

Supporting Information

Side-on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel

Braulio M. Puerta Lombardi⁺, Chris Gendy⁺, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen,* and Roland Roesler*

anie_202011301_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

General Considerations4
Experimental Procedures5
Synthesis of dimethylsilylbis(methylimidazolium) diiodide, [(1)H ₂]I ₂ 5
Scheme S1. Synthesis of ligand 15
Synthesis of dimethylsilylbis(methylimidazolium) bis(tetraphenylborate) [(1)H ₂][BPh ₄] ₂ 5
Synthesis of dimethylsilylbis(methylimidazolylidene), 16
Synthesis of (1)Ni(η²-cod), 2
Scheme S2. Synthesis of nickel complex 27
Synthesis of (1)Ni(<i>N,N</i> '-ŋ²-N₂O), 3
Scheme S3. Synthesis of nickel complexes 3 and 58
Synthesis of (2)Ni(η²-CO₂), 5
Generation of N ₂ O-(¹⁵ N ₂)
Scheme S4. Postulated succession of reactions leading to the generation of N_2O 10
Figure S1. A) Setup for N ₂ O-($^{15}N_2$) generation. B) Loading alkaline solution into compartment d. C) N ₂ O-($^{15}N_2$) generation in progress
Figure S2. A) Chromatogram of the gaseous product collected in the balloon using natural abundance NH ₄ NO ₃ and urea. B) Mass-spectrum corresponding to the peak eluting at 1.360 s in chromatogram A. C) Chromatogram of the gaseous product collected in the balloon using ¹⁵ NH ₄ ¹⁵ NO ₃ and urea-(¹⁵ N ₂). D) Mass-spectrum corresponding to the peak eluting at 1.360 s in chromatogram C
Figure S3. A) Chromatogram of the reaction headspace after heating 3 (15 mg) in THF- d_8 (1 mL) at

70 °C for 1.5 h in a J. Young NMR tube. **B)** Mass-spectrum corresponding to the peak eluting at

1.360 s in chr chromatograi	omatogram A. C) Mass-spectrum corresponding to the peak eluting at 2.554 s in m A.	13
Figure S4. ¹ H	NMR spectrum of crude [(1)H ₂]I ₂ (400 MHz, 298 K, CD ₂ Cl ₂)	14
Figure S5. ¹ H MHz, 298 K, C	NMR spectrum of $[(1)H_2][BPh_4]_2$ in air (contains H ₂ O, see dry compound below) (40 CD ₃ CN)	0 15
Figure S6. ¹ H	NMR spectrum of [(1)H ₂][BPh ₄] ₂ (400 MHz, 298 K, CD ₃ CN)	16
Figure S7. ¹³ C	DEPTQ NMR spectrum of [(1)H ₂][BPh ₄] ₂ (101 MHz, 298 K, CD ₃ CN)	17
Figure S8. ¹ H-	¹³ C HSQC spectrum of [(1)H ₂][BPh ₄] ₂ (400 MHz, 298 K, CD ₃ CN)	18
Figure S9. ¹ H-	¹³ C HMBC spectrum of [(1)H ₂][BPh ₄] ₂ (400 MHz, 298 K, CD ₃ CN)	19
Figure S10. ¹ H	H NMR spectrum of 1 (400 MHz, 298 K, C ₆ D ₆)	20
Figure S11. ¹³	C DEPTQ NMR spectrum of 1 (101 MHz, 298 K, C ₆ D ₆)	21
Figure S12. ¹ H	H- ¹³ C HSQC spectrum of 1 (400 MHz, 298 K, C ₆ D ₆)	22
Figure S13. ¹ H	H- ¹³ C HMBC spectrum of 1 (400 MHz, 298 K, C_6D_6)	23
Figure S14. ¹ +	H NMR spectrum of 2 (400 MHz, 298 K, THF- d_8)	24
Figure S15. ¹ +	H NMR spectrum of 2 (400 MHz, 195 K, THF- d_8)	25
Figure S16. ¹³	C DEPTQ NMR spectrum of 2 (101 MHz, 195 K, THF- d_8)	26
Figure S17. ¹ H	H- ¹³ C HSQC spectrum of 2 (400 MHz, 195 K, THF- <i>d</i> ₈)	27
Figure S18. ¹ H	H- ¹³ C HMBC spectrum of 2 (400 MHz, 195 K, THF- <i>d</i> ₈)	28
Figure S19. ¹³	C CP/MAS NMR spectrum of 3 , v_{rot} = 10 kHz, acquired at 225 K at 11.75 T	29
Figure S20. ¹⁵	N CP/MAS NMR spectrum of 3 , acquired at 225 K at 11.75 T with v_{rot} = 10 kHz	30
Figure S21. ¹³	C CP/MAS NMR spectrum of 5 , acquired at RT at 11.75 T with v_{rot} = 14 kHz	31
Figure S22. Ba	aseline-corrected FT-IR for ¹⁴ N ₂ - 3 at RT with KBr pellet	32
Figure S23. Ba	aseline-corrected FT-IR for isotopically-labelled $^{15}N_2$ - 3 at RT with KBr pellet	32
Figure S24. St	uperimposed inset of ¹⁵ N ₂ - 3 (gray) and ¹⁴ N ₂ - 3 (red)	33
Figure S25. Ba	aseline-corrected FT-IR for 5 at RT with KBr pellet	33
Figure S26. O difference be	verlaid FT-IR spectra for 3 and 3 -(¹⁵ N ₂) (99% isotopically enriched) with spectral low.	34
Figure S27. So	olid-state structure of [(1)H ₂][BPh ₄] ₂	35
Figure S28. So	olid-state structure of 2	35
Figure S29. So	olid-state structure of one of the two independent molecules of 3	36
Figure S30. So	olid-state structure of 5	36
Table S1. Sun	nmary of Crystallographic Data for Compounds [(1)H ₂][BPh ₄], 2 , 3 , and 5	37
Computational De	tails	. 38
Geometries and	l properties of complexes 3, 4 and 5	38

Calculated ¹⁵ N chemical shifts of 3
Figure S31. Relative Gibbs energies for 3, 4 and (1)Ni(N ₂)O, and the associated transition states connecting the three species
Comparison of ligand properties of N_2O and CO_2 40
Table S2. Gibbs Energies Calculated for the Complexes M-CO ₂ (Figure S32) and M-N ₂ O (in a.u.), and for Ligand Exchange Reaction M-CO ₂ + N ₂ O \rightleftharpoons M-N ₂ O + CO ₂ (in kJ mol ⁻¹) Using Different Metal Fragments M
Figure S32. M-CO $_2$ complexes used for the computational study summarised in Table S241
Figure S33. Frontier orbitals of CO ₂ and N ₂ O (PBE1PBE/def2-TZVP, isosurface value ±0.03), and their associated energies (in a.u.)
Table S3. Summary of Results (in kJ mol ⁻¹) from Energy Decomposition Analyses Conducted for 3 and 5. 42
Solid-State NMR
Referencing nitrogen chemical shifts43
Referencing nitrogen chemical shifts in solids44
NMR of nitrous oxide
Table S4. Experimental and Calculated Isotropic Chemical Shifts (ppm) for 3
Table S5. PBE1PBE (top) and BP86 (bottom) Calculated Nitrogen and Oxygen Magnetic ShieldingTensors (ppm) for N2O and 3. ^{a,b} 46
Figure S34 A) Absolute ¹⁵ N magnetic shielding values for NH ₃ and CH ₃ NO ₂ . B) Conversion of shielding values to chemical shifts relative to NH ₃ (I) using the equation $\delta = + 244.647$
References

