIIE*D584A(phleo), spoIIIE::neo, spoIIIM::lox72, pbpG::lox72, amyE::PspoIIQ-cfp(Bs) (cat)	This study

bAT538	amyE::PspoIIQ-opt _{RBS} -cfp (kan), sigE::erm, yrvN::Phyperspank-opt _{RBS} -spoIIM-lacl (spec), ykoW::Phyperspank-opt _{RBS} -spoIIP-lacl (phleo), peIB::Phyperspank-opt _{RBS} - spoIID-lacl (cat)	This study
bAT539	amyE::PspolIQ-opt _{RBS} -cfp (kan), spolIQ::tet, sigE::erm, yrvN::Phyperspank-opt _{RBS} - spolIM-lacl (spec), ykoW::Phyperspank-opt _{RBS} -spolIP-lacl (phleo), pelB::Phyperspank- opt _{RBS} -spolID-lacl (cat)	This study
bAT540	amyE::PspoIIQ-opt _{RBS} -cfp (kan), spoIIQ::tet, sigE::erm, yrvN::Phyperspank-opt _{RBS} - spoIIM-lacl (spec), ykoW::Phyperspank-opt _{RBS} -spoIIP-lacl (phleo), pelB::Phyperspank- opt _{RBS} -spoIID-lacl (cat), pbpG::lox72	This study
bAT552	pelB::PspolIIE-spolIIE-GFP (cat), spolIIE::kan	This study
bAT553	pelB::PspolIIE-spolIIE-GFP (cat), spolIIE::kan, spolIIM::lox72	This study
bAT554	pelB::PspolIIE-spolIIE-GFP (cat), spolIIE::kan, pbpG::lox72	This study
bAT555	pelB::PspoIIIE-spoIIIE-GFP (cat), spoIIIE::kan, pbpG::lox72, spoIIIM::lox72	This study
bAT557	amyE::PspollQ-opt _{RBS} -cfp (kan), spollQ::tet, spolllE::lox72, sigE::erm, yrvN::Phyperspank-opt _{RBS} -spollM-lacl (spec), ykoW::Phyperspank-opt _{RBS} -spollP-lacl (phleo), pelB::Phyperspank-opt _{RBS} -spollD-lacl (cat)	This study
bAT558	spollQ::tet, pelB::PspollIE-spolIIE-GFP (cat), spolIIE::kan	This study
bAT559	spollQ::tet, pelB::PspollIE-spollIE-GFP (cat), spollIE::kan, spollIM::lox72	This study
bAT560	spollQ::tet, pelB::PspollIE-spolIIE-GFP (cat), spolIIE::kan, pbpG::lox72	This study
bAT561	spollQ::tet, pelB::PspollIE-spolIIE-GFP (cat), spolIIE::kan, spolIIM::lox72, pbpG::lox72	This study
bAT604	spollB::erm, amyE::PspollQ-cfp(Bs) (cat)	This study
bAT605	spollB::erm, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72	This study
bAT606	spollB::erm, amyE::PspollQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT607	spollB::erm, amyE::PspollQ-cfp(Bs) (cat), pbpG::lox72, spollIM::lox72	This study
bAT608	spollB::erm, amyE::PspollQ-cfp(Bs) (cat),spolllE::neo	This study
bAT627	spollIM::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), yycR::lacO48 (cat)	This study
bAT628	pbpG::lox72, amyE::PspoI/Q-spoI/VF _{RBS} -lacI-gfp (spec), yycR::lacO48 (cat)	This study
bAT629	spollIM::lox72, pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacI-gfp (spec), yycR::lacO48 (cat)	This study
bAT630	spollIM::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT632	spollIM::lox72, pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT633	spollIM::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), yhdG::lacO48 (erm)	This study
bAT634	pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), yhdG::lacO48 (erm)	This study
bAT635	spollIM::lox72, pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), yhdG::lacO48 (erm)	This study
bAT643	spollIM::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), yrvN::lacO48 (phleo)	This study
bAT644	pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), yrvN::lacO48 (phleo)	This study
bAT645	spollIM::lox72, pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), yrvN::lacO48 (phleo)	This study
bAT646	amyE::PspoIIQ-spoIVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT647	amyE::PspoIIQ-spoIVF _{RBS} -lacl-gfp (spec), yhdG::lacO48 (erm)	This study
bAT648	amyE::PspoIIQ-spoIVF _{RBS} -lacl-gfp (spec), yycR::lacO48 (cat)	This study
DA 1 649	amyE::PspoilQ-spoiVF _{RBS} -laci-gtp (spec), yrVN::lacU48 (phieo)	This study
DA 1652	sponieneo, amyePsponQ-cip(Bs) (cat), ycgOsponie36 (spec)	
DAT055	spoliteneo, aniyerspoliQ-cip(Bs) (cat), spolitiktox72, ycgOspolite36 (spec)	
DA 1 004	spolite::neo, amyE::PspoliQ-cfp(Bs) (cat), pppG::tox12, ycgO::spolite30 (spec)	This study
bAT655	(spec)	This study
bAT668	spollB::erm, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT669	spollB::erm, spollIM::lox72, amyE::PspollQ-spolVF _{RBS} -lacI-gfp (spec), pelB::lacO48 (kan)	This study
bAT670	spollB::erm, pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT671	spollB::erm, spollIM::lox72, pbpG::lox72, amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT0679	ycgO::PspoIIIE-spoIIIE*D584A(phleo), spoIIIE::neo, amyE::PspoIIQ-cfp(Bs) (cat), spoIIQ::tet	This study
bAT697	spolID::cat, spolIP::tet, amyE::PspolIQ-spolVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT698	spoIID::cat, spoIIP::tet, spoIIIM::lox72, amyE::PspoIIQ-spoIVF _{RBS} -lacl-gfp (spec), peIB::lacO48 (kan)	This study

