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Here we provide additional technical details for the cal-
culations, as well as a detailed description and breakdown
of the free-energy calculations.

TECHNICAL DETAILS

All calculations are carried out with the VASP 5.4.4
program package.[1–3] Core-electrons are modeled us-
ing the projector-augmented wave (PAW) approach of
Joubert and Kresse with the default PBE-based PAWs
from the VASP library for Zn, Cd and Hg.[4, 5] Non-
relativistic PAWs were obtained for Zn, Cd, and Hg by re-
peating the fitting procedure used for the default scalar-
relativistic PBE-PAWs (12 valence electrons, 2 projectors
per shell) based on a non-relativistic all-electron calcula-
tion but with otherwise identical parameters. The gen-
erated NR PAWs are available upon request. For Cn,
small-core PAWs (20 valence electrons) from a previous
work were used.[6, 7]. Some important parameters of the
used PAWs are collected in Table I.

TABLE I. Valence-projector energies and ENMAX value (in eV)
for the default relativistic and non-relativistic PBE-PAW po-
tentials used in and made for this study. NR PAWs for Zn,
Cd, and Hg use the exact same parameters as the default ones
(12 valence electrons). The PAWs for Cn are taken from a
previous study and include the s and p semi-core levels to a
total of 20 valence electrons.

element s projectors p projectors d projectors ENMAX

Zn −6.0 1.2 −2.7 13.2 −10.1 −11.5 277

Zn NR −5.8 1.8 −2.7 13.4 −10.6 −11.9 277

Cd −5.3 −0.5 −2.7 8.6 −12.6 −14.0 275

Cd NR −5.7 −1.6 −2.7 8.4 −11.7 −13.1 274

Hg −6.8 −4.0 −2.7 8.1 −9.9 −11.2 233

Hg NR −5.3 −0.4 −2.7 8.7 −12.1 −13.5 234

Cn −136.9 −9.4 −60.7 −1.4 −8.0 −9.4 292

Cn NR −78.6 −4.9 −52.6 −1.4 −12.3 −13.7 244

Liquid and solid phases are represented by 64-atom
configurations, except for liquid Hg, where we addition-
ally consider a 121-atom configuration with very similar
results. Previous studies have confirmed that these atom

numbers provide numerically converged results.[6, 8] The
influence of electronic entropy is accounted for through
Fermi-smearing of the populations.[9]

Two reference levels of theory are used for each ele-
ment. One with reduced accuracy that allows for effi-
cient sampling of the configuration space, and another
one to obtain the final numerically converged energies.
The lower reference level of theory exploits reduced global
precision (PREC = NORMAL) and an energy-convergence
of 10−4 eV (EDIFF = 1E-04) to accelerate the simula-
tions and in in general scalar/non-relativistic (LSORBIT
= FALSE). Liquid simulations conducted at this level use
the Nose-Hover thermostat with an SMASS parameter
of 2-4, solid simulations employ a Langevin thermostat
with a LANGEVIN GAMMA value of 3. The higher reference
level uses (PREC = ACCURATE), an energy-convergence of
10−6 eV (EDIFF = 1E-06), and explicitly includes spin-
orbit coupling in the valence space (LSORBIT = TRUE, if
applicable). The element specific parameters like kinetic-
energy cut-offs, k-point grids, and timesteps for the sim-
ulations are collected in Tab. II.

TABLE II. Element-specific parameters for the calculations
(identical for NR, SR and SOR levels). The lower reference
level used in the simulations (TDI) and the higher reference
level for single-point energies (TPT) are given in the form
(TDI→TPT). The timestep used in the normal simulations
is given last, followed by the shorter timestep used in the
simulations near the non-interacting limit (liquid only).

element (phase Tsim) cut-off [eV] k-grid timestep [fs]

Zn (solid 700 K) 300→ 600 23 → 43 3

Zn (liquid 1000 K) 300→ 600 23 → 43 3 (1)

Cd (solid 500 K) 300→ 600 23 → 43 4

Cd (liquid 1000 K) 300→ 600 23 → 43 4 (2)

Hg (solid 250/500 K) 250→ 500 23 → 53 6

Hg (liquid 300/700 K) 250→ 500 23 → 53 6 (2)

Cn (solid 200 K) 400→ 600 23 → 53 8

Cn (liquid 250/300 K) 400→ 600 23 → 53 8 (2)