General Considerations

The synthesis and handling of compounds was performed under an argon atmosphere using an MBRAUN glove box or a double-manifold Schlenk line operating with argon, except for the protocol for [(1)H₂]I₂, which was conducted in the air. Pentane was dried using an MBRAUN solvent purification system and stored in a 500 mL glass vessel containing sodium. Benzene, toluene, o-xylene, and tetrahydrofuran were dried over potassium, distilled for storage into 500 mL air-tight vessels containing sodium/benzophenone ketyl, and vacuum-transferred into the reaction vessel. Nuclear magnetic resonance (NMR) spectra of samples in solution were acquired on Bruker Avance and Avance III 400 MHz spectrometers at 298 K, unless otherwise noted. ¹H and ¹³C NMR chemical shifts were referenced to residual solvent peaks and naturally abundant ¹³C resonances for all deuterated solvents: CH₂Cl₂-d₁ (5.32 ppm, ¹H) and CH₂Cl₂-d₂ (54.00 ppm, ¹³C); acetonitrile- d_2 (1.94 ppm, ¹H) and acetonitrile- d_3 (1.32 ppm, ¹³C); benzene- d_5 (7.16 ppm, ¹H) and benzene- d_6 (128.06 ppm, ¹³C); tetrahydrofuran- d_7 (3.58 ppm, ¹H) and tetrahydrofuran- d_8 (67.21 ppm, ¹³C).¹ X-ray crystallographic analyses were performed on a Bruker SMART APEX II CCD diffractometer using suitable single crystals coated in Paratone 8277 oil (Exxon) and mounted on glass-fiber loops. Measurements were processed with the Apex III software suite. Full crystallographic details can be found in each independently uploaded crystallographic information file (.cif). N₂O and N₂O-(¹⁵N₂) reagents were analyzed by gas-chromatography-mass-spectrometry (GC-MS) with an Agilent 7890B instrument. Infrared spectra were measured on a Nicolet Avatar FT-IR spectrometer, as KBr pellets sandwiched between two outer KBr layers. All elemental analyses were collected on a Perkin-Elmer Model 2400 series II analyzer. N-(2,6diisopropylphenyl)imidazole,² and bis(iodomethyl)dimethylsilane³ were prepared according to literature procedures. Bis(chloromethyl)dimethylsilane (Gelest), nitrous oxide (Air Liquide), carbon dioxide (Praxair), ammonium nitrate (¹⁵N₂) (Cambridge Isotope Laboratories), ¹⁵N₂-urea (Millipore-Sigma) and all other reagents (Millipore-Sigma, Alfa Aesar) were used as received.

Experimental Procedures

Synthesis of dimethylsilylbis(methylimidazolium) diiodide, $[(1)H_2]I_2$. In air, a 100 mL roundbottom flask was charged with bis(iodomethyl)dimethylsilane (4.10 g, 12.0 mmol), and 1-(2,6diisopropylphenyl)imidazole (8.25 g, 36.1 mmol). Acetonitrile (70 mL) was then added and the solution was refluxed for 16 h. The reaction was allowed to cool to room temperature and volatiles were removed by rotary evaporation. The residue was triturated with toluene (30 mL) with the assistance of sonication (15 min), and the solvent was carefully decanted off the resulting thick residue. Further trituration with diethyl ether (3 × 20 mL) with sonication afforded an off-white solid of moderate purity according to NMR. This was filtered, dried in vacuo, and subjected to anion exchange to yield $[(1)H_2][BPh_4]_2$ without further purification.

¹H NMR (400 MHz, CD₂Cl₂) δ 0.54 (s, 6H, Si(CH₃)₂), 1.18 (d, ³J_{HH} = 6.8 Hz, 12H, CH(CH₃)₂), 1.22 (d, ³J_{HH} = 6.8 Hz, 12H, CH(CH₃)₂), 2.31 (sept, ³J_{HH} = 6.8 Hz, 4H, CH(CH₃)₂), 4.99 (s, 4H, CH₂), 7.28 (vt, ^vJ_{HH} = 1.8 Hz, 2H, ImH), 7.34 (d, ³J_{HH} = 7.9 Hz, 4H, *m*-C₆H₃), 7.57 (t, ³J_{HH} = 7.9 Hz, 2H, *p*-C₆H₃), 8.41 (vt, ^vJ_{HH} = 1.8 Hz, 2H, ImH), 10.24 (s, 2H, N₂CH). ¹³C NMR (101 MHz, CD₂Cl₂) δ –4.33 (s, Si(CH₃)₂), 24.2 (s, CH(CH₃)₂), 24.9 (s, CH(CH₃)₂), 29.1 (s, CH(CH₃)₂), 39.8 (s, CH₂), 125.0 (s, C₂N₂C), 125.1 (s, *m*-C₆H₃), 125.3 (s, C₂N₂C), 130.44 (s, *o*-C₆H₃), 132.3 (s, *p*-C₆H₃), 136.8 (s, N₂CH), 145.8 (s, *i*-C₆H₃).

Scheme S1. Synthesis of ligand 1.

Synthesis of dimethylsilylbis(methylimidazolium) bis(tetraphenylborate) $[(1)H_2][BPh_4]_2$. Imidazolium salt $[(1)H_2]I_2$ (2.24 g, *ca.* 2.81 mmol) and sodium tetraphenylborate (1.93 g, 5.63 mmol) were charged to a 100 mL round-bottom flask. Anhydrous tetrahydrofuran (60 mL) was condensed over this mixture and the reaction was stirred at room temperature for 1 h. The reaction mixture was filtered through celite and the volatiles were removed in vacuo. The residue was triturated with dichloromethane (60 mL) and the white, solid product (2.59 g, 78%) was collected by filtration and washed with diethyl ether. Solid [(1)H₂][BPh₄]₂ is hygroscopic and should be handled under an inert atmosphere. It decomposes in the presence of liquid water or alcohols, forming N-methyl-N'-(2,6diisopropylphenyl)imidazolium tetraphenylborate among other, unidentified products. When exposed to air, [(1)H₂][BPh₄]₂ absorbs moisture but can be dehydrated via the following procedure: A 100 mL one-neck round-bottomed flask was charged with activated 4 Å molecular sieves (4.5 g) and hydrated [(1)H₂][BPh₄]₂ (2.081 g), and connected to a swivel-frit apparatus. THF (60 mL) was vacuum transferred to the flask and the mixture was stirred overnight. The sieves were subsequently filtered off, the flask with the filtrate was transferred onto another swivel frit, and the solvent was removed in vacuo. The remaining solid was suspended in pentane (40 mL), sonicated to a loose-powder consistency, and filtered. After thoroughly drying under vacuum, the product (1.68 g) was obtained as a white powder.

¹H NMR (400 MHz, CD₃CN) δ 0.29 (s, 6H, Si(CH₃)₂), 1.18 (d, ³J_{HH} = 6.7 Hz, 12H, CH(CH₃)₂), 1.20 (d, ³J_{HH} = 6.7 Hz, 12H, CH(CH₃)₂), 2.32 (sept, ³J_{HH} = 6.7 Hz, 4H, CH(CH₃)₂), 4.31 (s, 4H, CH₂), 6.85 (t, ³J_{HH} = 7.2 Hz, 8H, BPh₄⁻ p-C₆H₅), 7.00 (vt, ³J_{HH} = 7.2 Hz, 16H, BPh₄⁻ o-C₆H₅), 7.30 (m, 16H, BPh₄⁻ m-C₆H₅), 7.43 (d, ³J_{HH} = 8.0 Hz, 4H, *m*-C₆H₃), 7.52 (dd, ³J_{HH} = 1.6, ⁴J_{HH} = 7.2 Hz, Hz, 2H, ImH), 7.61 (t, ³J_{HH} = 8.0 Hz, 2H, *p*-C₆H₃), 7.66 (dd, ³J_{HH} = 1.6 Hz, ⁴J_{HH} = 1.6 Hz, 2H, ImH), 9.11 (s, 2H, N₂CH). ¹³C NMR (101 MHz, CD₃CN) δ -5.39 (s, Si(CH₃)₂), 24.2 (s, CH(CH₃)₂), 24.5 (s, CH(CH₃)₂), 29.4 (s, CH(CH₃)₂), 40.1 (s, CH₂), 122.8 (s, BPh₄⁻ *p*-C₆H₅), 125.2 (s, C₂N₂C), 125.6 (s, *m*-C₆H₃), 126.3 (s, C₂N₂C), 126.6 (q, ²J_{CB} = 2.8 Hz, BPh₄⁻ *o*-C₆H₅), 131.1 (s, *o*-C₆H₃), 132.8 (s, *p*-C₆H₃), 136.7 (q, ³J_{CB} = 1.4 Hz, BPh₄⁻ *m*-C₆H₅), 137.1 (s, N₂CH), 146.5 (s, *i*-C₆H₃), 164.8 (q, ¹J_{CB} = 49.3 Hz, BPh₄⁻ *i*-C₆H₅).