bAT699	spoIID::cat, spoIIP::tet, pbpG::lox72, amyE::PspoIIQ-spoIVF _{RBS} -lacl-gfp (spec), pelB::lacO48 (kan)	This study
bAT700	spoIID::cat, spoIIP::tet, spoIIIM::lox72, pbpG::lox72, amyE::PspoIIQ-spoIVF _{RBS} -lacl-gfp (spec), peIB::lacO48 (kan)	This study
bAT743	pelB::spolllE36 (tet), spolllE::neo, spolllM::erm, ycgO::PspolllM-opt _{RBS} -gfp-spolllM- (spec)	This study
bAT779	spollP::tet, spollD::spec, pelB::PspolllE-spolllE-GFP (cat), spolllE::kan	This study
bAT810	yycR(−7°)::tetO48 (cat), ycgO::PftsW tetR-cfp (spec) terminators PftsW lacI-mypet, pelB(+174°)::lacO48 (kan), spoIIIM::lox72, pbpG::lox72	This study
bAT811	spollQ::tet, ycgO::spollIM-his6 (spec), spollIM::erm	This study
bAT834	spoIIIE::kan, ycgO::spoIIIM-his6 (spec), spoIIIM::erm	This study
bAT837	pelB::spolllE36 (tet), spolllE::neo, ycgO::PspollD-opt _{RBS} -gfp-spolllM(spec)	This study
bA1844	pelB::spolliE36 (tet), spolliE::kan, ycgO::spolliM-his6 (spec), spolliM::erm	
bAT855	ycgO::PpbpG-his6-pbpG (erm), amyE::PspoIIQ-cfp(Bs) (cat), pbpG::Kan	This study
bAT856	ycgO::PpbpG-his6-pbpG (erm), amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72, pbpG::kan	This study
bAT857	ycgO::PpbpG-his6-pbpG (erm), amyE::PspollQ-cfp(Bs) (cat), pbpG::Kan, pbpF::loxP tet	This study
bAT858	ycgO::PpbpG-his6-pbpG (E94A, S365A) (erm), amyE::PspollQ-cfp(Bs) (cat), pbpG::Kan	This study
bAT859	ycgO::PpbpG-his6-pbpG (E94A, S365A) (erm), amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72, pbpG::kan	This study
bAT860	ycgO::PpbpG-his6-pbpG (E94A, S365A) (erm), amyE::PspollQ-cfp(Bs) (cat), pbpG::Kan, pbpF::loxP tet	This study
bAT861	ycgO::PpbpG-his6-pbpG (erm), spollQ::tet, amyE::PspollQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT862	ycgO::PpbpG-his6-pbpG (erm), spollQ::tet, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72, pbpG::lox72	This study
bAT863	ycgO::PpbpG-his6-pbpG (E94A, S365A) (erm), spollQ::tet, amyE::PspollQ-cfp(Bs) (cat), pbpG::lox72	This study
bAT864	ycgO::PpbpG-his6-pbpG (E94A, S365A) (erm), spollQ::tet, amyE::PspollQ-cfp(Bs) (cat), spollIM::lox72, pbpG::lox72	This study