FREE-ENERGY CALCULATIONS

Solid – The free energy of the solids is calculated in
four main steps, in the first of which the electronic energy
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TABLE III. Incremental contributions to the Gibbs energy
of Zn using the PBEsol functional in eV/atom. The internal
energy U is the average of a canonical MD simulation and
includes the TPT corrections.

step (level) contrib. total Gs error

Zn/solid/700 K/relativistic

electronic energy −1.5754

harmonic crystal −0.2808 −1.8562

anharm. via TDI 0.0020 −1.8542

TPT cut-off & prec. 0.0019 −1.8523

TPT k-points 0.0184 −1.8339

TPT spin-orbit −0.0017 −1.8356 ±0.0005

internal energy U −1.3783 ±0.0005

entropy S [meV/K] 0.6533

Zn/solid/700 K/non-relativistic

electronic energy −1.6700

harmonic crystal −0.2726 −1.9427

anharm. via TDI 0.0002 −1.9424

TPT cut-off & prec. 0.0019 −1.9405

TPT k-points 0.0191 −1.9214 ±0.0005

internal energy U −1.4704 ±0.0005

entropy S [meV/K] 0.6443

Zn/liquid/1000 K/relativistic

ideal gas @ liq. volume −1.0185

TDI to DFT liq. −1.0695 −2.0880

TPT cut-off & prec. 0.0022 −2.0859

TPT k-points −0.0047 −2.0905

TPT spin-orbit −0.0016 −2.0921 ±0.001

internal energy U −1.2067 ±0.001

entropy S [meV/K] 0.8854

Zn/liquid/1000 K/non-relativistic

ideal gas @ liq. volume −1.0202

TDI to DFT liq. −1.1472 −2.1674

TPT cut-off & prec. 0.0019 −2.1655

TPT k-points −0.0049 −2.1704 ±0.001

internal energy U −1.2879 ±0.001

entropy S [meV/K] 0.8825

and ionic frequencies of the super-cells are calculated at
their respective equilibrium volumes either non- or scalar-
relativistically. For the ionic frequencies, the numerical
precision is increased by setting Precision=Accurate

and LREAL=False in the INCAR file to avoid aliasing errors
with the finite-differences method. To make these calcu-
lations more accurate, four displacements are considered
for each atom in each direction (NFREE=4).

Secondly, using the previously determined force-
constants, the vibrational contributions to the free energy
are calculated in the harmonic approximation. These cal-
culations are carried out with the Phonopy program using
a very fine k-point mesh (163).[11]

Thirdly, thermodynamic integration from the har-

TABLE IV. Incremental contributions to the Gibbs energy of
Cd using the PBEsol functional in eV/atom. The internal
energy U is the average of a canonical MD simulation and
includes the TPT corrections.

step (level) contrib. total Gs error

Cd/solid/500 K/relativistic

electronic energy −1.1707

harmonic crystal −0.2239 −1.3946

anharm. via TDI 0.0025 −1.3921

TPT cut-off & prec. −0.0006 −1.3927

TPT k-points 0.0095 −1.3832

TPT spin-orbit −0.0089 −1.3921 ±0.0005

internal energy U −1.0460 ±0.0005

entropy S [meV/K] 0.6922

Cd/solid/500 K/non-relativistic

electronic energy −1.4562

harmonic crystal −0.2045 −1.6607

anharm. via TDI 0.0004 −1.6603

TPT cut-off & prec. −0.0007 −1.6610

TPT k-points 0.0170 −1.6440 ±0.0005

internal energy U −1.3136 ±0.0005

entropy S [meV/K] 0.6609

Cd/liquid/1000 K/relativistic

ideal gas @ liq. volume −1.1240

TDI to DFT liq. −0.7179 −1.8419

TPT cut-off & prec. −0.0004 −1.8423

TPT k-points −0.0051 −1.8474

TPT spin-orbit −0.0083 −1.8557 ±0.001

internal energy U −0.8498 ±0.001

entropy S [meV/K] 1.0059

Cd/liquid/1000 K/non-relativistic

ideal gas @ liq. volume −1.1267

TDI to DFT liq. −0.9456 −2.0723

TPT cut-off & prec. −0.0006 −2.0729

TPT k-points −0.0039 −2.0768 ±0.001

internal energy U −1.0869 ±0.001

entropy S [meV/K] 0.9898

monic to the (non- or scalar-relativistic) DFT solid is
carried out by interpolating between harmonic and DFT
forces. The integral is evaluated using a Gauss-Legendre
three-point rule with at least 5000 steps time at each
point (1000 steps equilibration, 4000+ steps productive).
This provides the anharmonic correction to the free en-
ergy of the harmonic crystal, which is the main source
of errors for the free energy of the solid with a statistical
uncertainty of 0.1− 0.4 meV.