Synthesis of dimethylsilylbis(methylimidazolylidene), 1. (2.00 g, 1.69 mmol) and KHMDS (0.68 g, 3.38 mmol) were charged to a round-bottom flask. Toluene (50 mL) was vacuum transferred to the flask and the reaction was stirred at room temperature for 1 h. The solids were then filtered off over celite and the solvents were removed in vacuo. The residue was triturated twice with cold pentane, in which 1 is sparingly soluble, yielding an off-white solid (0.44 g, 48%). Further purification by crystallization from pentane is possible but generally not required. Solutions of 1 in hydrocarbon solvents decompose at room temperature over the course of several days, but no signs of decomposition were detected when the solid was stored over two months at -35 °C.

¹H NMR (400 MHz, C₆D₆) δ 0.41 (s, 6H, Si(CH₃)₂), 1.11 (d, ³J_{HH} = 6.9 Hz, 12H, CH(CH₃)₂), 1.22 (d, ³J_{HH} = 6.9 Hz, 12H, CH(CH₃)₂), 2.82 (sept, ³J_{HH} = 6.9 Hz, 4H, CH(CH₃)₂), 3.81 (s, 4H, CH₂), 6.53 (s, 2H, ImH), 6.68 (s, 2H, ImH), 7.15 (d, ³J_{HH} = 7.7 Hz, 4H, *m*-C₆H₃), 7.27 (t, ³J_{HH} = 7.7 Hz, 2H, *p*-C₆H₃). ¹³C NMR (101 MHz, C₆D₆) δ –3.36 (s, Si(CH₃)₂), 24.0 (s, CH(CH₃)₂), 24.7 (s, CH(CH₃)₂), 28.5 (s, CH(CH₃)₂), 40.9 (s, CH₂), 121.1 (s, C₂N₂C), 121.2 (s, C₂N₂C), 123.6 (s, *m*-C₆H₃), 128.8 (s, *p*-C₆H₃), 139.2 (s, *i*-C₆H₃), 146.5 (s, *o*-C₆H₃), 215.9 (s, N₂C). Anal. calcd. for C₃₄H₄₈N₄Si: C 75.50; H 8.95; N 10.36. Found: C 75.22; H 9.09; N 9.97.

Synthesis of (1)Ni(η^2 -cod), 2. Ligand 1 (0.34 g, 0.62 mmol) and Ni(cod)₂ (0.17 g, 0.62 mmol) were charged to a 50 mL round-bottom flask attached to a pressure-equalizing swivel frit. Benzene (25 mL) was vacuum transferred to the flask and the mixture was stirred at room temperature for 2 h. The solvent was removed in vacuo and the residue was washed with cold pentane (-78 °C). The product was isolated by filtration as a yellow powder (0.31, 71%). Crystals of 2 suitable for X-ray crystallographic analysis were obtained by slow evaporation of a pentane solution.

Scheme S2. Synthesis of nickel complex 2.

¹H NMR (400 MHz, 198 K, THF-*d*₈) δ (Selected resonances) 0.55 (bs, CH(CH₃)₂), 0.73 (bs, CH(CH₃)₂), 1.00 (bs, CH(CH₃)₂), 1.05 (bs, CH(CH₃)₂), 1.13 (bs, CH(CH₃)₂), 1.23 (bs, CH(CH₃)₂), 2.34 (bs, CH(CH₃)₂), 2.69 (bs, CH(CH₃)₂), 2.96 (d, ²J_{HH} = 15.1 Hz, 1H, SiCH₂), 3.11 (bs, CH(CH₃)₂), 3.19 (d, ²J_{HH} = 15.1 Hz, 1H, SiCH₂), 3.30 (bs, CH(CH₃)₂), 3.55 (d, ²J_{HH} = 14.4 Hz, 1H, SiCH₂), 4.28 (s, 2H, COD-CH-Ni), 4.65 (d, ²J_{HH} = 14.4 Hz, 1H, SiCH₂), 5.32 (m, COD-CH). ¹³C NMR (101 MHz, 198 K, THF-*d*₈) δ (Selected resonances) 21.7 (s, CH(CH₃)₂), 22.6 (s, CH(CH₃)₂), 23.8 (s, CH(CH₃)₂), 24.0 (s, CH(CH₃)₂), 26.0 (s, CH(CH₃)₂), 26.3 (s, CH(CH₃)₂), 26.5 (s, CH(CH₃)₂), 27.8 (s, CH(CH₃)₂), 28.5 (s, CH(CH₃)₂), 28.7 (s, CH(CH₃)₂), 29.0 (s, CH(CH₃)₂), 29.1 (s, CH(CH₃)₂), 31.5 (s, COD-CH₂), 33.1 (s, COD-CH₂), 33.7 (s, COD-CH₂), 34.0 (s, COD-CH₂), 38.7 (s, SiCH₂), 40.2 (s, SiCH₂), 90.0 (s, COD-CH-Ni), 200.4 (s, N₂C), 208.4 (s, N₂C). Anal. calcd. for C₄₂H₆₀N₄SiNi: C 71.28; H 8.55; N 7.92. Found: C 70.71; H 9.00; N 7.35.

Synthesis of (1)Ni($N, N'-\eta^2-N_2O$), 3. Complex 2 (0.05 g, 0.07 mmol) was charged to a J. Young NMR tube and dissolved in *o*-xylene (1.5 mL). The reaction was attached to a high-vacuum line and thoroughly degassed. N₂O (1 atm) was back-filled into the tube at room temperature and the reaction was agitated briefly and allowed to stand. The product crystallized after 10 min. The supernatant was decanted and the crystals were washed with pentane (2 × 10 mL) and allowed to dry in an argon glovebox, without exposure to vacuum. The reaction was carried out three times and the combined product from three reactions was collected as bright yellow crystals (0.09 g in total, 66%). X-ray quality crystals were obtained directly from the J. Young tube, before washing with pentane. The product was insoluble in benzene, toluene, o-xylene, THF, and pentane. It dissolved in toluene and THF upon quantitative decomposition accompanied by evolution of N₂ (See Fig. S3) when heated to 70 °C under an inert atmosphere.

Scheme S3. Synthesis of nickel complexes 3 and 5.

¹³C CP/MAS NMR (225 K, $v_{rot} = 10$ kHz) δ (Selected resonances) –5.74 (s, Si(CH₃)₂), –4.07 (s, Si(CH₃)₂), 19.4 (s, CH(CH₃)₂), 183.7 (s, N₂C), 192.5 (s, N₂C). ¹⁵N CP/MAS NMR (225 K, $v_{rot} = 10$ kHz) δ 187.5– 194.0 (C₂N₂C), 311.8 (η²-NNO), 364.7 (η²-NNO). Anal. calcd. for C₃₄H₄₈N₆SiONi · (*o*-xylene)_{0.5}: C 65.51; H 7.67; N 12.07. Found: C 64.79; H 7.95; N 11.16.

Synthesis of (2)Ni(η^2 -CO₂), 5. Complex 2 (0.18 g, 0.26 mmol) was charged to a round-bottom flask and attached to a pressure-equalizing swivel frit. Tetrahydrofuran (15 mL) was condensed into the flask and CO₂ (1 atm) was admitted to the tube at room temperature. A yellow precipitate was observed after 30 min and the reaction was stirred for an additional 30 min. The solid was filtered, washed with pentane (5 mL), and dried under vacuum, yielding 5 as a yellow microcrystalline solid (0.12 g, 73%). Single crystal X-ray crystallography and elemental analysis confirmed the presence of one equivalent of co-crystallized THF. The product was insoluble in benzene, toluene, o-xylene, THF, and pentane.