bAT865	ycgO::PpbpG-his6-pbpG (erm), yycR::lacO48 (cat), amyE::Pspol/Q-spol/VF _{RBS} -lacl-gfp (spec), pbpG::lox72	This study
bAT866	ycgO::PpbpG-his6-pbpG (erm), yycR::lacO48 (cat), amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec), spolIIM::lox72, pbpG::lox72	This study
bAT867	ycgO::PpbpG-his6-pbpG (E94A, S365A) (erm), yycR::IacO48 (cat), amyE::PspoIIQ- spoIVF _{RB5} -lacl-gfp (spec), pbpG::Iox72	This study
bAT868	ycgO::PpbpG-his6-pbpG (E94A, S365A) (erm), yycR::lacO48 (cat), amyE::PspoIIQ- spoIVF _{RB5} -lacl-gfp (spec), spoIIIM::lox72, pbpG::lox72	This study
bAT869	ycgO::Pppg-niso-pppG (erm), peiB::Pspolite-spolite-GFP (cat), spolite::Kan, pbpG::lox72	This study
bAT870	ycgO::PpppG-niso-pppG (erm), peiB::Pspolite-spolite-GFP (cat), spolite::Kan, pbpG::lox72, spolitM::lox72	This study
bAT871	ycgOrpupo-mso-pupo (E94A, S305A) (emm), pelorspolite-spolite-GFP (cat), spolite::kan, pbpG::lox72 ycgO::PpbpG-bis6.pbpG (E04A, S365A) (cmm), politicationalite conditionality	This study
bAT872	spollE::kan, pbpG::lox72, spollM::lox72	This study
bA1873	ycgU::PpbpG-his6-pbpG (erm), spolllE::kan, pbpG::lox72	inis study
bHC035	ycgO::PspollQ-opt _{RBS} -pbpG-His6 (tet), pbpG::kan, spollIM::erm	This study
bHC036	ycgO::PspolIQ-opt _{RBS} -pbpG-His6 (tet), pbpG::lox72	This study
bHC040	ycgO::PspollQ-opt _{RBS} -pbpG-His6 (E94A, S365A) (tet), pbpG::lox72	This study
bHC046	ycgO::PspollQ-opt _{RBS} -pbpG-His6 (E94A, S365A) (tet), pbpG::kan, spollIM::erm	This study
bHC050	spollQ::cat, ycgO::PspollQ-opt _{RBS} -pbpG-His6 (tet), pbpG::kan, spolllM::erm	This study
bHC051	spollQ::cat, vcqO::PspollQ-opt _{RBS} -pbpG-His6 (tet). pbpG::lox72	This study
bHC052	spollQ::cat_vcqQ::PspollQ-ontpes-pbpG-His6 (F94A_S365A) (tet)_pbpG::lov72	This study
bHC053	spollQ::cat, ycgO::PspollQ-opt _{RBS} -pbpG-His6 (E94A, S365A) (tet), pbpG::kan, spollIM::erm	This study
bWX1200	spolllE36, yycR(-7°)::tetO48 (cat), pelB(+174°)::lacO48 (kan), ycgO::PftsW tetR- cfp(spec) terminators PftsW lacI-mypet	(Wang et al., 2014)