Finally, the difference between the low and high refer-
ence levels (spin-orbit coupling, k-point mesh, kinetic-
energy cut-off, and increased numerical precision, see
Tab. II) is accounted for using TPT, i.e., by recalcu-
lating the electronic energy for at least 10 frames at both
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TABLE V. Incremental contributions to the Gibbs energy of
Hg using the PBEsol functional in eV/atom. The internal
energy U is the average of a canonical MD simulation and
includes the TPT corrections.

step (level) contrib. total Gs error

Hg/solid/250 K/relativistic

electronic energy −0.5612

harmonic crystal −0.0859 −0.6471

anharm. via TDI −0.0003 −0.6474

TPT cut-off & prec. 0.0001 −0.6473

TPT k-points 0.0080 −0.6393

TPT spin-orbit −0.0736 −0.7128 ±0.0005

internal energy U −0.5622 ±0.0005

entropy S [meV/K] 0.6027

Hg/solid/500 K/non-relativistic

electronic energy −1.3395

harmonic crystal −0.2510 −1.5904

anharm. via TDI 0.0006 −1.5898

TPT cut-off & prec. −0.0005 −1.5902

TPT k-points 0.0130 −1.5974 ±0.0005

internal energy U −1.2015 ±0.0005

entropy S [meV/K] 0.7521

Hg/liquid/300 K/relativistic

ideal gas @ liq. volume −0.3134

TDI to DFT liq. −0.3798 −0.6932

TPT cut-off & prec. 0.0005 −0.6927

TPT k-points 0.0005 −0.6923

TPT spin-orbit −0.0658 −0.7580 ±0.001

internal energy U −0.5256 ±0.001

entropy S [meV/K] 0.7694

Hg/liquid/700 K/relativistic

ideal gas @ liq. volume −0.8114

TDI to DFT liq. −0.2684 −1.0799

TPT cut-off & prec. −0.0010 −1.0809

TPT k-points 0.0004 −1.0805

TPT spin-orbit −0.0639 −1.1444 ±0.001

internal energy U −0.4248 ±0.001

entropy S [meV/K] 1.0028

Hg/liquid/700 K/non-relativistic

ideal gas @ liq. volume −0.8142

TDI to DFT liq. −0.9322 −1.7464

TPT cut-off & prec. 0.0000 −1.7464

TPT k-points −0.0036 −1.7500 ±0.001

internal energy U −1.0710 ±0.001

entropy S [meV/K] 0.9701

levels, typically with several intermediate steps to check
the size of each single contribution for convergence. For-
mally, TPT provides the free-energy difference between
two Hamiltonians

∆G1−2 = − 1

β
ln〈e−β[U2(R)−U1(R)]〉1 , (1)

TABLE VI. Incremental contributions to the Gibbs energy of
Cn using the PBE-D3 functional in eV/atom. The internal
energy U is the average of a canonical MD simulation and
includes the TPT corrections.

step (level) contrib. total Gs error

Cn/solid/200 K/relativistic

electronic energy −0.4316

harmonic crystal −0.0914 −0.5230

anharm. via TDI 0.0021 −0.5209

TPT cut-off & prec. −0.0036 −0.5245

TPT k-points −0.0001 −0.5246

TPT spin-orbit −0.0362 −0.5608 ±0.0005

internal energy U −0.4234 ±0.0005

entropy S [meV/K] 0.6873

Cn/liquid/250 K/relativistic

ideal gas @ liq. volume −0.2737

TDI to DFT liq. −0.2806 −0.5543

TPT cut-off & prec. −0.0034 −0.5577

TPT k-points 0.0000 −0.5577

TPT spin-orbit −0.0355 −0.5932 ±0.001

internal energy U −0.3958 ±0.001

entropy S [meV/K] 0.7898

Cn/liquid/300 K/relativistic

ideal gas @ liq. volume −0.3362

TDI to DFT liq. −0.2618 −0.5979

TPT cut-off & prec. −0.0031 −0.6011

TPT k-points 0.0000 −0.6011

TPT spin-orbit −0.0344 −0.6354 ±0.001

internal energy U −0.3802 ±0.001

entropy S [meV/K] 0.8507

where the index after the angle bracket indicates that
the difference ∆U1−2 is evaluated for configurations gen-
erated by H1. Instead of the exact equation, we use the
second-order cumulant expansion

∆G1−2 ≈ 〈∆U〉1 −
β

2
〈(∆U − 〈∆U〉)2〉1 , (2)

which is sufficiently accurate since already the second-
order term is � 1 meV/atom in all cases, indicating a
parallel run of the respective potential-energy surfaces.