¹³C CP/MAS NMR (298 K, $v_{rot} = 14 \text{ kHz}$) δ (Selected resonances) -5.16 (s, Si(CH₃)₂), -0.62 (s, Si(CH₃)₂), 167.3 (s, NiCO₂), 188.2 (s, N₂C), 192.2 (s, N₂C). Anal. calcd. for C₃₅H₄₈N₄SiO₂Ni·(C₄H₈O): C 65.44; H 7.89; N 7.83. Found: C 64.44; H 7.90; N 7.26.

Generation of N₂O-(¹⁵N₂). We found that the industrial process for the manufacture of N₂O, discovered by Higgins, Berthollet, and Austin during the second half of the 16th century and based on the thermal decomposition of NH4NO₃,⁴ was ill-suited for the laboratory generation of isotopically labeled samples. Aside from the well-known explosion hazard associated with heating NH4NO₃, in our hands this reaction was plagued by low yields, slow kinetics, and low product purity. Recent optimizations^{5,6} and earlier, elaborate setups devised for this much investigated synthesis⁷ indicate that others have encountered difficulties as well. Here we describe a simple, safe and reliable method for the generation of tens to hundreds of cm^{3 15}N₂O of satisfactory purity starting with labeled urea and a nitrate salt.

Solid pyrogallol, (0.25 g) was loaded via the top opening into section c of the custom-built bubbler shown in Figure S1A. The top of the vessel **b** was loaded with anhydrous CaCl₂ on top of a cotton wool plug, three-way valve a fitted with a balloon was attached to the top joint, section d side joint was capped, and the apparatus was evacuated. A 5 mL two-neck round-bottomed flask e equipped with a magnetic stir-bar was charged with ¹⁵N₂-urea (0.15 g, 2.42 mmol) and H₂SO₄ (0.4 mL) (note: exothermic) and placed under an N₂O atmosphere (natural abundance). The bubbler was then filled with N₂O and carefully loaded with 15% aqueous KOH solution in N₂O countercurrent, via the side joint, as depicted in Figure S1B, after which the two-neck round-bottom flask e was attached to the setup. In a separate vial, ¹⁵NH4¹⁵NO3 (0.21 g, 2.50 mmol) was mixed with H₂SO4 (0.4 mL) until a homogeneous solution was obtained. After the system was isolated from the N₂O source and opened to the balloon using three-way valve a, this solution was added to the urea-H₂SO₄ solution dropwise via syringe and the mixture was stirred at room-temperature until most of the alkaline pyrogallol in section **d** had been pushed to section **c**. The contents of the flask **e** were heated at 70 °C for 15 minutes on an oil bath, while ¹⁵N₂-N₂O was generated and collected in the balloon (Figure S1C). This was subsequently isolated from the bubbler using valve **a**, which was then detached from the apparatus and connected to a J. Young tube for ¹⁵N₂-N₂O addition. The collected gas was constituted primarily by N₂O/¹⁵N₂O in a 2:1 ratio, alongside trace amounts of CO₂ by-product (Figure S2).

Notes:

Prior to ¹⁵N₂O generation, the reaction vessel can be filled with argon instead of N₂O, in order to collect a ¹⁵N₂O – argon mixture. We found that the precipitation of **3** as a (**1**)Ni($N,N'-\eta^2-^{15}N_2O$)-(**1**)Ni($N,N'-\eta^2-^{14}N_2O$) mixture was more reliable with a ¹⁵N₂O-¹⁴N₂O mixture than the precipitation of pure (**1**)Ni($N,N'-\eta^2-^{15}N_2O$) using ¹⁵N₂O dilute with argon.

Rapid gas development in the flask \mathbf{e} at the beginning of the reaction, in combination with the small diameter of the bubbling tube in \mathbf{c} that is necessary for efficient CO₂ scrubbing, can lead to pressure build-up in the apparatus. A well-ventilated fume hood and a portable blast shield are strongly recommended.

 $NH4^{15}NO_3$ and $Na^{15}NO_3$ are expected to be just as suitable as $^{15}NH4^{15}NO_3$ for $^{15}N_2O$ generation, but have not been tested in this regard.

Urea nitrate is formed upon addition of the in-situ prepared nitric acid solution to the reaction flask containing urea in H₂SO₄ (Scheme S4, equation 1).⁸ Urea nitrate is quickly dehydrated by the H₂SO₄ reaction medium to form nitrourea (Scheme S4, equation 2) ⁹ which subsequently hydrolyzes to carbamic acid and the simplest nitramide, NH₂NO₂ (Scheme S4, equation 3). Carbamic acids are generally unstable and decompose to the parent amine (NH₃) and carbon dioxide (Scheme S4, equation 4),¹⁰ while NH₂NO₂ decomposes to N₂O and water (Scheme S4, equation 5).^{9,11} Evidence for N₂O evolution from the decomposition of organic nitramides has been well-documented.¹²⁻¹⁵

Scheme S4. Postulated succession of reactions leading to the generation of N2O.

Figure S1. A) Setup for N₂O-(15 N₂) generation. **B)** Loading alkaline solution into compartment d. **C)** N₂O-(15 N₂) generation in progress.

Figure S2. A) Chromatogram of the gaseous product collected in the balloon using natural abundance NH₄NO₃ and urea. **B)** Mass-spectrum corresponding to the peak eluting at 1.360 s in chromatogram A. **C)** Chromatogram of the gaseous product collected in the balloon using ¹⁵NH₄¹⁵NO₃ and urea-(¹⁵N₂). **D)** Mass-spectrum corresponding to the peak eluting at 1.360 s in chromatogram C.

Figure S3. A) Chromatogram of the reaction headspace after heating 3 (15 mg) in THF- d_8 (1 mL) at 70 °C for 1.5 h in a J. Young NMR tube. B) Mass-spectrum corresponding to the peak eluting at 1.360 s in chromatogram A. C) Mass-spectrum corresponding to the peak eluting at 2.554 s in chromatogram A.

Figure S4. ¹H NMR spectrum of crude $[(1)H_2]I_2$ (400 MHz, 298 K, CD₂Cl₂).

Figure S5. ¹H NMR spectrum of [(1)H₂][BPh₄]₂ in air (contains H₂O, see dry compound below) (400 MHz, 298 K, CD₃CN)

Figure S6. ¹H NMR spectrum of [(1)H₂][BPh₄]₂ (400 MHz, 298 K, CD₃CN).

Figure S7. ¹³C DEPTQ NMR spectrum of [(1)H₂][BPh₄]₂ (101 MHz, 298 K, CD₃CN).

Figure S8. ¹H-¹³C HSQC spectrum of [(1)H₂][BPh₄]₂ (400 MHz, 298 K, CD₃CN).

Figure S9. ¹H-¹³C HMBC spectrum of [(1)H₂][BPh₄]₂ (400 MHz, 298 K, CD₃CN).

Figure S10. ¹H NMR spectrum of 1 (400 MHz, 298 K, C₆D₆).

Figure S11. ¹³C DEPTQ NMR spectrum of **1** (101 MHz, 298 K, C₆D₆).

Figure S12. ¹H-¹³C HSQC spectrum of **1** (400 MHz, 298 K, C₆D₆).

Figure S13. ¹H-¹³C HMBC spectrum of 1 (400 MHz, 298 K, C₆D₆).

Figure S14. ¹H NMR spectrum of **2** (400 MHz, 298 K, THF-*d*₈).

Figure S15. ¹H NMR spectrum of 2 (400 MHz, 195 K, THF-*d*₈).

Figure S16. ¹³C DEPTQ NMR spectrum of 2 (101 MHz, 195 K, THF-*d*₈).

Figure S17. ¹H-¹³C HSQC spectrum of **2** (400 MHz, 195 K, THF-*d*₈).

Figure S18. ¹H-¹³C HMBC spectrum of **2** (400 MHz, 195 K, THF-*d*₈).

Figure S19. ¹³C CP/MAS NMR spectrum of 3, $v_{rot} = 10$ kHz, acquired at 225 K at 11.75 T. (*) indicates spinning sidebands.

Figure S20. ¹⁵N CP/MAS NMR spectrum of 3, acquired at 225 K at 11.75 T with $v_{rot} = 10$ kHz.

Figure S21. ¹³C CP/MAS NMR spectrum of 5, acquired at RT at 11.75 T with $v_{rot} = 14$ kHz.