TABLE S2: Plasmids used in this study, related to STAR Methods

Plasmid	Description	Source
pAT001	ycgO::spollIM (spec)	This study
pAT003	ycgO::PspoIIIM-gfp-spoIIIM (spec)	This study
pAT024	ycgO::PspoIID-opt _{RBS} -gfp-spoIIIM (spec)	This study
pAT032	ycgO::spolIIM-His6 (spec)	This study
pAT057	pelB::spollIE-GFP (cat)	This study
pAT090	ycgO::spollIE36 (tet)	This study
pCR204	amyE::PspollQ-spolVF _{RBS} -lacl-gfp (spec)	This study
pHC3	ycgO::PspollQ-opt _{RBS} -pbpG-His6 (tet)	This study
pHC23	ycgO::PspollQ-opt _{RBS} -pbpG-His6 (E94A, S365A) (tet)	This study
pHC28	P _{lac} ::T18-spoIIIE (amp)	This study
pHC29	P _{lac} ::T18-spoIIIM (amp)	This study
pHC30	P _{lac} ::T18-pbpG (amp)	This study
pHC32	P _{lac} ::T25-spoIIIE (kan)	This study
pHC33	P _{lac} ::T25-spoIIIM (kan)	This study
pHC34	P _{lac} ::T25-pbpG (kan)	This study
pHC535	P _{lac} ::T25-sImA (kan)	(Cho et al., 2011)
pHC538	P _{lac} ::T18-sImA (amp)	(Cho et al., 2011)
pJL013a	pelB::spolIIE36 (tet)	This study

TABLE S3: Oligonucleotide primers used in this study, related to STAR Methods

Sequence*
cgcGAATTCctgtataaaaaccgagcattcgc
cgcGGATCCttaagggtagaccgggaattt
cgcAAGCTTacataaggaggaactactatgagtaaaggagaagaacttttc
cgcCTCGAGgccgcttgagcctccagatgatcctttgtatagttcatccatgccatg
cgcCTCGAGatgaagcgtctcaccttagtatg
aaagcgacagtggcgattgcagaccagaatttctacgat
atcgtagaaattctggtctgcaatcgccactgtcgcttt
cgcAAGCTTccaaaaaaagcatgttgccgaact
gacgcaatgtcatgttcatacg
gcgaagcgccagcctgctgcgacgatcaagccgttgctg
cagcaacggcttgatcgtcgcagcaggctggcgcttcgc
cgcGGATCCtcaatggtgatggtgatgatgtcgccccagcca
cgcGGATCCttatgtaatcccagcagcatttacatactcatgaaggaccatgt
ggcAAGCTTacaaaggatgatggcaatgaaaccagtaacgttatacgatg
gcgCTCGAGcagctgcattaatgaatcggcca
gcgCTCGAGggatcatctggaggctcaagcggcatgggaggcacaagcatgagta
ccgGGATCCttaatggtgatggtggtggtgatgagggtagaccgggaatttata
cgcGAATTCgtcggacaggcaatcaataaactg
gcgCTCGAGaagagagctcatcatatttctcttttg
gcgCTCGAGgttcaggcatgagtaaaggagaagaacttttcac
cgcGGATCCttatttgtatagttcatccatgccatgtg
gcgCTCGAGttaagggtagaccgggaatttatac
tcgacTCTAGAgtctggttcaggcatgagtgtggcaaagaaaaaacga
acccggGGATCCttaagaagagagctcatcatatttctc
tcgacTCTAGAgtctggttcaggcatgaagcgtctcaccttagtatgc
ccggGGATCCttaagggtagaccgggaatttatacgc
tcgacTCTAGAgtctggttcaggcgtggatgcaatgacaaataaacgg
ccggGGATCCtcaatgatgtcgccccagccattt
gtggatgcaatgcatcatcaccatcaccatacaaataaacggctgagact
ccgtttatttgtatggtgatggtgatgatgcattgcatccacaacgggtt