Statistical errors are < 0.2 meV in all cases. The con-
tributions and final Gibbs free energies of the solids are
collected in Tabs. III-VI.
Liquid – The Gibbs energy of the liquid is calculated

through TDI from a non-interacting reference. For this
purpose the difference of the internal energies is inte-
grated along the coupling parameter λ

∆G0−1 =

∫ 1

0

dλ〈U1(R)− U0(R)〉λ . (3)

The free energy of the non-interacting reference at the



4

TABLE VII. Calculated atomic equilibrium volumes (Veq in
A3/atom), corresponding densities (ρ in g/ccm) and averaged
residual pressures (〈p〉 in kBar) of all considered phases and
temperatures. Calculations with spin-orbit (SOR) and non-
relativistic (NR) PBEsol for Zn-Hg and PBE-D3 for Cn. Sim-
ulations are conducted at the lower reference level, while cor-
rections for the higher reference level are calculated for 10
statistically independent snapshots from the simulation. The
difference due to spin-orbit coupling ∆SO

p is given in the last
column.

System Tsim Veq ρcalc ρexp 〈p〉 ∆pSO

Zn, hcp 700 14.83 7.32 7.1a −0.04 −0.09

Znnr, hcp 700 15.13 7.18 0.17 –

Zn, lqd 1000 16.68 6.51 6.4a −0.51 −0.09

Znnr, lqd 1000 17.00 6.39 −0.14 –

Cd, hcp 500 21.90 8.52 8.7b −0.74 −0.97

Cdnr, hcp 500 22.76 8.20 0.17 –

Cd, lqd 1000 25.15 7.42 7.5a −0.83 −0.84

Cdnr, lqd 1000 25.95 7.19 −0.07 –

Hg,b rho 250 24.33 13.7 14.2 −0.05 −10.12

Hgnr, hcp 250 25.30 13.2 −0.56 –

Hgnr, hcp 500 25.86 12.9 0.06 –

Hg,b lqd 300 25.11 13.3 13.5b −0.65 −9.32

Hg, lqd 700 25.88 12.9 11.9a −0.46 −8.40

Hgnr, lqd 700 28.38 11.7 −0.18 –

Cn, hcp 200 34.32 13.8 −0.13 −4.51

Cn, lqd 250 35.59 13.3 −0.17 −4.33

Cn, lqd 300 35.51 13.0 −0.56 −4.23

a Extrapolated from the data provided in ref. [10]
b at ambient conditions

liquid equibrium volume is

Gid = F id = −kBT ln (Z(Θ, T, V,N)) , where (4)

Z(T, V,N) =
(ΘV )N

Λ3NN !
and Λ = h

√
β

2πm
. (5)

Here, N is the number of atoms, m their mass, V the
atomic volume, and Θ the electronic degeneracy. Note
that the pV term is negligible at the volume of the liquid
(� 1 meV/atom) and only taken into account for the gas
phase below.

Since the kinetic energy part of U1 and U0 is iden-
tical it cancels, and the potential part vanishes at zero
interaction stength (U0), the value of the integrand is the
average internal potential energy calculated at full inter-
action strength 〈Upot

1 (R)〉 for configurations R generated
with reduced interaction strength (at the respective λ).
This integral is evaluated using numerical quadrature in
the form of a n-point Gauss-Lobatto rule, in principle
requiring one NVT simulation for each value of λ. We

use n = 6 for Zn and Cd, n = 8 for Hg and Cn. While
most of these simulations are straightforward, the ones
very close to the ideal-gas limit (λ � 0.01 or < 1% of
the DFT forces) are tedious, whereas the simulation for
the end point λ = 0 is not possible with a PAW+DFT
methodology. This is because close-encounters between
the (almost) non-interacting atoms lead to singularity in
the energy resulting in numerical instabilities in errors in
the simulations, partly resulting from overlapping core-
electrons. An approach to circumvent these issues was
devised and implemented by Kresse and coworkers and
will be used here with slight modifications.[8]

The approach is based on substituting λ in eq. (3)
with λ(x) = (x+1

2 )1/(1−κ), which yields

∆G0−1 =
1

2(1− κ)