Figure S22. Baseline-corrected FT-IR for ${}^{14}N_2$ -3 at RT with KBr pellet.

Figure S23. Baseline-corrected FT-IR for isotopically-labelled ¹⁵N₂-3 at RT with KBr pellet.

Figure S24. Superimposed inset of ¹⁵N₂-3 (gray) and ¹⁴N₂-3 (red).

Figure S25. Baseline-corrected FT-IR for 5 at RT with KBr pellet.

Figure S26. Overlaid FT-IR spectra for **3** and **3**- $(^{15}N_2)$ (99% isotopically enriched) with spectral difference below.

Figure S27. Solid-state structure of [(1)H₂][BPh₄]₂ with thermal ellipsoids at 50% probability. All hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): C4-Si1 1.891(3), C7-Si1 1.895(4), C4-N2 1.483(4), C7-N3 1.481(4), N2-C4-Si1 113.1(2), N3-C7-Si1 111.3(2).

Figure S28. Solid-state structure of **2** with thermal ellipsoids drawn at 50% probability and all hydrogen atoms omitted for clarity. Selected bond distances (Å) and angles (°): Ni1-C1 1.900(3), Ni1-C8 1.879(3), C1-Ni1-C8 107.99(12), C4-Si1-C7 111.31(15).

Figure S29. Solid-state structure of one of the two independent molecules of **3** with 50% thermal ellipsoids, and hydrogen atoms omitted. Selected bond lengths (Å) and angles (°) with [calculated values]: N5-N6 1.225(4) [1.210], N5-O1 1.276(4) [1.239], Ni1-N5 1.803(3) [1.821], Ni-N6 1.926(3) [1.910], Ni1-C1 1.901(3) [1.934], Ni1-C8 1.893(3) [1.919], N5-N6-O1 134.7(3) [138.4], C1-Ni1-C8 104.47(13) [107.7].

Figure S30. Solid-state structure of **5** with 50% thermal ellipsoids, and hydrogen atoms omitted. Selected bond lengths (Å) and angles (°) with [calculated values]: O1-C35 1.283(4) [1.264], C35-O2 1.218(4) [1.206], Ni1-O1 1.949(2) [1.937], Ni-C35 1.828(3) [1.839], Ni1-C1 1.973(3) [1.964], Ni1-C8 1.866(2) [1.856], O1-C35-O2 134.6(3) [137.5], C1-Ni1-C8 106.95(10) [109.4].

	[(1)H ₂][BPh ₄] ₂	2	3	5
CCDC Deposition #	2023414	2023411	2023412	2023413
Formula	$C_{82}H_{90}B_2N_4Si + [solvent]$	$C_{84}H_{120}N_8Ni_2Si_2$	$C_{100}H_{136}N_{12}Ni_2O_2Si_2$	C39H56N4NiO3Si
Formula weight	1181.28	1415.47	1711.80	715.67
Crystal system	Orthorhombic	Monoclinic	Triclinic	Orthorhombic
Space group	P b c a	$P 2_1/c$	P -1	P b c a
a (Å)	13.9281(6)	22.7004(6)	14.5896(4)	19.9519(6)
b (Å)	17.0348(7)	21.3563(6)	16.7064(5)	16.5247(4)
c (Å)	62.930(2)	17.5956(4)	20.5643(5)	23.7078(6)
α (°)	90	90	90.901(2)	90
β (°)	90	109.6770(10)	95.122(5)	90
γ (°)	90	90	97.415(2)	90
Volume (Å ³)	14930.8(10)	8032.2(4)	4948.7(2)	7816.4(4)
Ζ	8	4	2	8
Temperature (K)	173	173	173	173
λ (Å)	1.54178	1.54178	1.54178	1.54178
$\rho(calc) (gcm^{-1})$	1.051	1.171	1.149	1.216
F(000)	5072.0	3056.0	1840.0	3072.0
R(int)	0.0809	0.0411	0.0509	0.0390
$\mu (mm^{-1})$	0.599	1.219	1.100	1.318
θ range (°)	2.808-139.908	4.134-140.18	4.316-140.374	7.458-136.724
Total data	48979	51661	18654	47395
Unique	13924	15168	18654	7160
Completeness (%)	98.5	99.5	99.0	99.8
Parameters	812	885	1169	443
R (>2σ)	0.0836	0.0670	0.0641	0.0501
R _w (all data)	0.2385	0.1945	0.2068	0.1485
GOF	1.002	1.033	1.031	1.064

Table S1. Summary of Crystallographic Data for Compounds [(1)H₂][BPh₄], 2, 3, and 5.

Deposition Numbers 2023411-2023414 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Computational Details

All calculations were performed with Gaussian 16-C.01¹⁶ (geometry optimizations, energetics and NMR) and ADF 2019.3^{17,18} (NMR and energy decomposition analyses) program suites.

Geometries and properties of complexes 3, 4 and 5. Geometries of **3**, **4** and **5** were optimized in the gas phase with density functional theory using the PBE1PBE functional,^{19,,21} def2-TZVP²² basis sets and Grimme's D3 dispersion correction with Becke-Johnson damping.^{23,24} All structures were confirmed to be minima on the potential energy hypersurface via calculation of the associated vibrational frequencies (all positive).

The potential energy surfaces of **3** and **4** were examined in more detail by locating the transition states (one imaginary frequency) for their formation from (1)Ni and N₂O (relative Gibbs energy set to 0 kJ mol⁻¹, Figure S31). The results show that the associated energy barriers are both relatively low, with the transition state (1)Ni…NNO being lower by 32 kJ mol⁻¹, consistent with **3** being a kinetic product. The η^2 -*N*,*N*²-bound species **3** is 54 kJ mol⁻¹ lower in energy than the η^2 -*N*,*O*-isomer **4**, as expected, but **4** is metastable and readily converts to (1)Ni(N₂)O almost without a barrier (all attempts to locate the associated transition state were unsuccessful and converged to (1)Ni(N₂)O instead). Thus, (1)Ni(N₂)O is the thermodynamic product, although only by 7 kJ mol⁻¹. Pathways connecting **3** and **4** or **3** and (1)Ni(N₂)O were not searched for on the potential energy surface.

Calculated ¹⁵**N chemical shifts of 3.** ¹⁵N NMR shielding tensors were calculated for **3** using the GIAO formalism²⁵ at the PBE1PBE/def2-TZVP level^{19–22} with the Gaussian program.¹⁶ For comparison and inclusion of scalar-relativistic effects, the shielding tensors were also calculated using the ADF program¹⁸ employing the BP86^{26,27} density functional in combination with frozencore TZ2P²⁸ basis sets and zeroth order regular approximation (ZORA).²⁹ Shielding values were then converted to chemical shifts based on the reported absolute nitrogen shielding for NH₃(1) of 244.6 ppm (*vide infra*), *i.e.*, $\delta_{calc} = 244.6 - \sigma_{calc}$.³⁰ For better match with the experimental, solid state, conditions, atomic coordinates determined for **3** via X-ray crystallography were used in NMR calculations, apart from the C–H bond lengths, which were set to 1.09 Å.

Figure S31. Relative Gibbs energies for 3, 4 and $(1)Ni(N_2)O$, and the associated transition states connecting the three species.

Comparison of ligand properties of N₂O and CO₂. To compare the binding of ligands N₂O and CO₂ to metal complexes (M), Gibbs energies were calculated for the ligand exchange reaction M-CO₂ + N₂O \rightleftharpoons M-N₂O + CO₂ using 12 crystallographically characterized η^2 -*C*,*O*-CO₂ complexes (Figure S32) and their hypothetical η^2 -*N*,*N*'-N₂O analogues. The geometries of the complexes were optimized with the same method as used for **3** and **5** to allow direct comparison of the results. The calculated energies (Table S2) show that in most cases, N₂O binds stronger to the metal, with differences up to -26 kJ mol⁻¹ (per molecule of ligand). These results are consistent with the morphology and energies of the frontier molecular orbitals of N₂O and CO₂ (Figure S33), that is, the LUMO of N₂O is lower in energy than that of CO₂, and has greater contribution from the terminal nitrogen rather than the oxygen atom. It needs to be stressed that these results do not imply that the studied η^2 -*N*,*N*'-N₂O complexes are stable or isolable species but merely show that the inherent π -acceptor nature of N₂O is comparable to, or even better than, that of CO₂.