*capital letters indicate restriction sites

Figure S1: Morphological defect of $\Delta pbpG$ and $\Delta pbpF$ and **Tn-seq profiles in the** $\Delta pbpG$ and $\Delta pbpF$, related to **Figure 1.** (A) Representative images of spore morphology in $\Delta pbpF$ and $\Delta pbpG$ strains at T3.5. Yellow arrowheads indicate jellybean-shaped forespores in the $\Delta pbpG$. Scale bar, 2 µM. (B) Tn-seq profiles in WT, $\Delta pbpG$ and $\Delta pbpF$ after 24 hours of growth and sporulation in exhaustion medium. The height of each line reflects the number of sequencing reads at this position. Red box highlights the *spolIIM* (*yqfZ*) locus, which is depleted for transposon insertions in the $\Delta pbpF$. (C) Sporulation efficiency (%, average ± SD, n=3) relative to WT of $\Delta pbpF$, $\Delta spoIIIM$ and $\Delta pbpF$ $\Delta spoIIIM$ strains in exhaustion medium. (D) Tn-seq profiles in WT and $\Delta pbpG$ after 24 hours of growth and sporulation in exhaustion medium. The height of each line reflects the number of sequencing reads at this position. Red box highlights the *pbpF* locus, which is depleted for transposon insertions reads at this position. Red box highlights the *pbpF* locus, which is depleted for transposon insertions in the $\Delta pbpG$ after 24 hours of growth and sporulation in exhaustion medium. The height of each line reflects the number of sequencing reads at this position. Red box highlights the *pbpF* locus, which is depleted for transposon insertions in the $\Delta pbpG$ library compared to WT. (E) Tn-seq profiles in WT and $\Delta pbpF$ after 24 hours of growth and sporulation in exhaustion medium. The height of each line reflects the number of sequencing reads at this position. Red box highlights the *pbpF* locus, which is depleted for transposon insertions in the $\Delta pbpG$ library compared to WT. (E) Tn-seq profiles in WT and $\Delta pbpF$ after 24 hours of growth and sporulation in exhaustion medium. The height of each line reflects the number of sequencing reads at this position. Red box highlights the *pbpF* library compared to WT.

Figure S2: Forespore morphological defects in the absence of SpollIM and PbpG and demonstration that the miscompartmentalization phenotype is not dependent on PbpF, related to Figure 1. (A) Representative images of miscompartmentalization in $\Delta pbpG$, $\Delta spolIIM \Delta pbpG$ and $\Delta spolIIM \Delta pbpG$ complemented with SpolIIM at T3.5. Scale bar, 2 µM. (B) Representative images showing morphological defects compared to wild-type (WT) in $\Delta spoIIIM$, $\Delta pbpG$, $\Delta spoIIIM \Delta pbpG$ and $\Delta spoIIIE$ strains imaged at T3. Cell membranes were visualized with TMA-DPH fluorescent dye. Scale bar, 2 µM. (C) Representative images of miscompartmentalization in WT, $\Delta spoIIIM$, $\Delta pbpF$ and $\Delta spoIIIM \Delta pbpF$ strains at T3.5. Scale bar, 2 µM. (D) Average frequency (\pm SD of 3 biological replicates) of miscompartmentalized cells during a sporulation time-course in $\Delta spoIIIM$ (blue), $\Delta pbpF$ (green) and $\Delta spoIIIM \Delta pbpF$ (red) strains (*n*>950 per time-course, per strain). (E) Average frequency (\pm SD of 3 biological replicates) of normal (grey), dwarf (blue), abnormal (green) and mislocalized (red) forespores in WT, $\Delta spoIIIM$, $\Delta pbpG$, $\Delta spoIIIM \Delta pbpG$ strains at T3 (n>200 per strain, per replicate). (F) Transmission electron microscopy images of wild-type WT, $\Delta spoIIIM$, $\Delta pbpG$ and $\Delta spoIIIM \Delta pbpG$ and $\Delta spoIIIM \Delta pbpG$ strains, with respective zoomed-in areas indicated by white dashed boxes and shown on the right. Scale bar, 500 nm.