∫ 1

−1
dx〈Upot

1 (R)λ(x)κ〉x . (6)

This introduces an explicit dependency on λ in the inte-
grand, which not only dampens the impact of the tech-
nically challenging calculations near the non-interacting
limit, and eliminates the point for λ = 0. The parameter
κ guides the mapping of the quadrature points between
the domains. While a value close to 0 retains the original
(equidistant) spacing of the Gauss-Lobatto quadrature, κ
close to unity increases the density of quadrature points
in the λ domain in the region close to λ = 0, where the
slope of f(λ) is the largest. Kresse and coworkers sug-
gest κ > 0.8. In a recent work,[12] we demonstrated that
smaller values can suffice and lead to much more manage-
able simulations. We use κ = 0.7 for all elements, having
tested 0.8 for Cn (300 K) with very similar results. In
analogy to the solid, TPT is used to correct and the fi-
nal energies with a desired precision of ≈ 1 meV/atom,
which requires about 10 snapshots from each simulation.
Gas Phase – The Gibbs energy of the gas phase is

calculated for the non-interacting (ideal) gas at its equi-
librium volume and ambient pressure. For a given atomic
degeneracy Θ, volume V = nkT/p, temperature T , par-
ticle number N and mass m this is

Gid = F id + pV = −kBT ln (Z(Θ, T, V,N)) + pV , (7)

where Z is defines in eq. (5). For the gas phase, the
logarithm in Z is solved using the Stirling approximation,
which is sufficiently accurate since we are considering an
arbitrary number of particles.

To check if the non-interacting model is sufficient, we
evaluate the first virial (two-body) correction for each
of the examples assuming a Lennard-Jones (12,6) poten-
tial with the parameters for the dimers provided in the
introduction. This leads to the following integral

GgLJ = Ggid −
2πN2

V β

∫ [
r2e
−4εβ

[
(σr )

12−(σr )
6
]
− 1

]
dr

(8)
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which can be evaluated as described in ref. 13. Due to the
weak interaction between isolated Zn, Cd and Hg atoms
and their large Res, the correction is repulsive and negli-
gibly small at the respective BPs (≤ 0.1 meV/atom). At
the distinctly lower BP of Cn, the virtial term is attrac-
tive and somewhat larger at −0.2 meV/atom, yet still
too small to affect the calculated BP.

CALCULATIONS OF ERRORS

Statistical errors for averages taken from simulations
are calculated using block-averaging. The typical block
size for the solid configuration is about 50, and distinctly
larger with 50-150 for the liquid depending on time-step
and λ. Based on these data, we have chosen the length of
the simulations to achieve a statistical error smaller than
1 meV/atom. The other significant source of errors is the
linear extrapolation of G(T ) for the solid and liquid (cf.
Fig. 3 in the main article). To mitigate these errors, we
have conducted the free-energy calculations near the re-
spective MP/BP. Altogether, this leads to an uncertainty
of about 15 K in the predicted MPs and about 5 K in the
BP, the latter of which is less sensitive due to the steeper
intersection of the respective free-energy curves.

ORIGIN OF THE DIFFERENCE TO THE
PREVIOUS ESTIMATE OF STEENBERGEN

We note that the interface-pinning method employed
in ref. 14 requires much larger cells of 250 atoms (125
liquid and 125 solid atoms), which was only possible (de-
spite using a large supercomputer) at a scalar-relativistic
level with a rather coarse k-point grid (2× 2× 1 or effec-
tively 2 × 2 × 2 points for the solid/liquid part as these
are joined third axis). In contrast, our approach allows
to use smaller 64-atom solid (4 × 4 × 4 super-cell) and
64- or 121-atom liquid configurations, which in combina-
tion with the incremental corrections via TPT allows to

include much finer k-point grids of up to 5×5×5 as well
as explicit spin-orbit coupling. Inspection of the respec-
tive TPT corrections from the 2 × 2 × 2 grid employed
in our simulations, which corresponds to the final level
of ref. 14, to the final 5 × 5 × 5 grid used here (cf. Ta-
ble V) reveals a strong influence and large differences in
the respective corrections for the liquid (< 1 meV/atom),
relativistic solid (8 meV/atom), and non-relativistic solid
phases (13 meV/atom). Although a detailed analysis of
the influence this has on the predicted MP is not possi-
ble, the large differential corrections strongly suggest this
as the origin of the deviation.
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