To further analyze the metal-ligand interactions in complexes of CO_2 and N_2O , the bonding in **3** and 5 was investigated through energy decomposition analysis with the extended transition state method using natural orbitals for chemical valence (ETS-NOCV).³¹ These were performed with the ADF program¹⁸ at the PBE1PBE/TZ2P/ZORA^{19–21,28,29} level of theory. The results showed that in both cases, the Pauli repulsion (769 and 729 kJ mol⁻¹ for **3** and **5**, respectively) is significantly greater than the sum of electrostatic attraction (-454 and -464 kJ mol⁻¹) and dispersion (-22 and -24 kJ mol⁻¹). However, the calculated instantaneous interaction energies are vastly negative for both species, -415 and -402 kJ mol⁻¹ for 3 and 5, respectively, owing to efficient orbital interactions (-709 and -643 kJ mol⁻¹) of which the vast majority (approx. 80 % in both cases) comes from a single orbital pair, consistent with a charge transfer channel from the metal to the π^* system of the ligand. It should be stressed that a comparison between 3 and 5 shows comparable electrostatic attraction and dispersion terms, but significantly stronger orbital interactions in 3 (difference of 66 kJ mol⁻¹ compared to 5), in line with the better π -acceptor nature of N₂O in these systems. As a result, the calculated instantaneous interaction energy is 13 kJ mol⁻¹ more negative for 3 than 5, in harmony with the trend in calculated binding energies that also take into account relaxation of the geometries of the ligands and (1)Ni.

Table S2. Gibbs Energies Calculated for the Complexes M-CO₂ (Figure S32) and M-N₂O (in a.u.), and for Ligand Exchange Reaction M-CO₂ + N₂O \rightleftharpoons M-N₂O + CO₂ (in kJ mol⁻¹) Using Different Metal Fragments M.^{*a*}

Metal	CCDC code	$E(M-CO_2 + N_2O)$	$E(M-N_2O + CO_2)$	ΔG
Ni	OXEXUL ³²	-3272.616904	-3272.626824	-26
	LEKXIK ³³	-3273.804873	-3273.813608	-23
	LONFUR ³⁴	-3879.81288	-3879.808607	11
	5 , this work	-3712.226853	-3712.235493	-23
Mo	CUSYAQ ³⁵	-827.900267	-827.906703	-17
	IFAPIR ³⁶	-2289.621949	-2289.621018	2
	SIBQAX ³⁷	-1538.183193	-1538.191927	-23
	FELGEJ ^{b, 38}	-2329.377073	-2329.403074	-34
Nb	BAHXUD ³⁹	-1343.446634	-1343.449893	-9
	JUFWEM ⁴⁰	-1165.860093	-1165.86454	-12
Fe	HEHKIO ⁴¹	-3791.418731	-3791.422571	-10
Re	NAZKUU ⁴²	-970.261935	-970.259059	8
	SABXEZ ⁴³	-1163.196807	-1163.193362	9

^a Energies of CO₂ and N₂O are -188.476081 and -184.556057 a.u., respectively.

^b Complex includes two ligands *i.e.* formulae M-2CO₂ and M-2N₂O.

Figure S32. M-CO₂ complexes used for the computational study summarised in Table S2.

Figure S33. Frontier orbitals of CO₂ and N₂O (PBE1PBE/def2-TZVP, isosurface value ± 0.03), and their associated energies (in a.u.).

Table S3. Summary of Results (in kJ mol⁻¹) from Energy Decomposition Analyses Conducted for **3** and **5**.

	3	5
$\Delta E_{ ext{Pauli}}$	769	729
$\Delta E_{ ext{elstat}}$	-454	-464
$\Delta E_{ m orb}$	-709	-643
$\Delta E_{ m disp}$	-22	-24
$\Delta E_{ m int}$	-415	-402

Solid-State NMR

¹³C and ¹⁵N NMR spectra of solid samples were acquired at room temperature (**5**) or at a temperature of approximately 225 K (**3**) on a Bruker NEO 500 spectrometer, operating at 125.8 and 50.7 MHz, respectively, for ¹³C and ¹⁵N. The cross-polarization technique, with magic angle spinning at frequencies (v_{rot}) of 9.5 to 14 kHz, was used to acquire all spectra of solid samples. The ¹H 90° pulse was 4.0 µs; the contact times were 3.0 and 5.0 ms respectively for ¹³C and ¹⁵N, with acquisition times of 50 and 20.5 ms, respectively, and with recycle delays of 3.0 or 5.0 s, respectively, for these nuclei. ¹³C NMR spectra were referenced to TMS ($\delta = 0$) by setting the high-frequency peak of an MAS adamantane sample to 38.56 ppm;⁴⁴ those for ¹⁵N were referenced to NH₃ ($\delta = 0$ ppm) by setting the ¹⁵N peak for glycine-¹⁵N (99 %) to 33.4 ppm.⁴⁵

Referencing nitrogen chemical shifts. Many early nitrogen NMR studies used ¹⁴N as the NMR probe instead of ¹⁵N. ¹⁴N has a natural abundance 99.632 %, a relatively low frequency ratio, Ξ $(^{14}N) = 7.226317$ %, and a spin quantum number of I = 1 with a relatively small quadrupole moment, Q = 2.044 fm². Typically, ¹⁴N nuclear guadrupolar coupling constant values, C_q , are less than 5 MHz and consequently for relatively small molecules (e.g., N₂O, acetonitrile) ¹⁴N NMR linewidths in non-viscous solvents may be only a few Hz or less. Much of the early ¹⁴N NMR research in organic chemistry was done at the Institute of Organic Chemistry, Polish Academy of Sciences in Warszawa, Poland. The relative receptivity of ¹⁴N compared to ¹³C is 5.90; however, one has to keep in mind that for large molecules in solution significant line broadening is encountered because of efficient quadrupolar relaxation. In 1977, Witanowski et al. proposed neat nitromethane, CH₃NO₂, as a reference sample for nitrogen NMR (*i.e.*, $\delta = 0.00$ ppm at 30 °C).⁴⁶ In that paper nitrogen chemical shifts are given as "screening constants"; a positive screening constant means that the chemical shift is negative. For example, for neat liquid ammonia at 30 °C, NH₃, the screening constant is $+381.93 \pm 0.14$ ppm (*i.e.*, $\delta = -381.93 \pm 0.14$ ppm). Early nitrogen NMR studies were discussed in Witanowski's 1973 book "Nitrogen NMR",⁴⁷ as well as in several reviews by the same author.⁴⁸ In Table 2, pp. 86–87 of the most recent report, the "true" nitrogen shielding of neat liquid ammonia is given as 381.9 ppm relative to CH₃NO₂.^{48e} For the applied magnetic field, \mathbf{B}_0 , perpendicular to the sample, the number reported is 380.2 ppm.