Figure S3: Evidence that SpolIIE, SpolIIM and PbpG are together required for compartmentalization, chromosome translocation of other chromosomal loci and evidence supporting passive chromosome efflux in the absence of SpolIIM and PbpG, related to Figure 3. (A) Representative images of miscompartmentalization in the SpolIIE^{D584A} mutant in otherwise WT, $\Delta spolIIM$, $\Delta pbpG$ and $\Delta spolIIM$ $\Delta pbpG$ strains at T3.5. Scale bar, 2 µM. (B) Average frequency (\pm SD of 3 biological replicates) of miscompartmentalized cells during a sporulation time-course in the SpoIIIE^{D584A} mutant in otherwise WT (grey), $\Delta spoIIIM$ (blue), $\Delta pbpG$ (green) and $\Delta spoIIIM \Delta pbpG$ (red) strains (n>800 per time-course, per strain, per replicate). (C) Average frequency (\pm SD of 3 biological replicates) of cells with a LacI-GFP focus in the forespore (successful translocation) or with no or two LacI-GFP foci in the mother cell (unsuccessful translocation, efflux) during a sporulation time-course, with IacO48 integrated at the yhdG locus (87°), in WT (grey), $\Delta spoIIIM$ (blue), $\Delta pbpG$ (green) and $\Delta spoIIIM \Delta pbpG$ (red) strains (n>650 per time-course, per strain) (E) Diagram explaining experimental rationale of the dual TetR-CFP / tetO and LacI-YFP / lacO system for visualizing chromosome translocation and efflux TetR-CFP binds to tetR48 sites (cyan dots) inserted at the pelB (174°) locus as a proxy for the chromosomal lerminus (ter, red). Right: Frequency (\pm SD of 3 biological replicates) of $\Delta spoIIIM \Delta pbpG$ cells containing both *oriC* and *ter* outside the forespore; *oriC* inside and *ter* outside the forespore; *ter* inside and *oriC* outside the forespore; both *oriC* and *ter* outside the forespore; oriC inside and *ter* outside the forespore; *ter* inside and *oriC* outside the forespore; both *oriC* and *ter* outside the forespore; oriC inside and *ter* outside the forespore; *ter* inside and *oric* outside the forespore; both *oriC* and *ter* outside the forespore, during a sporulation time-cour

Figure S4: Septa retraction observed by transmission electron microscopy and localization of GFP-SpollIE in retracted septa, related to Figure 5. (A) Representative images of asymmetric septa in the $\Delta spol/IQ$ alone or combined with the $\Delta spol/II \Delta pbpG$ and $\Delta spol/IIE$ at 3 hours after the onset of sporulation (T3). The septa in the $\Delta spol/IIM \Delta pbpG$ and $\Delta spol/IE$ are thought to represent retracted septa since based on the data in Fig. 5B & E, almost all cells have retracted septa. In the $\Delta spol/IQ$ because there is no septa retraction, the images shown are thought to represent forming septa, which have a similar appearance as some retracting septa. Scale bar, 100 nm. (B) Representative images of SpolIIE-GFP localization in the $\Delta spol/IQ$ alone, or combined with $\Delta spol/IIM$, $\Delta pbpG$ and $\Delta spol/IIM \Delta pbpG$ at 2 hours after the onset of sporulation (T2). Yellow arrowheads point to retracting septa. Scale bar, 2 µM. (C) Zoomed-in, representative examples of SpolIIE-GFP localization as foci in retracted septa in the $\Delta spol/IQ$ combined with $\Delta spol/IM$, $\Delta pbpG$ and $\Delta spol/IIM \Delta pbpG$ at 3 hours after the onset of sporulation (T3). Yellow arrowheads point to retracting septa. Scale bar, 1 µM (D) Average frequency (\pm SD of 3 biological replicates) of SpolIIE-GFP localization patterns at 2 (T2), 2.5 (T2.5) and 3 hours (T3) after the onset of sporulation in the $\Delta spol/IQ$ alone, or combined with $\Delta spol/IIM$, $\Delta pbpG$ and $\Delta spol/IIM \Delta pbpG$ (n>150, per strain, per time-point, per replicate). (E) Representative images of SpolIIE-GFP localization the $\Delta spol/IQ$ alone or combined with the $\Delta spol/IM$ $\Delta pbpG$ at 2 hours after the onset of sporulation (T2), visualized using 3D-Structured Illumination Microscopy. Examples of normal septa with one SpolIIE-GFP focus and retracted septa with one or two foci SpolIIE-GFP foci are shown. Images are SpolIIE-GFP (green) merged with membrane (red). Scale bar, 1 uM. (F) Normalized SpolIIE-GFP and membrane signal intensity along the asymmetric septum in cells l