With the availability of pulse Fourier transform NMR instrumentation in the 1970s, natural abundance ¹⁵N NMR studies became feasible. Nitrogen-15 has a larger magnetic moment than ¹⁴N,

 Ξ (¹⁵N) = 10.136767 %, (*i.e.*, γ (¹⁵N)/ γ (¹⁴N) = -1.40276). Of note, ¹⁵N has a negative magnetogyric ratio, which is important to recognize in phasing ¹⁵N NMR spectra of liquid samples. In 1977, Srinivasan and Lichter reported ¹⁵NH₃(*liq.*), δ_{iso} = -380.23 ppm relative to CH₃NO₂ (measurements at room temperature).⁴⁹ A turning point in nitrogen NMR spectroscopy was the publication of Levy and Lichter's book "Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy" in 1979.⁵⁰ It used liquid ammonia as a reference, which may be less confusing because nitrogen sites in most samples are less shielded than the nitrogen nuclei of ammonia (*i.e.*, most sites have positive chemical shifts). However, the IUPAC 2001 recommendations continue to use CH₃NO₂ as a reference for nitrogen chemical shifts.⁵¹

Of course, nitrogen chemical shifts can be expressed using either CH₃NO₂(1) or NH₃(1) as a reference. Duncan's "Principal Components of Chemical Shift Tensors: A Compilation", is a reliable source for solid-state NMR data on chemical shift tensors,⁵² which follows the IUPAC convention setting the nitrogen chemical shift of NH₃ at –380 ppm. For an overall introduction to nitrogen NMR, we recommend the *Encyclopedia of NMR*.⁵³ Also recommended are Mason et al.'s review on metal nitrosyls and related compounds⁵⁴ and von Philipsborn et al.'s early review on ¹⁵N NMR.⁵⁵

Referencing nitrogen chemical shifts in solids. The first systematic report of ¹⁵N chemical shifts for nitrogen in various ammonium salts appeared in 1991 and included NH₄Cl(s), δ = -341.17 ppm; NH₄NO₃, δ = -358.45 ppm for NH₄⁺ and -4.98 ppm for NO₃⁻; glycine, -347.58 ppm, relative to neat CH₃NO₂(l).⁵⁶ The most recent paper focusing on ¹⁵N referencing in solids reflected the fact that in biochemical applications liquid ammonia is the more common reference (see refs. 16–18 of this paper) and recommend using the unified scale which is Ξ (¹⁵N) = 10.132912 % instead of Ξ (¹⁵N) = 10.136767 % (IUPAC).⁴⁵ According to these values, in an applied magnetic field where the ¹H resonance of TMS is exactly 100.0 MHz, the ¹⁵N of liquid ammonia is 10.132 912 MHz and that of CH₃NO₂ is 10.136 767. Thus, the ¹⁵N chemical shift of CH₃NO₂ is reported by Bertani as 136,767 Hz – 132,912 Hz = 3855/10.132 912 = 380.44 ppm. The values used in the current manuscript stem from this paper.

Depending on the exact experimental conditions (temperature, with or without MAS, etc.) the chemical shift values for glycine vary slightly.⁵⁷ A chemical shift reported at –6.4 ppm from NH₄Cl, which has a chemical shift of 39.3 ppm with respect to NH₃, yields a value for glycine of

approximately 39.3 - 6.4 = 32.9 ppm. α -glycine was reported as a secondary reference at -346.6 ppm,⁵⁸ similar to the value reported by Hayashi and Hayamizu (-347.58 ppm).⁵⁶

NMR of nitrous oxide. In a paper that established an absolute shielding scale for nitrogen it was reported $\sigma(N) = 244.6$ ppm for NH₃ (liq., 298 to 303 K) and -135.8 ppm for CH₃NO₂ (liq., 298 to 303 K), resulting in a shielding difference of 380.4 ppm.³⁰ Values for a few other samples are given including Nt=Nc=O neat liquid at 193 K: $\sigma(N_t) = 90.2$ ppm and $\sigma(N_c) = +6.2$ ppm. The corresponding shielding values in the gas phase at 300 K were estimated as 99.5 and 11.3 ppm. Taking the nitrogen chemical shift of liquid ammonia as 0.0 ppm, this data yields N₂O (liq. at 193 K), $\delta_t = 154.4 \text{ ppm}$ (*i.e.*, $\sigma(N_t) = 90.2 \text{ ppm}$) and $\delta_c = 238.4 \text{ ppm}$ (*i.e.*, $\sigma(N_c) = 6.2 \text{ ppm}$). For N₂O in the gas phase at 300 K, it was concluded that $\sigma(N_t) = 99.5$ ppm and $\sigma(N_c) = 11.3$ ppm; hence $\delta(N_t)$ = 145.1 ppm) and $\delta(N_c)$ = 233.3 ppm. In CCl₄ solution at 303 K, $\sigma(N_t)$ = 96.5 ppm ($\delta(N_t)$ = 148.1 ppm) and $\sigma(N_c) = 12.2 \text{ ppm} (\delta(N_c) = 232.4 \text{ ppm}),^{59}$ while in CD₃CN, $\delta(N_t) \approx 149 \text{ ppm} (i.e., 380 - 100)$ 231) and $\delta(N_c) \approx 233$ ppm (*i.e.*, 380 – 147), where isotope shifts and spin-spin coupling constants have also been determined.⁶⁰ The nitrogen shielding of NH₃ is sensitive to whether it is in the gas or liquid phase; in the gas phase the nitrogen nucleus is more shielded by approximately 20 ppm (the same is true for the oxygen of water). In the gas phase, the nitrogen nuclei of N_2O are also more shielded than in the liquid phase but the difference is less than 10 ppm for the terminal nitrogen and 6 ppm for the central nitrogen.

Nucleus ^b	Exptl.	PBE1PBE	BP86
Ncentral	364.7	395	366
Nterm	311.8	313	296
N1, N2, N3, N4	190 - 194	183 - 203	186 - 203

Table S4. Experimental and Calculated Isotropic Chemical Shifts (ppm) for 3.^{*a,b*}

^{*a*} Calculated magnetic shieldings were converted to chemical shifts according to $\delta_{calc} = 244.6 - \sigma_{calc}$.³⁰

^b See manuscript for atom labelling.

For linear molecules such as N₂O the paramagnetic shielding along the bond axis is zero. When the N₂O ligand is bent, the paramagnetic term, which is negative, becomes important and all three nuclei of nitrous oxide are deshielded relative to when it is linear.

Table S5. PBE1PBE (top) and BP86 (bottom) Calculated Nitrogen and Oxygen Magnetic Shielding Tensors (ppm) for N₂O and $3.^{a,b}$

	σ11	σ22	σ33	σ _{iso}	Ω	к		
		N ₂ O						
0	76.7	76.7	416.8	190.1	340.1	1.0		
	58.3	58.3	418.0	178.2	359.7	1.0		
N.	-169.4	-169.4	352.3	4.5	521.7	1.0		
INcentral	-166.3	-166.3	353.9	7.1	520.2	1.0		
N	-24.9	-24.9	343.8	98.0	368.7	1.0		
INterm	-29.4	-29.4	345.2	95.5	374.6	1.0		
		3						
0	-350.0	-145.3	198.5	-99.0	548.5	0.253		
0	-282.6	-138.0	172.3	-82.8	454.9	0.364		
NT1	-71.8	61.0	133.8	41.0	205.6	-0.292		
INI	-59.1	58.0	127.3	42.1	186.4	-0.256		
N12	-64.9	95.5	151.3	60.7	216.2	-0.483		
INZ	-50.0	85.3	137.0	57.4	187.0	-0.447		
N3	-73.7	99.9	157.8	61.3	231.5	-0.500		
	-61.9	96.0	141.8	58.7	203.7	-0.550		
NI/	-81.7	66.6	141.2	42.0	222.9	-0.331		
184	-65.4	66.9	130.9	44.1	196.3	-0.348		
Ncentral	-354.1	-148.9	52.1	-150.3	406.2	-0.012		
	-287.5	-100.9	23.5	-121.6	311.0	-0.200		
N _{term}	-268.7	-211.8	276.4	-68.0	545.1	0.791		
	-232.7	-149.8	227.0	-51.8	459.7	0.639		
1 .	$3(\sigma_{i\alpha}-\sigma_{\alpha})$							

 ${}^{a}\sigma_{iso} = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}); \Omega = \sigma_{33} - \sigma_{11}; \kappa = \frac{3(\sigma_{iso} - \sigma_{22})}{\Omega}.$

^b See manuscript for atom labelling.

Figure S34 A) Absolute ¹⁵N magnetic shielding values for NH₃ and CH₃NO₂. **B)** Conversion of shielding values to chemical shifts relative to NH₃(l) using the equation $\delta = + 244.6 - \sigma$ ppm. **C)**. Calculated (BP86/TZ2P/ZORA) ¹⁵N chemical shifts for **3** and N₂O using $\sigma(N) = 244.6$ ppm for NH₃.

References

- G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, *29*, 2176–2179.
- [2] J. Liu, J. Chen, Y. Zhao, L. Li, H. A. Zhang, Synthesis 2003, 17, 2661–2666.
- [3] S. Lee, Y. Jeon, Y. Lim, M. A. Hossain, S. Lee, Y. Cho, H. Ju, W. Kim, *Electrochim. Acta* 2013, 107, 675–680.
- [4] J. R. Partington, A History of Chemistry, Vol. 3, MacMillan & Co., London, 1962.
- [5] M. R. Gyton, B. Leforestier, A. B. Chaplin, Angew. Chem. Int. Ed. 2019, 58, 15295–15298;
 Angew. Chem. 2019, 131, 15439-15442.
- [6] D. J. Xiao, E. D. Bloch, J. A. Mason, W. L. Queen, M. R. Hudson, N. Planas, J. Borycz, A. L. Dzubak, P. Verma, K. Lee, F. Bonino, V. Crocellà, J. Yano, S. Bordiga, D. Truhlar, L. Gagliardi, C. M. Brown, J. R. Long, *Nat. Chem.* 2014, *6*, 590–595.
- [7] S. Chaturvedi, P. N. Dave, J. Energ. Mater. 2013, 31, 1–26.
- [8] J. C. Oxley, J. L. Smith, S. Vadlamannati, A. C. Brown, G. Zhang, D. S. Swanson, J. Canino, Propellants Explos. Pyrotech. 2013, 38, 335–344.
- [9] T. L. Davis, K. C. Blanchard, J. Am. Chem. Soc. 1929, 51, 6, 1790–1801.
- [10] T. L. Lemke, Review of Organic Functional Groups: Introduction to Medicinal Organic Chemistry, Lea and Febiger, Philadelphia, 1983.
- [11] M. Eckert-Maksić, H. Maskill, I. Zrinski, J. Chem. Soc., Perkin Trans. 2. 2001, 2147–2154.
- [12] C. A. Marlies, V. K. La Mer, J. Am. Chem. Soc. 1935, 57, 1812–1820.
- [13] C. H. Arrowsmith, A. Awwal, B. A. Euser, A. J. Kresge, P. P. T. Lau, D. P. Onwood, Y. C. Tang, E. C. Young, J. Am. Chem. Soc. 1991, 113, 172–179.
- [14] C. H. Arrowsmith, A. J. Kresge, Y. C. Tang, J. Am. Chem. Soc. 1991, 113, 179–182.
- [15] R. A. Cox, Can. J. Chem. 1996, 74, 1774–1778.
- [16] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,

J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.

- [17] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comp. Chem. 2001, 22, 931–967.
- [18] ADF 2019.3, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- [19] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865–3868; erratum 1996, 78, 1396.
- [20] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.
- [21] M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 119, 5029-5036.
- [22] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- [23] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [24 S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456–1465.
- [25] P. Pulay, J. F. Hinton, in *Encyclopedia of Nuclear Magnetic Resonance* (Eds.: D. M. Grant, R. K. Harris), Volume 7, Wiley, New York, **1996**, pp. 4334–4339.
- [26] A. D. Becke, *Phys. Rev. A*, **1988**, *38*, 3098–3100.
- [27] J. P. Perdew, *Phys. Rev. B*, **1986**, *33*, 8822–8824 erratum **1986**, *34*, 7406.
- [28] E. van Lenthe, E. J. Baerends, J. Comp. Chem. 2003, 24, 1142–1156.
- [29] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1994, 101, 9783.
- [30] C. J. Jameson, A. K. Jameson, D. Oppusunggu, S. Wille, P. M. Burrell, J. Mason, J. Chem. Phys. 1981, 74, 81–88.
- [31] M. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962–975.

- [32] J. S. Anderson, V. M. Iluc, G. L. Hillhouse, Inorg. Chem. 2010, 49, 10203–10207.
- [33] R. Beck, M. Shoshani, J. Krasinkiewicz, J. A. Hatnean, S. A. Johnson, *Dalton Trans.* 2013, 42, 1461-1475.
- [34] Y.-E. Kim, J. Kim, Y. Lee, Chem. Commun. 2014, 50, 11458–11461.
- [35] S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soc. 1985, 107, 2985-2986.
- [36] J. A. Buss, D. G. Vandervelde, T. Agapie, J. Am. Chem. Soc. 2018, 140, 10121–10125.
- [37] R. G. Carden, J. J. Ohane, R. D. Pike, P. M. Graham, Organometallics 2013, 32, 2505– 2508.
- [38] L. Contreras, M. Paneque, M. Sellin, E. Carmona, P. J. Perez, E. Gutierrez-Puebla, A. Monge, C. Ruiz, New J. Chem. 2005, 29, 109-115.
- [39] G. S. Bristow, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1981, 1145–1146.
- [40] P. F. Fu, M. A. Khan, K. M. Nicholas, J. Am. Chem. Soc. 1992, 114, 6579–6580.
- [41] S. Komiya, M. Akita, N. Kasuga, M. Hirano, A. Fukuoka, J. Chem. Soc., Chem. Commun. 1994, 1115–1116.
- [42] T.-F. Wang, C.-C. Hwu, C.-W. Tsai, K.-J. Lin, Organometallics 1997, 16, 3089–3090.
- [43] T.-F. Wang, C.-C. Hwu, Y.-S. Wen, J. Organomet. Chem. 2004, 689, 411–418.
- [44] W. L. Earl, D. L. VanderHart, J. Magn. Reson. 1982, 48, 35–54.
- [45] P. Bertani, J. Raya, B. Bechinger, Solid State Nucl. Magn. Reson. 2014, 61–62, 15–18.
- [46] M. Witanowski, L. Stefaniak, S. Szymański, H. Januszewski, J. Magn. Reson. 1977, 28, 217–226.
- [47] M. Witanowski, G. A. Webb, Eds., *Nitrogen NMR*, Plenum Press, London and New York, 1973.
- [48] a) M. Witanowski, G. A. Webb, Annu. Rep. NMR Spectrosc. 1972, 5A, 395-464; b) M.
 Witanowski, L. Stefaniak, G. A. Webb, Annu. Rep. NMR Spectrosc. 1978, 5, 117-244; c) M.
 Witanowski, L. Stefaniak, G. A. Webb, Annu. Rep. NMR Spectrosc. 1981, 11B, 1-486; d) M.

Witanowski, L. Stefaniak, G. A. Webb, *Annu. Rep. NMR Spectrosc.* **1987**, *18B*, 1-211; e) M. Witanowski, L. Stefaniak, G. A. Webb, *Annu. Rep. NMR Spectrosc.* **1993**, *25*, 1-82.

- 49 P. R. Srinivasan, R. L. Lichter, J. Magn. Reson. 1977, 28, 227–234.
- 50 G. C. Levy, R. L. Lichter, Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy, Wiley-Interscience, John Wiley & Sons, New York, 1979.
- 51 R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, *Pure Appl. Chem.* 2001, 73, 1795–1818.
- 52 T. Duncan, *Principal Components of Chemical Shift Tensors: A Compilation*, 2nd Ed, The Farragut Press, Chicago, **1994**.
- 53 R. K. Harris, R. E. Wasylishen, Eds., *Encyclopedia of Nuclear Magnetic Resonance*, Volume
 5, John Wiley & Sons, Ltd., Chichester, 2012.
- 54 J. Mason, L. F. Larkworthy, E. A. Moore, *Chem. Rev.* **2002**, *102*, 913–934.
- 55 W. von Philipsborn, R. Müller, *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 383–413; *Angew. Chem.* **1986**, *98*, 381–412.
- 56 S. Hayashi, K. Hayamizu, Bull. Chem. Soc. Jpn. 1991, 64, 688–690.
- 57 M. Dračínský, P. Bouř, J. Comput. Chem. 2012, 33, 1080–1089.
- 58 L. Stievano, F. Tielens, I. Lopes, N. Folliet, C. Gervais, D. Costa, J.-F. Lambert, *Cryst. Growth Des.* 2010, *10*, 3657–3667.
- 59 P. K. Bhattacharyya, B. P. Dailey, J. Chem. Phys. 1973, 59, 5820–5823.
- 60 Y. A. Strelenko, N. M. Sergeyev, J. Mol. Structure, **1996**, 378, 61–65.