А

Figure S5: Evidence that SpollIE and PbpG are required for efficient septal pore closure in coordination with chromosome translocation, related to Figure 5. In our experimental system, septal PG hydrolysis is delayed relative to chromosome translocation. To achieve this, we took advantage of a previously-characterized strain that lacks the mother cell transcription factor σ^{E} and produces SpoIID, SpoIIP and SpoIIM under IPTG control (Rodrigues et al., 2013). If no IPTG is added, septal PG hydrolysis does not occur and because the cells lack oE, they form two flat asymmetric septa generating two forespore compartments, each with a trapped chromosome capable of activating σ^{F} (monitored by the forespore-expressed CFP reporter, $P_{spol/IQ}$ -*cfp*). If we add IPTG, we can induce the PG hydrolases that remodel the septal PG. Upon IPTG addition, if the septal pore has not yet closed, CFP will leak into the mother cell and the septal membrane will retract. Note that this strain is effectively a spollIM null, since spollIM depends on oE for its expression. (A) Schematic showing experimental overview. All strains are *\Delta sigE* with IPTG-inducible expression of *\Delta spoIID*, *\Delta spoIIM* and *\Delta spoIIP*. Strains tested include an otherwise wild-type (WT) strain, $\Delta spol/Q$, $\Delta spol/Q$ $\Delta pbpG$ and $\Delta spol/Q$ $\Delta spol/IE$. Before IPTG addition, cells have two polar septa, with CFP fluorescence (cyan) localized to both forespores. DNA is represented by black squiggles. Chromosomes are translocated to both forespores in WT, $\Delta spollQ$ and $\Delta spollQ$ $\Delta pbpG$ strains; no DNA translocation occurs in the AspollQ AspollE strain. Expression of AspollD, AspollM and AspollP was induced with the addition of IPTG at 2 h (T2) or 3 h (T3) after the onset of starvation. Phenotypes were scored 1 h and 2 h after IPTG addition and were classified as cells having 2 septa, a single 1 septum or no septa. CFP fluorescence leaks from the forespores as septa retract. (B) Representative images of cells expressing CFP from a forespore-specific promoter (P_{spollQ}) in WT, ΔspollQ, ΔspollQ ΔpbpG and ΔspollQ ΔspollE strains in a ΔsigE background at T2 (time of IPTG-induced expression of ΔspolID, ΔspolID and ΔspolIP) and T4 (2h after IPTG addition). DNA is stained with DAPI. Scale bar, 2 μM. (C) Average frequency (\pm SD of 3 biological replicates) of cells with two septa, one septum or no septa for strains shown in (B) at T2, T3 and T4, with addition of IPTG at T2 (n>450 per time-point, per strain, per replicate). (D) Representative images of cells expressing CFP from a forespore-specific promoter (P_{spollQ}) in WT, $\Delta spollQ$, $\Delta spollQ$ $\Delta pbpG$ and $\Delta spollQ$ $\Delta spollIE$ strains in a $\Delta sigE$ background at T3 (time of IPTG-induced expression of $\Delta spolID$, $\Delta spolIM$ and $\Delta spolIP$) and T5 (2h after=IPTG addition). DNA is stained with DAPI. Scale bar, 2 μ M. (E) Average frequency (± SD of 3 biological replicates) of cells with two septa, one septum or no septa for strains shown in (D) at T3, T4 and T5, with addition of IPTG at T3 (*n*>600 per time-point, per strain, per replicate). **(F)** Average frequency (\pm SD of 3 biological replicates) of cells with two translocated, one translocated or no translocated chromosomes in WT, $\Delta spolIQ$, $\Delta spolIQ$ $\Delta pbpG$ and $\Delta spolIQ$ Δspoll/E strains during a sporulation time-course (n>600 per time-point, per strain, per replicate). (G) Average frequency (\pm SD of 3 biological replicates) of cells with septal retraction in otherwise WT, Δ spol/Q, Δ spol/Q Δ pbpG and Δ spol/Q Δ spol WT, Aspol/Q, Aspol/Q ApppG and Aspol/Q Aspol/IE strains. The detached forespores (yellow arrowheads) are indicative of cytokinesis at the asymmetric septum. The DNA is stained with DAPI. Scale bar, 2 uM.

Figure S6: Validation of the PbpG catalytic mutant, related to Figure 6. (A) Identification of the PbpG catalytic residues using multiple sequence alignment with other Class A PBPs: PonA from *Bacillus subtilis* (Uniprot accession number: **P39793**), PBP1A and PBP1B from *Escherichia coli* (Uniprot accession numbers: P02918 and P02919, respectively). Red shaded residues are the predicted catalytic site residues involved in transglycosylation (E94) and transpeptidation (S365). (B) Immunoblot analysis demonstrating levels of PbpG-His6, using His6 antibodies, as a sole source in *ApbpG*, *AspoIIIM ApbpG*, *AspoIIQ ApbpG*, *AspoIIQ AppG*, *AspoIIIM ApbpG*, Cells were collected 2 hours after the onset of sporulation (T2). The immunoblot shows that catalytic site mutations do not affect the levels of PbpG. FtsZ is used a loading control. Numbers on the right indicate molecular weight in kDa. (C) Sporulation efficiency of strains harboring the His6-PbpG catalytic mutant (PbpG*) in *ApbpG*, *AspoIIIM ApbpG*, *ApbpG ApbpF*, His6-PbpG complements the sorvulation defect of the *AspoIIIM ApbpG* and *ApbpG ApbpF*. Consistent with the idea that catalytic activity of PbpG is required for efficient sporulation, the His6-PbpG* does not complement the sporulation affect of the *AspoIIIM ApbpG* and *ApbpG ApbpF*. For His6-PbpG, the strains used were *ApbpG*, *AspoIIIM ApbpG*, *AspoIIII ApbpG*, *AspoIII ApbpG*, *AspoIIII ApbpG*, *AspoIIII ApbpG*, *AspoIII ApbpG*,

Figure S7: Validation of GFP-SpollIM fluorescent fusion and evidence of SpollIM membrane topology, related to Figure 6. (A) SpollIM is surface exposed and thus accessible to trypsin digestion. Immunoblot analysis using anti-His antibodies of protoplasted sporulating cells containing SpollIM-His6 as a sole source of SpollIM in strain $\Delta spol/Q$ $\Delta spol/IM$, treated with Trypsin in the presence and absence of TritonX-100. Consistent with the idea that SpolIIM is membraned-anchored, it remained cell-associated after the generation of protoplasts. As controls, the immunoblot was probed for a membrane protein with an extracellular domain (SpolIIAG) and a cytoplasmic protein (FtsZ). (B) Immunoblot using anti-His antibodies of SpolIIM-His6 in WT, $\Delta spol/IE$ and SpolIIE36 strains, showing that *spolIIE* is required for SpolIIM-His6 stability. FtsZ is used as a loading control. Numbers on the right indicate molecular weight in kDa. (C) Sporulation efficiency (%, average ± SD, n=3) relative to WT of $\Delta spol/IM$ where P_{spol/IM}-GFP-SpolIIM is complemented in $\Delta spol/IM$ and partially complemented in $\Delta spol/IM$ $\Delta pbpG$ and P_{spol/ID}-GFP-SpolIIM in merodiploid background. The histogram also shows the sporulation efficiency (%, average ± SD, n=3) of the functional Spol/IIM-His6 in $\Delta spol/IM$ and $\Delta spol/IM$ $\Delta pbpG$. (D) Representative images of GFP-SpolIIM localization in WT, $\Delta spol/IE$ and *spol/IE* and strains at T2 and T3. Scale bar, 2 uM.